Skip to main content

GPR55 in the CNS

  • Chapter
  • First Online:
endoCANNABINOIDS

Part of the book series: The Receptors ((REC,volume 24))

  • 1284 Accesses

Abstract

The identification of GPR55 as a possible cannabinoid receptor generated a flurry of interest as based on the hope that this receptor might explain some of the non-CB1/CB2/TRPV1 effects of cannabinoid compounds. However, it rapidly became clear that the pharmacology and signaling of GPR55 were quite complicated. Work over the last few years has found that lysophosphatidyl inositol is a major endogenous ligand for GPR55, with phytocannabinoids and endocannabinoids having a lesser role. This review briefly summarizes our current understanding of GPR55 signaling and its role in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addy C, Wright H et al (2008) The acyclic CB1R inverse agonist taranabant mediates weight loss by increasing energy expenditure and decreasing caloric intake. Cell Metab 7(1):68–78

    Article  PubMed  CAS  Google Scholar 

  • Anavi-Goffer S, Baillie G et al (2012) Modulation of L-alpha-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids. J Biol Chem 287(1):91–104

    Article  PubMed  CAS  Google Scholar 

  • Balenga NA, Aflaki E et al (2011) GPR55 regulates cannabinoid 2 receptor-mediated responses in human neutrophils. Cell Res 21(10):1452–1469

    Article  PubMed  CAS  Google Scholar 

  • Bondarenko AI, Malli R et al (2011) The GPR55 agonist lysophosphatidylinositol directly activates intermediate-conductance Ca(2+)-activated K (+) channels. Pflugers Arch 462(2):245–255

    Article  PubMed  CAS  Google Scholar 

  • Brown A, Wise A (2003) Identification of modulators of GPR55 activity. USA Patent, GlaxoSmithKline, 0 113814

    Google Scholar 

  • Brown AJ, Daniels DA et al (2011) Pharmacology of GPR55 in yeast and identification of GSK494581A as a mixed-activity glycine transporter subtype 1 inhibitor and GPR55 agonist. J Pharmacol Exp Ther 337(1):236–246

    Article  PubMed  CAS  Google Scholar 

  • Calignano A, La Rana G et al (1998) Control of pain initiation by endogenous cannabinoids. Nature 394(6690):277–281

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Leffler A et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288(5464):306–313

    Article  PubMed  CAS  Google Scholar 

  • Daly CJ, Ross RA et al (2010) Fluorescent ligand binding reveals heterogeneous distribution of adrenoceptors and ‘cannabinoid-like’ receptors in small arteries. Br J Pharmacol 159(4):787–796

    Article  PubMed  CAS  Google Scholar 

  • Danthi S, Enyeart JA et al (2003) Modulation of native TREK-1 and Kv1.4K+ channels by polyunsaturated fatty acids and lysophospholipids. J Membr Biol 195(3):147–164

    Article  PubMed  CAS  Google Scholar 

  • Drmota T, Greasley P, Groblewski T (2004) Screening assays for cannabinoid-ligand-type modulators of GPR55. WIPO. USA, AstraZeneca, 074 844

    Google Scholar 

  • Felder CC, Joyce KE et al (1998) LY320135, a novel cannabinoid CB1 receptor antagonist, unmasks coupling of the CB1 receptor to stimulation of cAMP accumulation. J Pharmacol Exp Ther 284(1):291–297

    PubMed  CAS  Google Scholar 

  • Ford LA, Roelofs AJ et al (2010) A role for L-alpha-lysophosphatidylinositol and GPR55 in the modulation of migration, orientation and polarization of human breast cancer cells. Br J Pharmacol 160(3):762–771

    Article  PubMed  CAS  Google Scholar 

  • Henstridge CM, Balenga NA et al (2009) The GPR55 ligand L-alpha-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. FASEB J 23(1):183–193

    Article  PubMed  CAS  Google Scholar 

  • Henstridge CM, Balenga NA et al (2010) GPR55 ligands promote receptor coupling to multiple signalling pathways. Br J Pharmacol 160(3):604–614

    Article  PubMed  CAS  Google Scholar 

  • Huffman JW, Zengin G et al (2005) Structure-activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid CB(1) and CB(2) receptors: steric and electronic effects of naphthoyl substituents. New highly selective CB(2) receptor agonists. Bioorg Med Chem 13(1):89–112

    Article  PubMed  CAS  Google Scholar 

  • Jensen TP, Sylantyev S et al (2011) GPR55 modulates transmitter release and short term plasticity in the hippocampus by initiating store mediated pre-synaptic Ca2+ entry. 2011 Neuroscience Meeting Planner. Society for Neuroscience, Washington, DC. Online, Program #448.408

    Google Scholar 

  • Johns DG, Behm DJ et al (2007) The novel endocannabinoid receptor GPR55 is activated by atypical cannabinoids but does not mediate their vasodilator effects. Br J Pharmacol 152(5):825–831

    Article  PubMed  CAS  Google Scholar 

  • Kapur A, Zhao P et al (2009) Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands. J Biol Chem 284(43):29817–29827

    Article  PubMed  CAS  Google Scholar 

  • Kelly P, Casey PJ et al (2007) Biologic functions of the G12 subfamily of heterotrimeric g proteins: growth, migration, and metastasis. Biochemistry 46(23):6677–6687

