Skip to main content

High Molecular Weight Targets and Treatments Using Microdialysis

  • Chapter
  • First Online:
Microdialysis in Drug Development

Abstract

Advances in proteomics, the quest for biomarker discovery and the desire to understand drug mechanisms at the cellular level all require the ability to obtain relevant biological samples, preferably from humans. Microdialysis sampling is a well-established and widely accepted method for the in vivo collection of solutes, including high molecular weight compounds, from a number of complex matrices, but principally from the extracellular fluid space. Here, we summarize the current status of microdialysis sampling of high molecular weight targets which, together with novel analytical methodologies, can lead to a better understanding of the healthy tissue proteome and how this may be changed in disease. Further, the potential for microdialysis to be used to explore the penetration of high molecular weight drugs into the extravascular compartment and the mechanisms by which they exert their beneficial effects is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson C, Andersson T, Wårdell K (1994) Changes in skin circulation after insertion of a microdialysis probe visualised by laser Doppler perfusion imaging. J Invest Dermatol 102:807–811

    PubMed  CAS  Google Scholar 

  • Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100

    PubMed  CAS  Google Scholar 

  • Anderson L (2005) Candidate-based proteomics in the search for biomarkers of cardiovascular disease. J Physiol 563(Pt 1):23–60

    PubMed  CAS  Google Scholar 

  • Andren PE, Caprioli RM (1995) In vivo metabolism of substance P in rat striatum utilizing microdialysis/liquid chromatography/micro-electrospray mass spectrometry. J Mass Spectrom 30:817–824

    CAS  Google Scholar 

  • Angst MS, Clark JD, Carvalho B, Tingle M, Schmelz M, Yeomans DC (2008) Cytokine profile in human skin in response to experimental inflammation, noxious stimulation, and administration of a COX-inhibitor: a microdialysis study. Pain 139(1):15–27

    PubMed  CAS  Google Scholar 

  • Ao X, Sellati TJ, Stenken JA (2004) Enhanced microdialysis relative recovery of inflammatory cytokines using antibody-coated microspheres analyzed by flow cytometry. Anal Chem 76(13):3777–3784

    PubMed  CAS  Google Scholar 

  • Ao X, Stenken JA (2006) Microdialysis sampling of cytokines. Methods 38(4):331–341

    PubMed  CAS  Google Scholar 

  • Asai S, Kohno T, Ishii Y, Ishikawa K (1996) A newly developed procedure for monitoring of extracellular proteins using a push-pull microdialysis. Anal Biochem 237(2):182–187

    PubMed  CAS  Google Scholar 

  • Averbeck M, Beilharz S, Bauer M, Gebhardt C, Hartmann A, Hochleitner K et al (2006) In situ profiling and quantification of cytokines released during ultraviolet B-induced inflammation by combining dermal microdialysis and protein microarrays. Exp Dermatol 15(6):447–454

    PubMed  CAS  Google Scholar 

  • Behrens HL, Chen R, Li L (2008) Combining microdialysis, NanoLC-MS, and MALDI-TOF/TOF to detect neuropeptides secreted in the crab, Cancer borealis. Anal Chem 80(18):6949–6958

    PubMed  CAS  Google Scholar 

  • Behrens HL, Li L (2010) Monitoring neuropeptides in vivo via microdialysis and mass spectrometry. Methods Mol Biol 615:57–73

    PubMed  CAS  Google Scholar 

  • Benveniste H, Diemer NH (1987) Cellular reactions to implantation of a microdialysis tube in the rat hippocampus. Acta Neuropathol 74(3):234–238

    PubMed  CAS  Google Scholar 

  • Benveniste H, Huttemeier PC (1990) Microdialysis–theory and application. Prog Neurobiol 35(3):195–215

    PubMed  CAS  Google Scholar 

  • Boutsiouki P, Georgiou S, Clough GF (2004) Recovery of nitric oxide from acetylcholine-mediated vasodilatation in human skin in vivo. Microcirculation 11(3):249–259

    PubMed  CAS  Google Scholar 

  • Boutsiouki P, Thompson JP, Clough GF (2001) Effects of local blood flow on the percutaneous absorption of the organophosphorus compound Malathion: a microdialysis study in man. Arch Toxicol 75(6):321–328

