Skip to main content

Experimental Injury Biomechanics of the Pediatric Thorax and Abdomen

  • Chapter
  • First Online:
Pediatric Injury Biomechanics

Abstract

Motor vehicle crashes are the leading cause of death and injury for children in the United States. Pediatric anthropomorphic test devices (ATD) and computational models are important tools for the evaluation and optimization of automotive restraint systems for child occupants. The thorax interacts with the restraints within the vehicle, and any thoracic model must mimic this interaction in a biofidelic manner to ensure that restraint designs protect humans as intended. To define thoracic biofidelity for adults, Kroell et al. (1974) conducted blunt impacts to the thoraces of adult postmortem human subjects (PMHS), which have formed the basis for biofidelity standards for modern adult ATD thoraces (Mertz et al. 1989). The paucity of pediatric PMHS for impact research led to the development of pediatric model biofidelity requirements through scaling. Geometric scale factors and elastic moduli of skull and long bone have been used to scale the adult thoracic biofidelity responses to the 3-, 6-, and 10-year-old child (Irwin and Mertz 1997; Mertz et al. 2001; van Ratingen et al. 1997). There is currently a need for data that apply to the child without scaling, both for validation of scaling methods used in the past and to confirm the validity of the specifications currently used to develop models of the child.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams MA, Dolan P (1991) A technique for quantifying the bending moment acting on the lumbar spine in vivo. J Biomech 24:117–126

    Article  Google Scholar 

  • Adams MA, McNally DS, Chinn H (1994) Posture and the compressive strength of the lumbar spine. Clin Biomech 9:5–14

    Article  Google Scholar 

  • Aldman B, Andersson A, Saxmark O (1974) Possible effects of airbag inflation on a standing child. In: Proceedings from IRCOBI, Zurich, pp 194–215

    Google Scholar 

  • American Heart Association (2006) 2005 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 112:Suppl

    Google Scholar 

  • Arbogast K, Kent R, Ghati Y et al (2006a) Mechanisms of abdominal organ injury in seat belt restrained children. J Trauma 62:1473–1480

    Article  Google Scholar 

  • Arbogast KB, Maltese MR, Nadkarni VM et al (2006b) Anterior-posterior thoracic force–deflection characteristics measured during cardiopulmonary resuscitation: comparison to post-mortem human subject data. Stapp Car Crash J 50:131–145

    Google Scholar 

  • Ash J, Sherwood S, Abdelilah Y et al (2009) Comparison of anthropomorphic test dummies with a pediatric cadaver restrained by a three-point belt in frontal sled tests. In: Proceedings from 21st enhanced safety of vehicles (ESV) conference, Stuttgart, Germany, 2009

    Google Scholar 

  • Backaitis S, Medlin J, Radovich V et al (1975) Performance evaluation of child dummies and baboons in child restraint systems in a systemized crash environment. SAE Tech Paper #751153

    Google Scholar 

  • Bilston L, Liu L, Phan-Thien N (2001) Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38:335–345

    Google Scholar 

  • Brun-Cassan F, Page M, Pincemaille Y et al (1993) Comparative study of restrained child dummies and cadavers in experimental crashes. SAE Tech Paper #933105

    Google Scholar 

  • Chamouard F, Tarriere C, Baudrit P (1996) Protection of children on board vehicles influence of pelvis design and thigh and abdomen stiffness on the submarining risk for dummies installed on a booster. In: Proceedings from 15th conference on the enhanced safety of vehicles (ESV), Paper 96-S7-O-03

    Google Scholar 

  • Ching R, Nuckley D, Hertsted S et al (2001) Tensile mechanics of the developing cervical spine. Stapp Car Crash J 45:329–336

    Google Scholar 

  • Dejeammes M, Quincy R (1974) Recherche sur la conception de systemes de retention d’enfants a l’aide d’un modele animal. In: Proceedings from IRCOBI, Lyon, France, pp 260–277

    Google Scholar 

  • Dejeammes M, Tarriere C, Thomas C et al (1984) Exploration of biomechanical data towards a better evaluation of tolerance for children involved in automotive accidents. SAE Tech Paper #840530

    Google Scholar 

  • Eppinger R, Sun E, Bandak F et al (1999) Development of improved injury criteria for the assessment of advanced automotive restraint systems. NHTSA USDOT Docket # NHTSA-1999-6407-0005

    Google Scholar 

  • Fazekas IG, Kosa F, Jobba G et al (1971) Die druckfestigkeit der mensclichen Leber mit besonderer hinsicht auf die verkehrsunfälle. Z Rechtsmed 68:207–224

