Skip to main content

Cap-Dependent Protein Translation Initiation in Multiple Myeloma: An Attractive Target for Therapy

  • Chapter
  • First Online:

Abstract

It has been shown that overexpression and/or activation of eukaryotic initiation factor 4E (eIF4E) induces a malignant phenotype by regulating oncogenic protein synthesis. Aberrant control of protein synthesis contributes to lymphoma genesis, opening up possibilities of innovative therapeutics by targeting the translational machinery. In multiple myeloma (MM), understanding the mechanisms that control protein synthesis is emerging as an exciting new research area with significant potential for developing innovative therapies. Recently, eIF4E has been discovered as a critical regulator in protein synthesis. This review will summarize the role and regulatory mechanism of eIF4E in multiple myeloma, discuss the potential usage of mRNA translation controlling drugs for multiple myeloma treatment, and provide new leads for novel strategies of MM therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Assouline S, Culjkovic B, Cocolakis E et al (2009) Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin. Blood 114:257–260

    Article  PubMed  CAS  Google Scholar 

  • Berkel HJ, Turbat-Herrera EA, Shi R et al (2001) Expression of the translation initiation factor eIF4E in the polyp-cancer sequence in the colon. Cancer Epidemiol Biomarkers Prev 10:663–666

    PubMed  CAS  Google Scholar 

  • Blagden SP, Willis AE (2011) The biological and therapeutic relevance of mRNA translation in cancer. Nat Rev Clin Oncol 8:280–291

    Article  PubMed  CAS  Google Scholar 

  • Borden KL, Culjkovic-Kraljacic B (2010) Ribavirin as an anti-cancer therapy: acute myeloid leukemia and beyond? Leuk Lymphoma 51:1805–1815

    Article  PubMed  CAS  Google Scholar 

  • Chapman MA, Lawrence MS, Keats JJ et al (2011) Initial genome sequencing and analysis of multiple myeloma. Nat 471:467–472

    Article  CAS  Google Scholar 

  • Cohen N, Sharma M, Kentis A et al (2001) PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. EMBO J 20:4547–4559

    Article  PubMed  CAS  Google Scholar 

  • De Benedetti A, Graff JR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23:3189–3199

    Article  PubMed  Google Scholar 

  • DeFatta RJ, Nathan CO, De Benedetti A (2000) Antisense RNA to eIF4E suppresses oncogenic properties of a head and neck squamous cell carcinoma cell line. Laryngoscope 110:928–933

    Article  PubMed  CAS  Google Scholar 

  • Descamps G, Gomez-Bougie P, Tamburini J et al (2012) The cap-translation inhibitor 4EGI-1 induces apoptosis in multiple myeloma through Noxa induction. Br J Cancer 8(106):1660–1667

    Article  Google Scholar 

  • Dimopoulos M, Spencer A, Attal M et al (2007) Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 357:2123–2132

    Article  PubMed  CAS  Google Scholar 

  • Fan S, Li Y, Yue P et al (2010) The eIF4E/eIF4G interaction inhibitor 4EGI-1 augments TRAIL-mediated apoptosis through c-FLIP Down-regulation and DR5 induction independent of inhibition of cap-dependent protein translation. Neoplasia 12:346–356

    PubMed  CAS  Google Scholar 

  • Farag SS, Zhang S, Jansak BS et al (2009) Phase II trial of temsirolimus in patients with relapsed or refractory multiple myeloma. Leukemia Res 33:1475–1480

    Article  CAS  Google Scholar 

  • Feldman ME, Apsel B, Uotila A et al (2009) Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 7:e38

    Article  PubMed  Google Scholar 

  • Fischer PM (2009) Cap in hand: Targeting eIF4E. Cell Cycle 8:2535–2541

    Article  PubMed  CAS  Google Scholar 

  • Gebauer F, Hentze MW (2004) Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5:827–835