    PubMed  CAS  Google Scholar 

  • Bungay PM, Sumbria RK, Bickel U (2011) Unifying the mathematical modeling of in vivo and in vitro microdialysis. J Pharm Biomed Anal 55(1):54–63

    PubMed  CAS  Google Scholar 

  • Bungay PM, Wang T, Yang H, Elmquist WF (2010) Utilizing transmembrane convection to enhance solute sampling and delivery by microdialysis: theory and in vitro validation. J Membr Sci 348(1–2):131–149

    CAS  Google Scholar 

  • Cederberg D, Siesjo P (2010) What has inflammation to do with traumatic brain injury? Childs Nerv Syst 26(2):221–226

    PubMed  Google Scholar 

  • Chaurasia CS, Muller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R et al (2007) AAPS-FDAFDA workshop white paper: microdialysis principles, application and regulatory perspectives. Pharm Res 24(5):1014–1025

    PubMed  CAS  Google Scholar 

  • Clapp-Lilly KL, Roberts RC, Duffy LK, Irons KP, Hu Y, Drew KL (1999) An ultrastructural analysis of tissue surrounding a microdialysis probe. J Neurosci Methods 90(2):129–142

    PubMed  CAS  Google Scholar 

  • Clough GF (2005) Microdialysis of large molecules. AAPS J 7(3):E686–E692

    PubMed  CAS  Google Scholar 

  • Clough GF, Boutsiouki P, Church MK, Michel CC (2002) Effects of blood flow on the in vivo recovery of a small diffusible molecule by microdialysis in human skin. J Pharmacol Exp Ther 302(2):681–686

    PubMed  CAS  Google Scholar 

  • Clough GF, Jackson CL, Lee JJ, Jamal SC, Church MK (2007) What can microdialysis tell us about the temporal and spatial generation of cytokines in allergen-induced responses in human skin in vivo? J Invest Dermatol 127(12):2799–2806

    PubMed  CAS  Google Scholar 

  • Cooley JC, Lunte CE (2011) Detection of malondialdehyde in vivo using microdialysis sampling with CE-fluorescence. Electrophoresis 32(21):2994–2999

    PubMed  CAS  Google Scholar 

  • Dabrosin C (2001) Technical aspects of microdialysis of human breast. Scand J Clin Lab Invest 61(4):269–272

    PubMed  CAS  Google Scholar 

  • Dahlin AP, Hjort K, Hillered L, Sjodin MO, Bergquist J, Wetterhall M (2012) Multiplexed quantification of proteins adsorbed to surface-modified and non-modified microdialysis membranes. Anal Bioanal Chem 402(6):2057–2067

    PubMed  CAS  Google Scholar 

  • Dahlin AP, Wetterhall M, Caldwell KD, Larsson A, Bergquist J, Hillered L et al (2010) Methodological aspects on microdialysis protein sampling and quantification in biological fluids: an in vitro study on human ventricular CSF. Anal Chem 82(11):4376–4385

    PubMed  CAS  Google Scholar 

  • Dancik Y, Anissimov YG, Jepps OG, Roberts MS (2012) Convective transport of highly plasma protein bound drugs facilitates direct penetration into deep tissues after topical application. Br J Clin Pharmacol 73(4):564–578

    PubMed  CAS  Google Scholar 

  • de la Cour CD, Norlen P, Hakanson R (2007) Secretion of ghrelin from rat stomach ghrelin cells in response to local microinfusion of candidate messenger compounds: a microdialysis study. Regul Pept 143(1–3):118–126

    PubMed  Google Scholar 

  • Dostalova I, Kavalkova P, Haluzikova D, Housova J, Matoulek M, Haluzik M (2009) The use of microdialysis to characterize the endocrine production of human subcutaneous adipose tissue in vivo. Regul Pept 155(1–3):156–162

    PubMed  CAS  Google Scholar 

  • Duo J, Fletcher H, Stenken JA (2006) Natural and synthetic affinity agents as microdialysis sampling mass transport enhancers: current progress and future perspectives. Biosens Bioelectron 22(3):449–457

