Skip to main content

Antiviral Immune Responses by Human Langerhans Cells and Dendritic Cells in HIV-1 Infection

  • Chapter
  • First Online:
Book cover HIV Interactions with Dendritic Cells

Abstract

The main route of human immunodeficiency virus-1 (HIV-1) infection is via unprotected sexual intercourse, and therefore, vaginal tissues and male foreskin are viral entry sites. Langerhans cells (LCs) and dendritic cells (DCs) are amongst the first immune cells encountering HIV-1 since these cells line these mucosal tissues. Both LCs and DCs are equipped with specific pattern recognition receptors that not only sense pathogens, but induce specific immune responses against these pathogens. LCs express the C-type lectin receptor langerin, which provides protection against HIV-1 infection. In contrast, DCs express the C-type lectin receptor DC-SIGN, which facilitates capture as well as infection of DCs and subsequent transmission to CD4+ T cells. This chapter gives an update on immune responses elicited against viruses and sheds a light on different immune mechanisms that are hijacked by HIV-1 to infect the host. HIV-1 infection ultimately leads to the worldwide pandemic acquired immunodeficiency syndrome (AIDS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman AL, Cresswell P (2004) Cellular mechanisms governing cross-presentation of exogenous antigens. Nat Immunol 5:678–684

    Article  PubMed  CAS  Google Scholar 

  • Alberts B (2011) Science breakthroughs. Science 334:1604

    Article  PubMed  CAS  Google Scholar 

  • Bachem A, Guttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, Salama A, Movassaghi K, Opitz C, Mages HW, Henn V, Kloetzel PM, Gurka S, Kroczek RA (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c(+)CD141(+) cells as homologues of mouse CD8(+) dendritic cells. J Exp Med 207:1273–1281

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  PubMed  CAS  Google Scholar 

  • Barton GM, Medzhitov R (2003) Toll-like receptor signaling pathways. Science 300:1524–1525

    Article  PubMed  CAS  Google Scholar 

  • Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ, Nguyen PL, Khoruts A, Larson M, Haase AT, Douek DC (2004) CD4(+) T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 200:749–759

    Article  PubMed  CAS  Google Scholar 

  • Brown GD, Gordon S (2001) Immune recognition—a new receptor for beta-glucans. Nature 413:36–37

    Article  PubMed  CAS  Google Scholar 

  • Buseyne F, Le Gall S, Boccaccio C, Abastado JP, Lifson JD, Arthur LO, Riviere Y, Heard JM, Schwartz O (2001) MHC-I-restricted presentation of HIV-1 virion antigens without viral replication. Nat Med 7:344–349

    Article  PubMed  CAS  Google Scholar 

  • Cambi A, Gijzen K, de Vries JM, Torensma R, Joosten B, Adema GJ, Netea MG, Kullberg BJ, Romani L, Figdor CG (2003) The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur J Immunol 33:532–538

    Article  PubMed  CAS  Google Scholar 

  • Carrington M, O’Brien SJ (2003) The influence of HLA genotype on AIDS. Annu Rev Med Select Top Clin Sci 54:535–551

    CAS  Google Scholar 

  • Chatwell L, Holla A, Kaufer BB, Skerra A (2008) The caxbohydrate recognition domain of Langerin reveals high structural similarity with the one of DC-SIGN but an additional, calcium-independent sugar-binding site. Mol Immunol 45:1981–1994

    Article  PubMed  CAS  Google Scholar 

  • Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, Hakim JG, Kumwenda J, Grinsztejn B, Pilotto JHS, Godbole SV, Mehendale S, Chariyalertsak S, Santos BR, Mayer KH, Hoffman IF, Eshleman SH, Piwowar-Manning E, Wang L, Makhema J, Mills LA, de Bruyn G, Sanne I, Eron J, Gallant J, Havlir D, Swindells S, Ribaudo H, Elharrar V, Burns D, Taha ET, Nielsen-Saines K, Celentano D, Essex M, Fleming TR (2011) Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med 365:493–505

    Article  PubMed  CAS  Google Scholar 

  • Constant SL, Bottomly K (1997) Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 15:297–322

    Article  PubMed  CAS  Google Scholar 

  • Cunningham AL, Carbone F, Geijtenbeek TB (2008) Langerhans cells and viral immunity. Eur J Immunol 38:2377–2385