    Article  Google Scholar 

  • Fazekas IG, Kosa F, Jobba G et al (1972) Beiträge zur druckfestigkeit der mensclichen milz bei stumpfen krafteinwirkungen. Arch Kriminol 149:158–174

    Google Scholar 

  • Forman J, Stacey S, Evans J et al (2008) Posterior acceleration as a mechanism of blunt traumatic injury of the aorta. J Biomech 41:1359–1364

    Article  Google Scholar 

  • Franklyn M, Peiris S, Huber C et al (2007) Pediatric material properties: a review of human child and animal surrogates. Crit Rev Biomed Eng 35:197–342

    Article  Google Scholar 

  • Garcia VF, Gotschall CS, Eichelberger MR et al (1990) Rib fractures in children: a marker of severe trauma. J Trauma Inj Infect Crit Care 30:695–700

    Article  Google Scholar 

  • Gayzik F, Hoth J, Daly M, Meredith J, Stitzel J (2007) A finite element-based injury metric for pulmonary contusion: investigation of candidate metrics through correlation with computed tomography. Stapp Car Crash J 51:189–209

    Article  Google Scholar 

  • Giacomin J (2005) Absorbed power of small children. Clin Biomech 20:372–380

    Article  Google Scholar 

  • Gögler E, Best A, Braess HH et al (1977) Biomechanical experiments with animals on abdominal tolerance levels. In: Proceedings from 21st Stapp car crash conference, pp 713–751

    Google Scholar 

  • Gruben KG, Romlein J, Halperin HR et al (1990) System for mechanical measurements during cardiopulmonary resuscitation in humans. Biomed Eng 37:204–210

    Google Scholar 

  • Hagedorn AV, Pritz HB (1991) Evaluation of chest deflection measurement band. NHTSA USDOT Technical Report, Washington, DC

    Google Scholar 

  • Hajji MA, Wilson TA, Lai-Fook SJ (1979) Improved measurements of shear modulus and pleural membrane tension of the lung. J Appl Physiol 47:175–181

    Google Scholar 

  • Hammer J, Eber E (2005) The pecularities of infant respiratory physiology. Prog Respir Res Basel Karger 33:2–7

    Article  Google Scholar 

  • Hardy WN, Shah CS, Kopacz JM et al (2006) Study of potential mechanisms of traumatic rupture of the aorta using in situ experiments. Stapp Car Crash J 50:247–266

    Google Scholar 

  • Heijnsdijk EAM, van der Voort M, de Visser H, Dankelman J et al (2003) Interand intraindividual variabilities of perforation forces of human and pig bowel tissue. Surg Endosc 17:1293–1296

    Article  Google Scholar 

  • Hoke RS, Chamberlain D (2004) Skeletal chest injuries secondary to cardiopulmonary resuscitation. Resuscitation 63:327–338

    Article  Google Scholar 

  • Holmes JF, Sokolove PE, Brant WE (2002) A clinical decision rule for identifying children with thoracic injuries after blunt torso trauma. Ann Emerg Med 39:492–499

    Article  Google Scholar 

  • Iannuzzi A, Rosaria Licenziati M, Acampora C et al (2004) Preclinical changes in the mechanical properties of abdominal aorta in obese children. Metabolism 53:1243–1246

    Article  Google Scholar 

  • Irwin A, Mertz HJ (1997) Biomechanical basis for the CRABI and Hybrid III child dummies. In: Proceedings from 41st Stapp car crash conference, pp 261–272

    Google Scholar 

  • Ishihara T, Nakahira Y, Furukawa K (2000) Measurement of the mechanical properties of the pig liver and spleen. In: Proceedings from Japan society of mechanical engineers (JSME) conference, 2:209–210

    Google Scholar 

  • Kallieris D, Barz J, Schmidt G et al (1976) Comparison between child cadavers and child dummy by using child restraint systems in simulated collisions. SAE Tech Paper #760815:513-542

    Google Scholar 

  • Kallieris D, Schmidt G, Barz J et al (1978) Response and vulnerability of the human body at different impact velocities in simulated three-point belted cadaver tests. In: Proceedings from IRCOBI, pp 105–209

    Google Scholar 

  • Kallieris D, Mattern R, Schmidt G et al (1981) Quantification of side impact responses and injuries. In: Proceedings from 25th Stapp car crash conference, pp 329–368

    Google Scholar 

  • Kallieris D, Mellander H, Schmidt G et al (1982) Comparison between frontal impact tests with cadavers and dummies in simulated true car restrained environment. In: Proceedings from 26th Stapp car crash conference, pp 353–367