    Article  PubMed  CAS  Google Scholar 

  • Kotsikorou E, Lynch DL et al (2011a) Lipid bilayer molecular dynamics study of lipid-derived agonists of the putative cannabinoid receptor, GPR55. Chem Phys Lipids 164(2):131–143

    Article  PubMed  CAS  Google Scholar 

  • Kotsikorou E, Madrigal KE et al (2011b) Identification of the GPR55 agonist binding site using a novel set of high-potency GPR55 selective ligands. Biochemistry 50(25):5633–5647

    Article  PubMed  CAS  Google Scholar 

  • Lauckner JE, Jensen JB et al (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A 105(7):2699–2704

    Article  PubMed  CAS  Google Scholar 

  • McHugh D, Hu SS et al (2010) N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci 11:44

    Article  PubMed  Google Scholar 

  • Neumann S, Doubell TP et al (1996) Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature 384(6607):360–364

    Article  PubMed  CAS  Google Scholar 

  • Oka S, Nakajima K et al (2007) Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun 362(4):928–934

    Article  PubMed  CAS  Google Scholar 

  • Oka S, Toshida T et al (2009) 2-Arachidonoyl-sn-glycero-3-phosphoinositol: a possible natural ligand for GPR55. J Biochem 145(1):13–20

    Article  PubMed  CAS  Google Scholar 

  • Oka S, Kimura S et al (2010) Lysophosphatidylinositol induces rapid phosphorylation of p38 mitogen-activated protein kinase and activating transcription factor 2 in HEK293 cells expressing GPR55 and IM-9 lymphoblastoid cells. J Biochem 147(5):671–678

    Article  PubMed  CAS  Google Scholar 

  • Opal SM, DePalo VA (2000) Anti-inflammatory cytokines. Chest 117(4):1162–1172

    Article  PubMed  CAS  Google Scholar 

  • Pertwee RG, Howlett AC et al (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB and CB. Pharmacol Rev 62(4):588–631

    Article  PubMed  CAS  Google Scholar 

  • Pietr M, Kozela E et al (2009) Differential changes in GPR55 during microglial cell activation. FEBS Lett 583(12):2071–2076

    Article  PubMed  CAS  Google Scholar 

  • Rahn EJ, Hohmann AG (2009) Cannabinoids as pharmacotherapies for neuropathic pain: from the bench to the bedside. Neurotherapeutics 6(4):713–737

    Article  PubMed  CAS  Google Scholar 

  • Ruscheweyh R, Forsthuber L et al (2007) Modification of classical neurochemical markers in identified primary afferent neurons with Abeta-, Adelta-, and C-fibers after chronic constriction injury in mice. J Comp Neurol 502(2):325–336

    Article  PubMed  CAS  Google Scholar 

  • Ryberg E, Larsson N et al (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152(7):1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Sawzdargo M, Nguyen T et al (1999) Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain. Brain Res Mol Brain Res 64(2):193–198

    Article  PubMed  CAS  Google Scholar 

  • Schicho R, Bashashati M et al (2011) The atypical cannabinoid O-1602 protects against experimental colitis and inhibits neutrophil recruitment. Inflamm Bowel Dis 17(8):1651–1664

    Article  PubMed  Google Scholar 

  • Schuelert N, McDougall JJ (2011) The abnormal cannabidiol analogue O-1602 reduces nociception in a rat model of acute arthritis via the putative cannabinoid receptor GPR55. Neurosci Lett 500(1):72–76

    Article  PubMed  CAS  Google Scholar 

  • Seltzer Z, Dubner R et al (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43(2):205–218

    Article  PubMed  CAS  Google Scholar 

  • Sharir H, Abood ME (2010) Pharmacological characterization of GPR55, a putative cannabinoid receptor. Pharmacol Ther 126(3):301–313

    Article  PubMed  CAS  Google Scholar 

  • Staton PC, Hatcher JP et al (2008) The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain 139(1):225–236

    Article  PubMed  CAS  Google Scholar 

  • Story GM, Gereau RWT (2006) Numbing the senses: role of TRPA1 in mechanical and cold sensation. Neuron 50(2):177–180

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Hajicek N et al (2009) Regulation and physiological functions of G12/13-mediated signaling pathways. Neurosignals 17(1):55–70

    Article  PubMed  CAS  Google Scholar 

  • Sylantyev S, Jensen TP et al (2011) The enigmatic receptor GPR55 potentiates neurotransmitter release at central synapses. 2011 Neuroscience Meeting Planner. Society for Neuroscience, Washington, DC. Online, Program #653.601

    Google Scholar 

  • Urban JD, Clarke WP et al (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Verri WA Jr, Cunha TM et al (2006) Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther 112(1):116–138

    Article  PubMed  CAS  Google Scholar 

  • Waldeck-Weiermair M, Zoratti C et al (2008) Integrin clustering enables anandamide-induced Ca2+ signaling in endothelial cells via GPR55 by protection against CB1-receptor-triggered repression. J Cell Sci 121(pt 10):1704–1717

    Article  PubMed  CAS  Google Scholar 

  • Whyte LS, Ryberg E et al (2009) The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci U S A 106(38):16511–16516

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Mackie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lu, HC., Lauckner, J.E., Huffman, J.W., Mackie, K. (2013). GPR55 in the CNS. In: Abood, M., Sorensen, R., Stella, N. (eds) endoCANNABINOIDS. The Receptors, vol 24. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4669-9_3

Download citation

Publish with us

Policies and ethics