    Article  PubMed  CAS  Google Scholar 

  • Gera J, Lichtenstein A (2011) The mammalian target of rapamycin pathway as a therapeutic target in multiple myeloma. Leuk Lymphoma 52:1857–1866

    Article  PubMed  CAS  Google Scholar 

  • Graff JR, Konicek BW, Vincent TM et al (2007) Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J Clin Invest 117:2638–2648

    Article  PubMed  CAS  Google Scholar 

  • Graff JR, Konicek BW, Carter JH et al (2008) Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 68:631–634

    Article  PubMed  CAS  Google Scholar 

  • Graff JR, Konicek BW, Lynch RL et al (2009) eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival. Cancer Res 69:3866–3873

    Article  PubMed  CAS  Google Scholar 

  • Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22

    Article  PubMed  CAS  Google Scholar 

  • Gupta D, Treon SP, Shima Y et al (2001) Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 15:1950–1961

    Article  PubMed  CAS  Google Scholar 

  • Hagner P, Schneider A, Gartenhaus RB (2010) Targeting the translational machinery as a novel treatment strategy for hematologic malignancies. Blood 18:2127–2135

    Article  Google Scholar 

  • Hoang B, Frost P, Shi Y et al (2010) Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor. Blood 116:4560–4568

    Article  PubMed  CAS  Google Scholar 

  • Hoang B, Benavides A, Shi Y et al (2012) The pp 242 mammalian target of rapamycin (mTOR) inhibitor activates extracellular signal-regulated kinase (ERK) in multiple myeloma cells via a target of rapamycin complex 1 (TORC1)/eukaryotic translation initiation factor 4E (eIF-4E)/RAF pathway and activation is a mechanism of resistance. J Biol Chem 287:21796–21805

    Article  PubMed  CAS  Google Scholar 

  • Hofmeister CC, Yang X, Pichiorri F et al (2011) Phase I trial of lenalidomide and CCI-779 in patients with relapsed multiple myeloma: Evidence for lenalidomide-CCI-779 interaction via P-glycoprotein. J Clin Oncol 29:3427–3434

    Article  PubMed  CAS  Google Scholar 

  • Holm N, Byrnes K, Johnson L et al (2008) A prospective trial on initiation factor 4E (eIF4E) overexpression and cancer recurrence in node-negative breast cancer. Ann Surg Oncol 15:3207–3215

    Article  PubMed  Google Scholar 

  • Hou J, Lam F, Proud C et al (2012) Targeting Mnks for cancer therapy. Oncotarget 3:118–131

    PubMed  Google Scholar 

  • Hsieh AC, Ruggero D (2010) Targeting eIF4E in cancer. Clin Cancer Res. doi:10.1158/1078-0432

  • Hsieh AC, Costa M, Zollo O et al (2010) Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 17:249–261

    Article  PubMed  CAS  Google Scholar 

  • Kentsis A, Topisirovic I, Culjkovic B et al (2004) Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap. Proc Natl Acad Sci USA 101:18105–18110

    Article  PubMed  CAS  Google Scholar 

  • Kentsis A, Volpon L, Topisirovic I et al (2005) Further evidence that ribavirin interacts with eIF4E. RNA 11:1762–1766

    Article  PubMed  CAS  Google Scholar 

  • Kevil CG, De Benedetti A, Payne DK et al (1996) Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer 65:785–790

    Article  PubMed  CAS  Google Scholar 

  • Koh KR, Janz M, Mapara MY et al (2005) Immunomodulatory derivative of thalidomide (IMiD CC-4047) induces a shift in lineage commitment by suppressing erythropoiesis and promoting myelopoiesis. Blood 105:3833–3840

    Article  PubMed  CAS  Google Scholar 

  • Konicek BW, Stephens JR, McNulty AM et al (2011) Therapeutic inhibition of MAP kinase interacting kinase blocks eukaryotic initiation factor 4E phosphorylation and suppresses outgrowth of experimental lung metastases. Cancer Res 71:1849–1857