    PubMed  CAS  Google Scholar 

  • Duo J, Stenken JA (2011) In vitro and in vivo affinity microdialysis sampling of cytokines using heparin-immobilized microspheres. Anal Bioanal Chem 399(2):783–793

    PubMed  CAS  Google Scholar 

  • Elmquist WF, Sawchuk RJ (1997) Application of microdialysis in pharmacokinetic studies. Pharm Res 14:267–288

    PubMed  CAS  Google Scholar 

  • Elshal MF, McCoy JP (2006) Multiplex bead array assays: performance evaluation and comparison of sensitivity to ELISA. Methods 38(4):317–323

    PubMed  CAS  Google Scholar 

  • Emmett MR, Andren PE, Caprioli RM (1995) Specific molecular mass detection of endogenously released neuropeptides using in vivo microdialysis/mass spectrometry. J Neurosci Methods 62:141–147

    PubMed  CAS  Google Scholar 

  • Ernberg MM, Alstergren PJ (2004) Microdialysis of neuropeptide Y in human muscle tissue. J Neurosci Methods 132(2):185–190

    PubMed  CAS  Google Scholar 

  • Flannery T, McConnell RS, McQuaid S, McGregor G, Mirakhur M, Martin L et al (2007) Detection of cathepsin S cysteine protease in human brain tumour microdialysates in vivo. Br J Neurosurg 21(2):204–209

    PubMed  CAS  Google Scholar 

  • Fletcher HJ, Stenken JA (2008) An in vitro comparison of microdialysis relative recovery of Met- and Leu-enkephalin using cyclodextrins and antibodies as affinity agents. Anal Chim Acta 620(1–2):170–175

    PubMed  CAS  Google Scholar 

  • Gill C, Parkinson E, Church MK, Skipp P, Scott D, White AJ et al (2011) A qualitative and quantitative proteomic study of human microdialysate and the cutaneous response to injury. AAPS J 13(2):309–317

    PubMed  CAS  Google Scholar 

  • Gill CA (2009) Proteomic analysis of interstitial fluid for novel markers of the cutaneous response to Injury University of Southampton 2009

    Google Scholar 

  • Goodman JC (2011) Clinical microdialysis in neuro-oncology: principles and applications. Chin J Cancer 30(3):173–181

    PubMed  CAS  Google Scholar 

  • Groth L, Jorgensen A, Serup J (1998) Cutaneous microdialysis in the rat: insertion trauma and effect of anaesthesia studied by laser Doppler perfusion imaging and histamine release. Skin Pharmacol Appl Skin Physiol 11(3):125–132

    PubMed  CAS  Google Scholar 

  • Hage DS, Anguizola J, Barnaby O, Jackson A, Yoo MJ, Papastavros E et al (2011) Characterization of drug interactions with serum proteins by using high-performance affinity chromatography. Curr Drug Metab 12(4):313–328

    PubMed  CAS  Google Scholar 

  • Hamel DJ, Sielaff I, Proudfoot AE, Handel TM (2009) Chapter 4. Interactions of chemokines with glycosaminoglycans. Methods Enzymol 461:71–102

    PubMed  CAS  Google Scholar 

  • Hamrin K, Rosdahl H, Ungerstedt U, Henriksson J (2002) Microdialysis in human skeletal muscle: effects of adding a colloid to the perfusate. J Appl Physiol 92(1):385–393

    PubMed  CAS  Google Scholar 

  • Haskins WE, Watson CJ, Cellar NA, Powell DH, Kennedy RT (2004) Discovery and neurochemical screening of peptides in brain extracellular fluid by chemical analysis of in vivo microdialysis samples. Anal Chem 76(18):5523–5533

    PubMed  CAS  Google Scholar 

  • Haslene-Hox H, Oveland E, Berg KC, Kolmannskog O, Woie K, Salvesen HB et al (2011) A new method for isolation of interstitial fluid from human solid tumors applied to proteomic analysis of ovarian carcinoma tissue. PLoS One 6(4):e19217

    PubMed  CAS  Google Scholar 

  • Helmy A, Carpenter KL, Menon DK, Pickard JD, Hutchinson PJ (2011a) The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab 31(2):658–670