    Article  PubMed  CAS  Google Scholar 

  • Cunningham AL, Abendroth A, Jones C, Nasr N, Turville S (2010) Viruses and Langerhans cells. Immunol Cell Biol 88:416–423

    Article  PubMed  Google Scholar 

  • de Jong EC, Smits HH, Kapsenberg ML (2005) Dendritic cell-mediated T cell polarization. Springer Semin Immunopathol 26:289–307

    Article  PubMed  Google Scholar 

  • De Jong MAWP, de Witte L, Oudhoff MJ, Gringhuis SI, Gallay P, Geijtenbeek TBH (2008) TNF-alpha and TLR agonists increase susceptibility to HIV-1 transmission by human Langerhans cells ex vivo. J Clin Invest 118:3440–3452

    Article  PubMed  Google Scholar 

  • De Jong MAWP, de Witte L, Taylor ME, Geijtenbeek TBH (2010a) Herpes Simplex Virus Type 2 enhances HIV-1 susceptibility by affecting langerhans cell function. J Immunol 185:1633–1641

    Article  PubMed  Google Scholar 

  • De Jong MAWP, Vriend LEM, Theelen B, Taylor ME, Fluitsma D, Boekhout T, Geijtenbeek TBH (2010b) C-type lectin Langerin is a beta-glucan receptor on human Langerhans cells that recognizes opportunistic and pathogenic fungi. Mol Immunol 47:1216–1225

    Article  PubMed  Google Scholar 

  • de Witte L, Nabatov A, Pion M, Fluitsma D, De Jong MAWP, de Gruijl T, Piguet V, van Kooyk Y, Geijtenbeek TBH (2007) Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med 13:367–371

    Article  PubMed  Google Scholar 

  • de Witte L, Nabatov A, Geijtenbeek TBH (2008) Distinct roles for DC-SIGN(+)-dendritic cells and Langerhans cells in HIV-1 transmission. Trends Mol Med 14:12–19

    Article  PubMed  Google Scholar 

  • den Brouw MLO, Binda RS, Geijtenbeek TBH, Janssen HLA, Woltman AM (2009) The mannose receptor acts as hepatitis B virus surface antigen receptor mediating interaction with intrahepatic dendritic cells. Virology 393:84–90

    Article  Google Scholar 

  • Doitsh G, Cavrois M, Lassen KG, Zepeda O, Yang ZY, Santiago ML, Hebbeler AM, Greene WC (2010) Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell 143:789–801

    Article  PubMed  CAS  Google Scholar 

  • Donaldson JG, Williams DB (2009) Intracellular assembly and trafficking of MHC Class I molecules. Traffic 10:1745–1752

    Article  PubMed  CAS  Google Scholar 

  • Dong C (2006) Opinion—diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol 6:329–333

    Article  PubMed  CAS  Google Scholar 

  • Dong CS, Janas AM, Wang JH, Olson WJ, Wu L (2007) Characterization of human immunodeficiency virus type 1 replication in immature and mature dendritic cells reveals dissociable cis- and trans-infection. J Virol 81:11352–11362

    Article  PubMed  CAS  Google Scholar 

  • Douek DC, Brenchley JM, Betts MR, Ambrozak DR, Hill BJ, Okamoto Y, Casazza JP, Kuruppu J, Kuntsman K, Wolinsky S, Grossman Z, Dybul M, Oxenius A, Price DA, Connors M, Koup RA (2002) HIV preferentially infects HIV-specific CD4(+) T cells. Nature 417:95–98

    Article  PubMed  CAS  Google Scholar 

  • Drickamer K (1993) Evolution of Ca2+-dependent animal lectins. Prog Nucleic Acid Res Mol Biol 45(45):207–232

    Article  PubMed  CAS  Google Scholar 

  • Drickamer K, Fadden AJ (2002) Genomic analysis of C-type lectins. In: Glycogenomics: the impact of genomics and informatics on glycobiology, Biochem Soc Symp (69) pp 59–72

    Google Scholar 

  • Eisenacher K, Steinberg C, Reindl W, Krug A (2007) The role of viral nucleic acid recognition in dendritic cells for innate and adaptive antiviral immunity. Immunobiology 212(9–10):701–714

    Google Scholar 

  • Feinberg H, Powlesland AS, Taylor ME, Weis WI (2010) Trimeric structure of langerin. J Biol Chem 285:13285–13293