    Article  PubMed  CAS  Google Scholar 

  • Li S, Gill N, Lentzsch S (2010) Recent advances of IMiDs in cancer therapy. Curr Opin Oncol 22:579–585

    Article  PubMed  Google Scholar 

  • Li S, Jin M, Liu A et al (2011a) The translation initiation factor eIF4E Is overexpressed in multiple myeloma and Is critical for myeloma cell proliferation and survival. Blood (ASH Annual Meeting Abstracts)(118):1

    Google Scholar 

  • Li S, Pal R, Monaghan SA et al (2011b) IMiD immunomodulatory compounds block C/EBP{beta} translation through eIF4E down-regulation resulting in inhibition of MM. Blood 117:5157–5165

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Girona A, Heintel D, Zhang LH et al (2011) Lenalidomide downregulates the cell survival factor, interferon regulatory factor-4, providing a potential mechanistic link for predicting response. Br J Haematol 154:325–336

    Article  PubMed  CAS  Google Scholar 

  • McMahon R, Zaborowska I, Walsh D (2011) Noncytotoxic inhibition of viral infection through eIF4F-independent suppression of translation by 4EGi-1. J Virol 85:853–864

    Article  PubMed  CAS  Google Scholar 

  • Meric F, Hunt KK (2002) Translation initiation in cancer: a novel target for therapy. Mol Cancer Ther 1:971–979

    PubMed  CAS  Google Scholar 

  • Mezquita P, Parghi SS, Brandvold KA et al (2005) Myc regulates VEGF production in B cells by stimulating initiation of VEGF mRNA translation. Oncogene 24:889–901

    Article  PubMed  CAS  Google Scholar 

  • Moerke NJ, Aktas H, Chen H et al (2007) Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128:257–267

    Article  PubMed  CAS  Google Scholar 

  • O’Loghlen A, Gonzalez VM, Piñero D et al (2004) Identification and molecular characterization of Mnk1b, a splice variant of human MAP kinase-interacting kinase Mnk1. Exp Cell Res 299:343–355

    Article  PubMed  Google Scholar 

  • Pal R, Monaghan SA, Hassett AC et al (2010) Immunomodulatory derivatives induce PU.1 down-regulation, myeloid maturation arrest, and neutropenia. Blood 115(3):605–614

    Article  PubMed  CAS  Google Scholar 

  • Podar K, Anderson KC (2007) Inhibition of VEGF signaling pathways in multiple myeloma and other malignancies. Cell Cycle 6:538–542

    Article  PubMed  CAS  Google Scholar 

  • Pyronnet S, Imataka H, Gingras AC et al (1999) Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J 18:270–279

    Article  PubMed  CAS  Google Scholar 

  • Quach H, Ritchie D, Stewart AK et al (2010) Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia 24:22–32

    Article  PubMed  CAS  Google Scholar 

  • Raab MS, Podar K, Breitkreutz I et al (2009) Multiple myeloma. Lancet 374:324–339

    Article  PubMed  Google Scholar 

  • Raje N, Kumar S, Hideshima T et al (2004) Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood 104:4188–4193

    Article  PubMed  CAS  Google Scholar 

  • Rau M, Ohlmann T, Morley SJ et al (1996) A reevaluation of the cap-binding protein, eIF4E, as a rate-limiting factor for initiation of translation in reticulocyte lysate. J Biol Chem 271:8983–8990

    Article  PubMed  CAS  Google Scholar 

  • Rhoads RE, Joshi-Barve S, Rinker-Schaeffer C (1993) Mechanism of action and regulation of protein synthesis initiation factor 4E: effects on mRNA discrimination, cellular growth rate, and oncogenesis. Prog Nucleic Acid Res Mol Biol 46:183–219