    PubMed  CAS  Google Scholar 

  • Helmy A, Carpenter KL, Skepper JN, Kirkpatrick PJ, Pickard JD, Hutchinson PJ (2009) Microdialysis of cytokines: methodological considerations, scanning electron microscopy, and determination of relative recovery. J Neurotrauma 26(4):549–561

    PubMed  Google Scholar 

  • Helmy A, De Simoni MG, Guilfoyle MR, Carpenter KL, Hutchinson PJ (2011b) Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Prog Neurobiol 95(3):352–372

    PubMed  CAS  Google Scholar 

  • Herbaugh AW, Stenken JA (2011) Antibody-enhanced microdialysis collection of CCL2 from rat brain. J Neurosci Methods 202(2):124–127

    PubMed  CAS  Google Scholar 

  • Huang CM, Ananthaswamy HN, Barnes S, Ma Y, Kawai M, Elmets CA (2006a) Mass spectrometric proteomics profiles of in vivo tumor secretomes: capillary ultrafiltration sampling of regressive tumor masses. Proteomics 6(22):6107–6116

    PubMed  CAS  Google Scholar 

  • Huang CM, Wang CC, Kawai M, Barnes S, Elmets CA (2006b) In vivo protein sampling using capillary ultrafiltration semi-permeable hollow fiber and protein identification via mass spectrometry-based proteomics. J Chromatogr A 1109(2):144–151

    PubMed  CAS  Google Scholar 

  • Huinink KD, Lambooij B, Jansen-van ZK, Cremers TI, van OW, Bakker PL et al. (2010) Microfiltration sampling in rats and in cows: toward a portable device for continuous glucocorticoid hormone sampling. Analyst 135(2):390–396

    Google Scholar 

  • Jaquins-Gerstl A, Shu Z, Zhang J, Liu Y, Weber SG, Michael AC (2011) Effect of dexamethasone on gliosis, ischemia, and dopamine extraction during microdialysis sampling in brain tissue. Anal Chem 83(20):7662–7667

    PubMed  CAS  Google Scholar 

  • Jensen SM, Hansen HS, Johansen T, Malmlof K (2007) In vivo and in vitro microdialysis sampling of free fatty acids. J Pharm Biomed Anal 43(5):1751–1756

    PubMed  CAS  Google Scholar 

  • Kalish H, Phillips TM (2009) Application of immunoaffinity capillary electrophoresis to the measurements of secreted cytokines by cultured astrocytes. J Sep Sci 32(10):1605–1612

    PubMed  CAS  Google Scholar 

  • Kendrick KM (1990) Microdialysis measurement of in vivo neuropeptide release. J Neurosci Methods 34(1–3):35–46

    PubMed  CAS  Google Scholar 

  • Kjellstrom S, Emneus J, Laurell T, Heintz L, Marko-Varga G (1998) On-line coupling of microdialysis sampling with liquid chromatography for the determination of peptide and non-peptide leukotrienes. J Chromatogr A 823(1–2):489–496

    PubMed  CAS  Google Scholar 

  • Kool J, Reubsaet L, Wesseldijk F, Maravilha RT, Pinkse MW, D’Santos CS et al (2007) Suction blister fluid as potential body fluid for biomarker proteins. Proteomics 7(20):3638–3650

    PubMed  CAS  Google Scholar 

  • Lanckmans K, Sarre S, Smolders I, Michotte Y (2007a) Use of a structural analogue versus a stable isotope labeled internal standard for the quantification of angiotensin IV in rat brain dialysates using nano-liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 21(7):1187–1195

    PubMed  CAS  Google Scholar 

  • Lanckmans K, Sarre S, Smolders I, Michotte Y (2008) Quantitative liquid chromatography/mass spectrometry for the analysis of microdialysates. Talanta 74(4):458–469

    PubMed  CAS  Google Scholar 

  • Lanckmans K, Stragier B, Sarre S, Smolders I, Michotte Y (2007b) Nano-LC-MS/MS for the monitoring of angiotensin IV in rat brain microdialysates: limitations and possibilities. J Sep Sci 30(14):2217–2224

    PubMed  CAS  Google Scholar 

  • Li Q, Zubieta JK, Kennedy RT (2009) Practical aspects of in vivo detection of neuropeptides by microdialysis coupled off-line to capillary LC with multistage MS. Anal Chem 81(6):2242–2250