    Google Scholar 

  • Kemper A, McNally C, Kennedy E et al (2005) Material properties of human rib cortical bone from dynamic tension coupon testing. Stapp Car Crash J 49:199–230

    Google Scholar 

  • Kent R, Lessley D, Sherwood C (2004) Thoracic response to dynamic, non-impact loading from a hub, distributed belt, diagonal belt, and double diagonal belts. Stapp Car Crash J 48:495–519

    Google Scholar 

  • Kent R, Stacey S, Kindig M et al (2006) Biomechanical response of the pediatric abdomen, part 1: development of an experimental model and quantification of structural response to dynamic belt loading. Stapp Car Crash J 50:1–26

    Google Scholar 

  • Kent R, Stacey S, Kindig M et al (2008) Biomechanical response of the pediatric abdomen, part 2: injuries and their correlation with mechanical parameters. Stapp Car Crash J 52:135–166

    Google Scholar 

  • Kent R, Salzar R, Kerrigan J, Parent D, Lessley D, Sochor M, Luck J, Loyd A, Song Y, Nightingale R, Bass C, Maltese M (2009) Pediatric thoracoabdominal biomechanics. Stapp Car Crash J 53:373–402

    Google Scholar 

  • Khamin N (1975) Strength properties of the human aorta and their variation with age. Mech Compos Mater 13:100–104

    Google Scholar 

  • Kleinberger M, Yoganandan N, Kumaresan S (1998) Biomechanical considerations for child occupant protection. Ann Proc Assoc Adv Auto Med 42:115–136

    Google Scholar 

  • Kroell C, Schneider D, Nahum A (1974) Impact tolerance and response of the human thorax II. SAE Tech Paper #741181:201–282

    Google Scholar 

  • Lai-Fook S, Hyatt R (2000) Effects of age on elastic moduli of human lungs. J Appl Physiol 89:163–168

    Google Scholar 

  • Lai-Fook SJ, Wilson TA, Hyatt R et al (1976) Elastic constants of inflated lobes of dog lungs. J Appl Physiol 40:508–513

    Google Scholar 

  • Lee SH, Kent RW (2007) Blood flow and fluid–structure interactions in the human aorta during traumatic rupture conditions. Stapp Car Crash J 51:211–233

    Google Scholar 

  • Lessley D, Crandall J, Shaw C (2004) A normalization technique for developing corridors from individual subject responses. SAE Tech Paper #004-01-0288

    Google Scholar 

  • Liu Z, Bilston L (2000) On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour. Biorheology 37:191–201

    Google Scholar 

  • Liu Z, Bilston LE (2002) Large deformation shear properties of liver tissue. Biorheology 39:735–742

    Google Scholar 

  • Lopez-Valdes F, Forman J, Ash J et al (2009) The frontal-impact response of a booster-seated child-size PMHS. In: Proceedings from IRCOBI (in press)

    Google Scholar 

  • Lopez-Valdes F, Forman J, Kent R et al (2009) A comparison between a child-size PMHS and the Hybrid III 6 YO in a sled frontal impact. In: Annual Proceedings/Association for the Advanced Automotive Medicine (in press)

    Google Scholar 

  • Maltese M, Castner T, Niles D et al (2008) Methods for determining pediatric force–deflection characteristics from cardiopulmonary resuscitation. Stapp Car Crash J 52:83–105

    Google Scholar 

  • Mansell A, Moalli R, Calist C et al (1989) Elastic moduli of lungs during postnatal development in the piglet. J Appl Physiol 67:1422–1427

    Google Scholar 

  • Mattern R, Kallieris D, Riedl H (2002) Reanalysis of two child PMHS-tests. Final report. Univer Heidelberg, Heidelberg, Germany

    Google Scholar 

  • Mattice J (2006) Age-dependent changes in the viscoelastic response of the porcine kidney parenchyma using spherical indentation and finite element analysis. Master of Science Thesis. University of Virginia, Virginia

    Google Scholar 

  • Mattice J, Lau A, Oyen M et al (2006) Spherical indentation load-relaxation of soft biological tissues. J Mater Res 21:2003–2010

    Article  ADS  Google Scholar 

  • McElhaney J, Alem N, Roberts V (1970) A porous block model for cancellous bones. ASME Paper # 70-WA/BHF-2

    Google Scholar 

  • McGowan D, Voo L, Liu Y (1993) Distraction failure of the immature spine. Proc ASME Bioeng Conf 24:24–25

    Google Scholar 

  • Melvin JW, Stalnaker RL, Roberts VL et al (1973) Impact injury mechanisms in abdominal organs. In: Proceedings from 17th Stapp car crash conference, pp 115–126