    Article  PubMed  CAS  Google Scholar 

  • Feinberg H, Taylor ME, Razi N, McBride R, Knirel YA, Graham SA, Drickamer K, Weis WI (2011) Structural basis for langerin recognition of diverse pathogen and mammalian glycans through a single binding site. J Mol Biol 405:1027–1039

    Article  PubMed  CAS  Google Scholar 

  • Figdor CG, van Kooyk Y, Adema GJ (2002) C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol 2:377

    Article  CAS  Google Scholar 

  • Fleming DT, Wasserheit JN (1999) From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sex Transm Infect 75:3–17

    Article  PubMed  CAS  Google Scholar 

  • Fortis C, Poli G (2005) Dendritic cells and natural killer cells in the pathogenesis of HIV infection. Immunol Res 33:1–21

    Article  PubMed  CAS  Google Scholar 

  • Geijtenbeek TBH, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GCF, Middel J, Cornelissen ILMH, Nottet HSLM, KewalRamani VN, Littman DR, Figdor CG, van Kooyk Y (2000a) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587–597

    Article  PubMed  CAS  Google Scholar 

  • Geijtenbeek TBH, Torensma R, van Vliet SJ, van Duijnhoven GCF, Adema GJ, van Kooyk Y, Figdor CG (2000b) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100:575–585

    Article  PubMed  CAS  Google Scholar 

  • Geijtenbeek TBH, van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CMJE, Appelmelk B, van Kooyk Y (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197:7–17

    Article  PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, den DJ, Gringhuis SI (2009) Pathogen recognition by DC-SIGN shapes adaptive immunity. Future Microbiol 4:879–890

    Article  PubMed  CAS  Google Scholar 

  • Gorry PR, Ancuta P (2011) Coreceptors and HIV-1 pathogenesis. Curr HIV/AIDS Rep 8:45–53

    Article  PubMed  Google Scholar 

  • Granelli-Piperno A, Golebiowska A, Trumpfheller C, Siegal FP, Steinman RM (2004) HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc Natl Acad Sci U S A 101:7669–7674

    Article  PubMed  CAS  Google Scholar 

  • Gringhuis SI, den Dunnen J, Litjens M, Hof BV, van Kooyk Y, Geijtenbeek TBH (2007) C-type lectin DC-SIGN modulates toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappa B. Immunity 26:605–616

    Article  PubMed  CAS  Google Scholar 

  • Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Geijtenbeek TBH (2009) Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol 10:1081–1088

    Article  PubMed  CAS  Google Scholar 

  • Gringhuis SI, van der Vlist M, van den Berg LM, den Dunnen J, Litjens M, Geijtenbeek TBH (2010) HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nat Immunol 11:411–426

    Article  PubMed  CAS  Google Scholar 

  • Gromme M, Neefjes J (2002) Antigen degradation or presentation by MHC class I molecules via classical and non-classical pathways. Mol Immunol 39:181–202

    Article  PubMed  CAS  Google Scholar 

  • Groothuis TA, Neefjes J (2005) The many roads to cross-presentation. J Exp Med 202:1313–1318

    Article  PubMed  CAS  Google Scholar 

  • Hiltbold EM, Roche PA (2002) Trafficking of MHC class II molecules in the late secretory pathway. Curr Opin Immunol 14:30–35

    Article  PubMed  CAS  Google Scholar 

  • Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M (1995) Rapid turnover of plasma virions and Cd4 lymphocytes in Hiv-1 infection. Nature 373:123–126

    Article  PubMed  CAS  Google Scholar 

  • Hovius JWR, De Jong MAWP, den Dunnen J, Litjens M, Fikrig E, van der Poll T, Gringhuis SI, Geijtenbeek TBH (2008) Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization. PLoS Pathog 4:e31

    Article  PubMed  Google Scholar 

  • Hu JJ, Gardner MB, Miller CJ (2000) Simian immunodeficiency virus rapidly penetrates the cervicovaginal mucosa after intravaginal inoculation and infects intraepithelial dendritic cells. J Virol 74:6087–6095

    Article  PubMed  CAS  Google Scholar 

  • Kalinski P, Smits HH, Schuitemaker JHN, Vieira PL, van Eijk M, de Jong EC, Wierenga EA, Kapsenberg ML (2000) IL-4 is a mediator of IL-12p70 induction by human Th2 cells: reversal of polarized Th2 phenotype by dendritic cells. J Immunol 165:1877–1881