    PubMed  CAS  Google Scholar 

  • Li Y, Nath N, Reichert WM (2003) Parallel comparison of sandwich and direct label assay protocols on cytokine detection protein arrays. Anal Chem 75:5274–5281

    CAS  Google Scholar 

  • Li Y, Schutte RJ, Abu-Shakra A, Reichert WM (2005) Protein array method for assessing in vitro biomaterial-induced cytokine expression. Biomaterials 26(10):1081–1085

    PubMed  Google Scholar 

  • Lischetzki G, Rukwied R, Handwerker HO, Schmelz M (2001) Nociceptor activation and protein extravasation induced by inflammatory mediators in human skin. Eur J PainPain 5(1):49–57

    CAS  Google Scholar 

  • Lortat-Jacob H (2009) The molecular basis and functional implications of chemokine interactions with heparan sulphate. Curr Opin Struct Biol 19(5):543–548

    PubMed  CAS  Google Scholar 

  • Macdonald N, Cumberbatch M, Singh M, Moggs JG, Orphanides G, Dearman RJ et al (2006) Proteomic analysis of suction blister fluid isolated from human skin. Clin Exp Dermatol 31(3):445–448

    PubMed  CAS  Google Scholar 

  • Marcus HJ, Carpenter KL, Price SJ, Hutchinson PJ (2010) In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines. J Neurooncol 97(1):11–23

    PubMed  CAS  Google Scholar 

  • Marro D, Guy RH, Delgado-Charro MB (2001) Characterization of the iontophoretic permselectivity properties of human and pig skin. J Controlled Release 70(1–2):213–217

    CAS  Google Scholar 

  • Martins FC, de Oliveira CF (2009) Chemotherapy and the future: microdialysis as a local administration technique. Eur J Gynaecol Oncol 30(1):5–8

    PubMed  CAS  Google Scholar 

  • Martins FC, Santos JL, Oliveira CF (2012) Microdialysis: improving local chemotherapy in cancer using a mathematical model. Front Biosci (Elite Ed) 4:401–409

    Google Scholar 

  • Mascher B, Schlenke P, Seyfarth M (1999) Expression and kinetics of cytokines determined by intracellular staining using flow cytometry. J Immunol Methods 223(1):115–121

    PubMed  CAS  Google Scholar 

  • Maurer MH (2010) Proteomics of brain extracellular fluid (ECF) and cerebrospinal fluid (CSF). Mass Spectrom Rev 29(1):17–28

    PubMed  Google Scholar 

  • Maurer MH, Berger C, Wolf M, Futterer CD, Feldmann RE Jr, Schwab S et al (2003) The proteome of human brain microdialysate. Proteome Sci 1(1):7

    PubMed  Google Scholar 

  • Maurer MH, Haux D, Sakowitz OW, Unterberg AW, Kuschinsky W (2007) Identification of early markers for symptomatic vasospasm in human cerebral microdialysate after subarachnoid hemorrhage: preliminary results of a proteome-wide screening. J Cereb Blood Flow Metab 27(10):1675–1683

    PubMed  CAS  Google Scholar 

  • Mertes PM, Beck B, Jaboin Y, Stricker A, Carteaux JP, Pinelli G et al (1993) Microdialysis in the estimation of interstitial myocardial neuropeptide Y release. Regul Pept 49(1):81–90

    PubMed  CAS  Google Scholar 

  • Mitala CM, Wang Y, Borland LM, Jung M, Shand S, Watkins S et al (2008) Impact of microdialysis probes on vasculature and dopamine in the rat striatum: a combined fluorescence and voltammetric study. J Neurosci Methods 174(2):177–185

    PubMed  CAS  Google Scholar 

  • Mou X, Lennartz MR, Loegering DJ, Stenken JA (2010) Long-term calibration considerations during subcutaneous microdialysis sampling in mobile rats. Biomaterials 31(16):4530–4539

    PubMed  CAS  Google Scholar 

  • Nandi P, Lunte SM (2009) Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: a review. Anal Chim Acta 651(1):1–14