    Google Scholar 

  • Melvin JW, Baron KJ, Little WC et al (1998) Biomechanical analysis of indy race car crashes. Stapp Car Crash J 42:247–266

    Google Scholar 

  • Mertz HJ, Driscoll G, Lenox J (1982) Responses of animals exposed to deployment of various inflatable restraint system concepts for a variety of collision severities and animal positions. In: Proceedings from 9th ESV, Kyoto, Japan, pp 352–368

    Google Scholar 

  • Mertz HJ, Irwin A, Melvin JW et al (1989) Size, weight and biomechanical impact response requirements for adult size small female and large male dummies. SAE Auto Front Impact SP-782:133–144

    Google Scholar 

  • Mertz HJ, Jarrett K, Moss S et al (2001) The Hybrid III 10-year-old dummy. Stapp Car Crash J 45:316–326

    Google Scholar 

  • Miller K (2000a) Constitutive modelling of abdominal organs. J Biomech 33:367–373

    Article  Google Scholar 

  • Miller K (2000b) Biomechanics of soft tissues. Med Sci Monit 6:158–167

    Google Scholar 

  • Mosekilde L, Mosekilde L (1986) Normal vertebral body size and compressive strength: relations to age and to vertebral and iliac trabecular bone compressive strength. Bone 7:207–212

    Article  Google Scholar 

  • Mosekilde L, Viidik A, Mosekilde L (1985) Correlation between the compressive strength of iliac and vertebral trabecular bone in normal individuals. Bone 6:291–295

    Article  Google Scholar 

  • Mosekilde L, Mosekilde L, Danielsen CC (1987) Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8:79–85

    Article  Google Scholar 

  • Nasseri S, Bilston LE, Phan-Thien N (2002) Viscoelastic properties of pig kidney in shear, experimental results and modelling. Rheol Acta 41:180–192

    Article  Google Scholar 

  • Ohara T (1953) On the comparison of strengths of the various organ-tissues. J Kyoto Prefect Univ Med 53:577–597

    Google Scholar 

  • Okazawa M, D’Yachkova Y, Pare PD (1999) Mechanical properties of lung parenchyma during bronchoconstriction. J Appl Physiol 86:496–502

    Google Scholar 

  • Ouyang J, Zhao W, Xu Y et al (2006) Thoracic impact testing of pediatric cadaveric subjects. J Trauma 61:1492–1500

    Article  Google Scholar 

  • Oyen M, Lau A, Kindig M et al (2006) Mechanical properties of structural tissues of the pediatric thorax. J Biomech 39:156

    Article  Google Scholar 

  • Parent DP (2008) Scaling and optimization of thoracic impact response in pediatric subjects. Master’s Thesis. Mechanical and Aerospace Engineering, University of Virginia, Virginia

    Google Scholar 

  • Patrick L, Nyquist G (1972) Airbag effects on the out-of-position child. SAE Tech Paper #720442

    Google Scholar 

  • Pfefferle K, Litsky A, Donnelly B et al (2007) Biomechanical properties of the excised pediatric human rib. In: Proceedings from 35th international workshop on injury biomechanical research, NHTSA, Washington, DC

    Google Scholar 

  • Prasad P, Daniel R (1984) A biomechanical analysis of head, neck, and torso injuries to child surrogates due to sudden torso acceleration. SAE Tech Paper #841656

    Google Scholar 

  • Roach MR, Burton AC (1959) The effect of age on the elasticity of human iliac arteries. Can J Biochem Physiol 37:557–570

    Article  Google Scholar 

  • Robbins D, Lehman R, Nusholtz G et al (1983) Quantification of thoracic response and injury: tests using human surrogate subjects. University of Michigan, Ann Arbor, MI, UMTRI-83-26

    Google Scholar 

  • Saul RA, Pritz HB, McFadden J et al (1998) Description and performance of the Hybrid III three-year-old, six-year-old, and small female test dummies in restraint system and out-of-position air bag environments. In: Proceedings from IRCOBI conference. Paper #98-S7-O-01

    Google Scholar 

  • Scheuer L, Black S (2000) Developmental juvenile osteology. Academic Press Limited, London

    Google Scholar 

  • Schmidt G (1979) The age as a factor influencing soft tissue injuries. In: Proceedings from 1979 IRCOBI conference

    Google Scholar 

  • Schreck R, Patrick L (1975) Frontal crash evaluation tests of a five-point harness child restraint. SAE Tech Paper #751152

    Google Scholar 

  • Seki S, Iwamoto H (1998) Disruptive forces for swine heart, liver, and spleen: their breaking stresses. J Trauma 45:1079–1083