    PubMed  CAS  Google Scholar 

  • Kawai T, Akira S (2006a) Innate immune recognition of viral infection. Nat Immunol 7:131–137

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Akira S (2006b) TLR signaling. Cell Death Differ 13:816–825

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Akira S (2007) Antiviral signaling through pattern recognition receptors. J Biochem 141:137–145

    Article  PubMed  CAS  Google Scholar 

  • Kawamura T, Qualbani M, Thomas EK, Orenstein JM, Blauvelt A (2001) Low levels of productive HIV infection in Langerhans cell-like dendritic cells differentiated in the presence of TGF-beta 1 and increased viral replication with CD40 ligand-induced maturation. Eur J Immunol 31:360–368

    Article  PubMed  CAS  Google Scholar 

  • Klechevsky E, Morita R, Liu MC, Cao YY, Coquery S, Thompson-Snipes L, Briere F, Chaussabel D, Zurawski G, Palucka AK, Reiter Y, Banchereau J, Ueno H (2008) Functional specializations of human epidermal langerhans cells and CD14(+) dermal dendritic cells. Immunity 29:497–510

    Article  PubMed  CAS  Google Scholar 

  • Klechevsky E, Liu MC, Morita R, Banchereau R, Thompson-Snipes L, Palucka AK, Ueno H, Banchereau J (2009) Understanding human myeloid dendritic cell subsets for the rational design of novel vaccines. Hum Immunol 70:281–288

    Article  PubMed  CAS  Google Scholar 

  • Lai J, Bernhard OK, Turville SG, Harman AN, Wilkinson J, Cunningham AL (2009) Oligomerization of the macrophage mannose receptor enhances gp120-mediated binding of HIV-1. J Biol Chem 284:11027–11038

    Article  PubMed  CAS  Google Scholar 

  • Lennon-Dumenil AM, Bakker AH, Wolf-Bryant P, Ploegh HL, Lagaudriere-Gesbert C (2002) A closer look at proteolysis and MHC-class-II-restricted antigen presentation. Curr Opin Immunol 14:15–21

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Janeway CA (1992) Cells that present both specific ligand and costimulatory activity are the most efficient inducers of clonal expansion of normal Cd4 T-Cells. Proc Natl Acad Sci U S A 89:3845–3849

    Article  PubMed  CAS  Google Scholar 

  • Lore K, Sonnerborg A, Brostrom C, Goh LE, Perrin L, McDade H, Stellbrink HJ, Gazzard B, Weber R, Napolitano LA, van Kooyk Y, Andersson J (2002) Accumulation of DC-SIGN+CD40+ dendritic cells with reduced CD80 and CD86 expression in lymphoid tissue during acute HIV-1 infection. AIDS 16:683–692

    Article  PubMed  Google Scholar 

  • Mazzoni A, Segal DM (2004) Controlling the Toll road to dendritic cell polarization. J Leukoc Biol 75:721–730

    Article  PubMed  CAS  Google Scholar 

  • McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF (2010) The immune response during acute HIV-1 infection: clues for vaccine development. Nat Rev Immunol 10:11–23

    Article  PubMed  CAS  Google Scholar 

  • Miller CJ, Hu JJ (1999) T cell-tropic simian immunodeficiency virus (SIV) and simian-human immunodeficiency viruses are readily transmitted by vaginal inoculation of rhesus macaques, and Langerhans’ cells of the female genital tract are infected with SIV. J Infect Dis 179:S413–S417

    Article  PubMed  Google Scholar 

  • Miller JL, Dewet BJM, Martinez-Pomares L, Radcliffe CM, Dwek RA, Rudd PM, Gordon S (2008) The mannose receptor mediates dengue virus infection of macrophages. Plos Pathogens 4; 2e17

    Google Scholar 

  • Mommaas AM, Mulder AA, Jordens R, Out C, Tan MCAA, Cresswell P, Kluin PM, Koning F (1999) Human epidermal Langerhans cells lack functional mannose receptors and a fully developed endosomal/lysosomal compartment for loading of HLA class II molecules. Eur J Immunol 29:571–580