    PubMed  CAS  Google Scholar 

  • Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4(10):1419–1440

    PubMed  CAS  Google Scholar 

  • Norton LW, Koschwanez HE, Wisniewski NA, Klitzman B, Reichert WM (2007) Vascular endothelial growth factor and dexamethasone release from nonfouling sensor coatings affect the foreign body response. J Biomed Mater Res A 81(4):858–869

    PubMed  CAS  Google Scholar 

  • Phillips TM (2001) Multi-analyte analysis of biological fluids with a recycling immunoaffinity column array. J Biochem Biophys Meth 49(1–3):253–262

    PubMed  CAS  Google Scholar 

  • Phillips TM, Dickens BF (1998) Analysis of recombinant cytokines in human body fluids by immunoaffinity capillary electrophoresis. Electrophoresis 19(16–17):2991–2996

    PubMed  CAS  Google Scholar 

  • Pich EM, Koob GF, Heilig M, Menzaghi F, Vale W, Weiss F (1993) Corticotropin-releasing factor release from the mediobasal hypothalamus of the rat as measured by microdialysis. Neuroscience 55(3):695–707

    PubMed  CAS  Google Scholar 

  • Riese J, Boecker S, Hohenberger W, Klein P, Haupt W (2003) Microdialysis: a new technique to monitor perioperative human peritoneal mediator production. Surg Infect (Larchmt) 4(1):11–15

    Google Scholar 

  • Rose-John S, Heinrich PC (1994) Soluble receptors for cytokines and growth factors: generation and biological function. Biochem J 300(Pt 2):281–290

    PubMed  CAS  Google Scholar 

  • Rot A (2010) Chemokine patterning by glycosaminoglycans and interceptors. Front Biosci 15:645–660

    PubMed  CAS  Google Scholar 

  • Salgo R, Thaci D, Boehncke S, Diehl S, Hofmann M, Boehncke WH (2011) Microdialysis documents changes in the micromilieu of psoriatic plaques under continuous systemic therapy. Exp Dermatol 20(2):130–133

    PubMed  Google Scholar 

  • Schmelz M, Luz O, Averbeck B, Bickel A (1997) Plasma extravasation and neuropeptide release in human skin as measured by intradermal microdialysis. Neurosci Let 230:117–120

    CAS  Google Scholar 

  • Schutte RJ, Oshodi SA, Reichert WM (2004) In vitro characterization of microdialysis sampling of macromolecules. Anal Chem 76(20):6058–6063

    PubMed  CAS  Google Scholar 

  • Schutte RJ, Xie L, Klitzman B, Reichert WM (2009) In vivo cytokine-associated responses to biomaterials. Biomaterials 30(2):160–168

    PubMed  CAS  Google Scholar 

  • Shaker MA, Younes HM (2009) Interleukin-2: evaluation of routes of administration and current delivery systems in cancer therapy. J Pharm Sci 98(7):2268–2298

    PubMed  CAS  Google Scholar 

  • Shaw DW, Britt JH (1995) Concentrations of tumor necrosis factor alpha and progesterone within the bovine corpus luteum sampled by continuous-flow microdialysis during luteolysis in vivo. Biol Reprod 53(4):847–854

    PubMed  CAS  Google Scholar 

  • Shaw DW, Britt JH (2000) In vivo oxytocin release from microdialyzed bovine corpora lutea during spontaneous and prostaglandin-induced regression. Biol Reprod 62(3):726–730

    PubMed  CAS  Google Scholar 

  • Sjogren F, Anderson CD (2010) Are cutaneous microdialysis cytokine findings supported by end point biopsy immunohistochemistry findings? AAPS J 12(4):741–749

    PubMed  Google Scholar 

  • Sjogren F, Svensson C, Anderson C (2002) Technical prerequisites for in vivo microdialysis determination of interleukin-6 in human dermis. Br J Dermatol 146(3):375–382

    PubMed  CAS  Google Scholar 

  • Sopasakis VR, Nagaev I, Smith U (2005) Cytokine release from adipose tissue of nonobese individuals. Int J Obes (Lond) 29(9):1144–1147

    CAS  Google Scholar 

  • Stenken JA, Church MK, Gill CA, Clough GF (2010) How minimally invasive is microdialysis sampling? A cautionary note for cytokine collection in human skin and other clinical studies. AAPS J 12(1):73–78