    Article  PubMed  CAS  Google Scholar 

  • Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 43:477–480

    Article  Google Scholar 

  • Robert F, Pelletier J (2009) Translation initiation: a critical signalling node in cancer. Expert Opin Ther Targets 13:1279–1293

    Article  PubMed  CAS  Google Scholar 

  • Rosenwald IB, Koifman L, Savas L et al (2008) Expression of the translation initiation factors eIF-4E and eIF-2* is frequently increased in neoplastic cells of Hodgkin lymphoma. Hum Pathol 39:910–916

    Article  PubMed  CAS  Google Scholar 

  • Ruggero D, Montanaro L, Li M et al (2004) The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10:484–486

    Article  PubMed  CAS  Google Scholar 

  • Schey SA, Fields P, Bartlett JB et al (2004) Phase I study of an immunomodulatory thalidomide analog, CC-4047, in relapsed or refractory multiple myeloma. J Clin Oncol 22:3269–3276

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Sharma A, Wu H et al (2005) Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK- and ERK-dependent pathway. J Biol Chem 280:10964–10973

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Frost P, Hoang B et al (2012) MNK kinases facilitate c-myc IRES activity in rapamycin-treated multiple myeloma cells. Oncogene. doi:10.1038/onc.2012.43

  • Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  • Singhal S, Mehta J, Desikan R et al (1999) Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 341:1565–1571

    Article  PubMed  CAS  Google Scholar 

  • Sonenberg N (1993) Translation factors as effectors of cell growth and tumorigenesis. Curr Opin Cell Biol 5:955–960

    Article  PubMed  CAS  Google Scholar 

  • Sorrells DL, Black DR, Meschonat C et al (1998) Detection of eIF4E gene amplification in breast cancer by competitive PCR. Ann Surg Oncol 5:232–237

    Article  PubMed  CAS  Google Scholar 

  • Tamburini J, Green AS, Chapuis N et al (2009) Targeting translation in acute myeloid leukemia: a new paradigm for therapy? Cell Cycle 8:3893–3899

    Article  PubMed  CAS  Google Scholar 

  • Tan K, Culjkovic B, Abdellatif A et al (2008) Ribavirin targets eIF4E dependent Akt survival signaling. Biochem Biophys Res Commun 375:341–345

    Article  PubMed  CAS  Google Scholar 

  • Thoreen CC, Kang SA, Chang JW et al (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284:8023–8032

    Article  PubMed  CAS  Google Scholar 

  • Topisirovic I, Guzman ML, McConnell MJ et al (2003) Aberrant eukaryotic translation initiation factor 4E-dependent mRNA transport impedes hematopoietic differentiation and contributes to leukemogenesis. Mol Cell Biol 23:8992–9002

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Watanabe-Fukunaga R, Fukuyama H et al (2004) Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol 24:6539–6549

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Geng J, J-h W et al (2009) Overexpression of eukaryotic initiation factor 4E (eIF4E) and its clinical significance in lung adenocarcinoma. Lung Cancer 66:237–244

    Article  PubMed  Google Scholar 

  • Weber DM, Chen C, Niesvizky R et al (2007) Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 357:2133–2142

    Article  PubMed  CAS  Google Scholar 

  • Wheater MJ, Johnson PW, Blaydes JP (2010) The role of MNK proteins and eIF4E phosphorylation in breast cancer cell proliferation and survival. Cancer Biol Ther 10:728–735

    Article  PubMed  CAS  Google Scholar 

  • Wiernik PH (2009) Treatment of hematologic neoplasms with new immunomodulatory drugs (IMiDs). Curr Treat Options Oncol 10:1–15

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Lentzsch M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, S., Fu, J., Lentzsch, S. (2013). Cap-Dependent Protein Translation Initiation in Multiple Myeloma: An Attractive Target for Therapy. In: Lentzsch, S. (eds) Genetic and Molecular Epidemiology of Multiple Myeloma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4660-6_3

Download citation

Publish with us

Policies and ethics