    Article  PubMed  CAS  Google Scholar 

  • Moris A, Nobile C, Buseyne F, Porrot F, Abastado JP, Schwartz O (2004) DC-SIGN promotes exogenous MHC-I-restricted HIV-1 antigen presentation. Blood 103:2648–2654

    Article  PubMed  CAS  Google Scholar 

  • Moris A, Pajot A, Blanchet F, Guivel-Benhassine F, Salcedo M, Schwartz O (2006) Dendritic cells and HIV specific CD4(+) T cells: HIV antigen presentation, T-cell activation, and viral transfer. Blood 108:1643–1651

    Article  PubMed  CAS  Google Scholar 

  • Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T (2003) TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 4:161–167

    Article  PubMed  CAS  Google Scholar 

  • Palmer BE, Boritz E, Wilson CC (2004) Effects of sustained HIV-1 plasma viremia on HIV-1 Gag-specific CD4(+) T cell maturation and function. J Immunol 172:3337–3347

    PubMed  CAS  Google Scholar 

  • Palucka K, Banchereau J, Mellman I (2010) Designing vaccines based on biology of human dendritic cell subsets. Immunity 33:464–478

    Article  PubMed  CAS  Google Scholar 

  • Perkins ND, Edwards NL, Duckett CS, Agranoff AB, Schmid RM, Nabel GJ (1993) A cooperative interaction between Nf-Kappa-B and Sp1 Is required for Hiv-1 enhancer activation. EMBO J 12:3551–3558

    PubMed  CAS  Google Scholar 

  • Reading PC, Miller JL, Anders EM (2000) Involvement of the mannose receptor in infection of macrophages by influenza virus. J Virol 74:5190–5197

    Article  PubMed  CAS  Google Scholar 

  • Riou C, Ganusov VV, Campion S, Mlotshwa M, Liu MK, Whale VE, Goonetilleke N, Borrow P, Ferrari G, Betts MR, Haynes BF, McMichael AJ, Gray CM (2012) Distinct kinetics of gag-specific CD4+ and CD8+ T cell responses during acute HIV-1 infection. J Immunol 188(5):2198–2206

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S (2003) Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-Binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the toll-like receptor signaling. J Immunol 171:4304–4310

    PubMed  CAS  Google Scholar 

  • Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ (1999) The nature of the principal type 1 interferon-producing cells in human blood. Science 284:1835–1837

    Article  PubMed  CAS  Google Scholar 

  • Siliciano RF, Greene WC (2011) HIV latency. Cold Spring Harb Perspect Med 1:a007096

    PubMed  Google Scholar 

  • Sol-Foulon N, Moris A, Nobile C, Boccaccio C, Engering A, Abastado JP, Heard JM, van Kooyk Y, Schwartz O (2002) HIV-1 nef-induced upregulation of DC-SIGN in dendritic cells promotes lymphocyte clustering and viral spread. Immunity 16:145–155

    Article  PubMed  CAS  Google Scholar 

  • Solis M, Nakhaei P, Jalalirad M, Lacoste J, Douville R, Arguello M, Zhao TJ, Laughrea M, Wainberg MA, Hiscott J (2011) RIG-I-mediated antiviral signaling is inhibited in HIV-1 infection by a protease-mediated sequestration of RIG-I. J Virol 85:1224–1236

    Article  PubMed  CAS  Google Scholar 

  • Stacey AR, Norris PJ, Qin L, Haygreen EA, Taylor E, Heitman J, Lebedeva M, DeCamp A, Li DF, Grove D, Self SG, Borrow P (2009) Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J Virol 83:3719–3733

    Article  PubMed  CAS  Google Scholar 

  • Stambach NS, Taylor ME (2003) Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cells. Glycobiology 13:401–410

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426

    Article  PubMed  CAS  Google Scholar 

  • Stoddart CA, Keir ME, Mccune JM (2010) IFN-alpha-induced upregulation of CCR5 leads to expanded HIV tropism in vivo. PLoS Pathog 6:e1000766

    Article  PubMed  Google Scholar 

  • Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  PubMed  CAS  Google Scholar 

  • Taylor ME, Conary JT, Lennartz MR, Stahl PD, Drickamer K (1990) Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains. J Biol Chem 265:12156–12162

    PubMed  CAS  Google Scholar 

  • Tough DF (2004) Type I interferon as a link between innate and adaptive immunity through dendritic cell stimulation. Leuk Lymphoma 45:257–264