    PubMed  CAS  Google Scholar 

  • Stenken JA, Lunte CE, Southard MZ, Stahle L (1997) Factors that influence microdialysis recovery. Comparison of experimental and theoretical microdialysis recoveries in rat liver. J Pharm Sci 86(8):958–966

    PubMed  CAS  Google Scholar 

  • Strindberg L, Lonnroth P (2000) Validation of an endogenous reference technique for the calibration of microdialysis catheters. Scand J Clin Lab Invest 60(3):205–211

    PubMed  CAS  Google Scholar 

  • Summy-Long JY, Hu S, Long A, Phillips TM (2008) Interleukin-1beta release in the supraoptic nucleus area during osmotic stimulation requires neural function. J Neuroendocrinol 20(11):1224–1232

    PubMed  CAS  Google Scholar 

  • Sun H, Bungay PM, Elmquist WF (2001) Effect of capillary efflux transport inhibition on the determination of probe recovery during in vivo microdialysis in the brain. J Pharmacol Exp Ther 297(3):991–1000

    PubMed  CAS  Google Scholar 

  • Sun L, Stenken JA (2003) Improving microdialysis extraction efficiency of lipophilic eicosanoids. J Pharm Biomed Anal 33(5):1059–1071

    PubMed  CAS  Google Scholar 

  • Sykova E (2004) Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience 129(4):861–876

    PubMed  CAS  Google Scholar 

  • Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88(4):1277–1340

    PubMed  CAS  Google Scholar 

  • Takeda S, Sato N, Ikimura K, Nishino H, Rakugi H, Morishita R (2011) Novel microdialysis method to assess neuropeptides and large molecules in free-moving mouse. Neuroscience 14(186):110–119

    Google Scholar 

  • Thompson AC, Justice JB Jr, McDonald JK (1995) Quantitative microdialysis of neuropeptide Y. J Neurosci Methods 60(1–2):189–198

    PubMed  CAS  Google Scholar 

  • Torto N, Bang J, Richardson S, Nilsson GS, Gorton L, Laurell T et al (1998) Optimal membrane choice for microdialysis sampling of oligosaccharides. J Chromatogr A 806(2):265–278

    PubMed  CAS  Google Scholar 

  • Torto N, Ohlrogge M, Gorton L, Van AJM, Laurell T, Marko-Varga G (2004) In situ poly(ethylene imine) coating of hollow fiber membranes used for microdialysis sampling. Pure Appl Chem 76:879–888

    CAS  Google Scholar 

  • Trickler WJ, Miller DW (2003) Use of osmotic agents in microdialysis studies to improve the recovery of macromolecules. J Pharm Sci 92(7):1419–1427

    PubMed  CAS  Google Scholar 

  • Tyvold SS, Solligard E, Gunnes S, Lyng O, Johannisson A, Gronbech JE et al (2010) Bronchial microdialysis of cytokines in the epithelial lining fluid in experimental intestinal ischemia and reperfusion before onset of manifest lung injury. Shock 34(5):517–524

    PubMed  CAS  Google Scholar 

  • Tyvold SS, Solligard E, Lyng O, Steinshamn SL, Gunnes S, Aadahl P (2007) Continuous monitoring of the bronchial epithelial lining fluid by microdialysis. Respir Res 8:78

    PubMed  Google Scholar 

  • Vargova L, Homola A, Cicanic M, Kuncova K, Krsek P, Marusic P et al (2011) The diffusion parameters of the extracellular space are altered in focal cortical dysplasias. Neurosci Lett 499(1):19–23

    PubMed  CAS  Google Scholar 

  • Vignali DA (2000) Multiplexed particle-based flow cytometric assays. J Immunol Methods 243(1–2):243–255

    PubMed  CAS  Google Scholar 

  • von Grote EC, Venkatakrishnan V, Duo J, Stenken JA (2011) Long-term subcutaneous microdialysis sampling and qRT-PCR of MCP-1, IL-6 and IL-10 in freely-moving rats. Mol Biosyst 7(1):150–161

    Google Scholar 

  • Waelgaard L, Pharo A, Tonnessen TI, Mollnes TE (2006) Microdialysis for monitoring inflammation: efficient recovery of cytokines and anaphylotoxins provided optimal catheter pore size and fluid velocity conditions. Scand J Immunol 64(3):345–352

    PubMed  CAS  Google Scholar 

  • Waelgaard L, Thorgersen EB, Line PD, Foss A, Mollnes TE, Tonnessen TI (2008) Microdialysis monitoring of liver grafts by metabolic parameters, cytokine production, and complement activation. Transplantation 86(8):1096–1103

    PubMed  CAS  Google Scholar 

  • Wang X, Lennartz MR, Loegering DJ, Stenken JA (2007) Interleukin-6 collection through long-term implanted microdialysis sampling probes in rat subcutaneous space. Anal Chem 79(5):1816–1824

    PubMed  CAS  Google Scholar 

  • Wang Y, Stenken JA (2009) Affinity-based microdialysis sampling using heparin for in vitro collection of human cytokines. Anal Chim Acta 651(1):105–111

    PubMed  CAS  Google Scholar 

  • Wang Y, Zagorevski DV, Lennartz MR, Loegering DJ, Stenken JA (2009) Detection of in vivo matrix metalloproteinase activity using microdialysis sampling and liquid chromatography/mass spectrometry. Anal Chem 81(24):9961–9971

    PubMed  CAS  Google Scholar 

  • Wientjes KJ, Grob U, Hattemer A, Hoogenberg K, Jungheim K, Kapitza C et al (2003) Effects of microdialysis catheter insertion into the subcutaneous adipose tissue assessed by the SCGM1 system. Diabetes Technol Ther 5(4):615–620

    PubMed  CAS  Google Scholar 

  • Winter CD, Iannotti F, Pringle AK, Trikkas C, Clough GF, Church MK (2002) A microdialysis method for the recovery of IL-1beta, IL-6 and nerve growth factor from human brain in vivo. J Neurosci Methods 119(1):45–50

    PubMed  CAS  Google Scholar 

  • Winter CD, Pringle AK, Clough GF, Church MK (2004) Raised parenchymal interleukin-6 levels correlate with improved outcome after traumatic brain injury. Brain 127(Pt 2):315–320

    PubMed  Google Scholar 

  • Wisniewski N, Klitzman B, Miller B, Reichert WM (2001) Decreased analyte transport through implanted membranes: differentiation of biofouling from tissue effects. J Biomed Mater Res 57(4):513–521

    PubMed  CAS  Google Scholar 

  • Woodroofe MN, Sarna GS, Wadhwa M, Hayes GM, Loughlin AJ, Tinker A et al (1991) Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J Neuroimmunol 33(3):227–236

    PubMed  CAS  Google Scholar 

  • Yang S, Huang CM (2007) Recent advances in protein profiling of tissues and tissue fluids. Expert Rev Proteomics 4(4):515–529

    PubMed  CAS  Google Scholar 

  • Yokel RA, Allen DD, Burgio DE, McNamara PJ (1992) Antipyrine as a dialyzable reference to correct differences in efficiency among and within sampling devices during in vivo microdialysis. J Pharmacol Toxicol Methods 27(3):135–142

    PubMed  CAS  Google Scholar 

  • Younes HM, Amsden BG (2002) Interferon-gamma therapy: evaluation of routes of administration and delivery systems. J Pharm Sci 91(1):2–17

    PubMed  CAS  Google Scholar 

  • Zhao W, Oskeritzian CA, Pozez AL, Schwartz LB (2005) Cytokine production by skin-derived mast cells: endogenous proteases are responsible for degradation of cytokines. J Immunol 175(4):2635–2642

    PubMed  CAS  Google Scholar 

  • Zolotarjova N, Martosella J, Nicol G, Bailey J, Boyes BE, Barrett WC (2005) Differences among techniques for high-abundant protein depletion. Proteomics 5(13):3304–3313

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldine F. Clough .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Clough, G.F., Stenken, J.A., Church, M.K. (2013). High Molecular Weight Targets and Treatments Using Microdialysis. In: Müller, M. (eds) Microdialysis in Drug Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4815-0_13

Download citation

Publish with us

Policies and ethics