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri G (1998) Proinflammatory and immunoregulatory functions of interleukin-12. Int Rev Immunol 16:365–396

    Article  PubMed  CAS  Google Scholar 

  • Turville SG, Cameron PU, Handley A, Lin G, Pohlmann S, Doms RW, Cunningham AL (2002) Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol 3:975–983

    Article  PubMed  CAS  Google Scholar 

  • Turville S, Wilkinson J, Cameron P, Dable J, Cunningham AL (2003) The role of dendritic cell C-type lectin receptors in HIV pathogenesis. J Leukoc Biol 74:710–718

    Article  PubMed  CAS  Google Scholar 

  • Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, Duvert-Frances V, Vincent C, Schmitt D, Davoust J, Caux C, Lebecque S, Saeland S (2000) Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12:71–81

    Article  PubMed  CAS  Google Scholar 

  • Valladeau J, Dezutter-Dambuyant C, Saeland S (2003) Langerin/CD207 sheds light on formation of birbeck granules and their possible function in langerhans cells. Immunol Res 28:93–107

    Article  PubMed  CAS  Google Scholar 

  • van den Berg LM, Gringhuis SI, Geijtenbeek TB (2012) An evolutionary perspective on C-type lectins in infection and immunity. Ann N Y Acad Sci 1253:149–158

    Article  PubMed  Google Scholar 

  • van der Aar AMG, Sylva-Steenland RMR, Bos JD, Kapsenberg ML, de Jong EC, Teunissen MBM (2007) Cutting edge: loss of TLR2, TLR4, and TLR5 on Langerhans cells abolishes bacterial recognition. J Immunol 178:1986–1990

    PubMed  Google Scholar 

  • van der Vlist M, Geijtenbeek TBH (2010) Langerin functions as an antiviral receptor on Langerhans cells. Immunol Cell Biol 88:410–415

    Article  PubMed  Google Scholar 

  • van der Vlist M, de Witte L, de Vries RD, Litjens M, De Jong MAWP, Fluitsma D, de Swart RL, Geijtenbeek TBH (2011) Human Langerhans cells capture measles virus through Langerin and present viral antigens to CD4(+) T cells but are incapable of cross-presentation. Eur J Immunol 41:2619–2631

    Article  PubMed  Google Scholar 

  • World Health Organization, UNAIDS, Unicef. (2011) Global HIV/AIDS response—Progress Report 2011. ISBN:978 92 4 150 298 6

    Google Scholar 

  • Xu HB, Wang XL, Pahar B, Moroney-Rasmussen T, Alvarez X, Lackner AA, Veazey RS (2010) Increased B7-H1 expression on dendritic cells correlates with programmed death 1 expression on T cells in simian immunodeficiency virus-infected Macaques and May contribute to T cell dysfunction and disease progression. J Immunol 185:7340–7348

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, Hoshino K, Takeuchi O, Kobayashi M, Fujita T, Takeda K, Akira S (2002a) Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420:324–329

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, Akira S (2002b) Cutting edge: a novel toll/IL-1 receptor domain containing adapter that preferentially activates the IFN-beta promoter in the toll-like receptor signaling. J Immunol 169:6668–6672

    PubMed  CAS  Google Scholar 

  • Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo YM, Gale M, Akira S, Yonehara S, Kato A, Fujita T (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851–2858

    PubMed  CAS  Google Scholar 

  • Zelensky AN, Gready JE (2003) Comparative analysis of structural properties of the C-type-lectin-like domain (CTLD). Proteins Struct Funct Genetics 52:466–477

    Article  CAS  Google Scholar 

  • Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272:6179–6217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Host Defense group for their valuable input. LMvdB is supported by the Dutch Burns Foundation (grant number 08.109) and TBHG is supported by the Dutch Scientific Research program (grant number NWO VICI 918.10.619).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teunis B. H. Geijtenbeek Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

van den Berg, L.M., Geijtenbeek, T.B.H. (2012). Antiviral Immune Responses by Human Langerhans Cells and Dendritic Cells in HIV-1 Infection. In: Wu, L., Schwartz, O. (eds) HIV Interactions with Dendritic Cells. Advances in Experimental Medicine and Biology, vol 762. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4433-6_2

Download citation

Publish with us

Policies and ethics