    Article  Google Scholar 

  • Shaw G, Wang C, Bolton J et al (1999). Chestband performance assessment using static tests. In: Proceedings from 27th inter workshop on injury biomechanical research, NHTSA USDOT, Washington, DC

    Google Scholar 

  • Sherwood C, Shaw C, van Rooij L et al (2002) Prediction of cervical spine injury risk for the 6-year-old child in frontal crashes. In: 46th Annual proceedings/association for the advanced automotive medicine

    Google Scholar 

  • Sherwood C, Shaw C, van Rooij L et al (2003) Prediction of cervical spine injury risk for the 6-year-old child in frontal crashes. Traffic Inj Prev 4:206–213

    Article  Google Scholar 

  • Sinclair D (1978) Human growth after birth. Oxford University Press, London

    Google Scholar 

  • Smith M, Burrington J, Woolf A (1975) Injuries in children sustained in free falls: an analysis of 66 cases. J Trauma 15

    Google Scholar 

  • Snyder R (1963) Human tolerances to extreme impacts in free fall. J Aerosp Med 34:8

    Google Scholar 

  • Snyder R (1969) Impact injury tolerances of infants and children in free fall. In: 13th Annual proceedings/association for the advanced automotive medicine

    Google Scholar 

  • Stamenovic D, Yager D (1988) Elastic properties of air- and liquid-filled lung parenchyma. J Appl Physiol 65:2565–2570

    Google Scholar 

  • Stingl J, Baca V, Cech P et al (2002) Morphology and some biomechanical properties of human liver and spleen. Surg Radio Anat 24:285–289

    Article  Google Scholar 

  • Stitzel J, Gayzik FS, Hoth J et al (2005) Development of a finite element-based injury metric for pulmonary contusion part I: model development and validation. Stapp Car Crash J 49:271–290

    Google Scholar 

  • Stolze H, Kuhtz-Buschbeck J, Mondwurf C et al (1997) Gait analysis during treadmill and overground locomotion in children and adults. Electroencephalogr Clin Neurophysiol Electromyogr Motor Contr 105:490–497

    Article  Google Scholar 

  • Stürtz G (1980) Biomechanical data of Children. In: Proceedings from 24th Stapp car crash conference

    Google Scholar 

  • Tamura A, Omori K, Miki K et al (2002) Mechanical characterization of porcine abdominal organs. Stapp Car Crash J 46:55–69

    Google Scholar 

  • Tepper R, Wiggs B, Gunst S et al (1999) Comparison of the shear modulus of mature and immature rabbit lungs. J Appl Physiol 87:711–714

    Google Scholar 

  • Theis M (1975) Untersuchung der dynmischen und statischen Biegebelastung frischer menschlicher Rippen in Abhängigkeit zu Alter und Geschlecht. Inaugural-Dissertation. Ruprecht-Karl-Universität, Heidelberg, Germany

    Google Scholar 

  • Tsitlik JE, Weisfeldt ML, Chandra N et al (1983) Elastic properties of the human chest during cardiopulmonary resuscitation. Crit Care Med 11:685–692

    Article  Google Scholar 

  • Uehara H (1995) A study on the mechanical properties of the kidney, liver and spleen, by means of tensile stress test with variable strain velocity. J Kyoto Prefect Univ Med 104:439–451

    Google Scholar 

  • Vallis CJ, Mackenzie I, Lucas BG (1979) The force necessary for external cardiac compression. Practitioner 223:268–270

    Google Scholar 

  • van Ratingen M, Twisk D, Schrooten M et al (1997) Biomechanically based design and performance targets for a 3-year old child crash dummy for frontal and side impact. In: Proceedings from 41st Stapp car crash conference, pp 243–260

    Google Scholar 

  • Vawter D (1980) A finite element model for macroscopic deformation of the lung. J Biomech Eng 102:1–7

    Article  Google Scholar 

  • Vawter D, Fung YC, West J (1978) Elasticity of excised dog lung parenchyma. J Appl Physiol 45:261–269

    Google Scholar 

  • Wang BC, Wang GR, Yan DH et al (1992) An experimental study on biomechanical properties of hepatic tissue using a new measuring method. Biomed Mater Eng 2:133–138

    Google Scholar 

  • Weaver J, Chalmers JK (1966) Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral content. Part 1: age changes in cancellous bone. J Bone Joint Surg 48:299–308

    Google Scholar 

  • Weber K, Melvin J (1982) Dynamic testing of child occupant protection systems. University of Michigan Highway Safety Research Institute USDOT, Final Report UM-HSRI-82-19

    Google Scholar 

  • Wismans J, Maltha J, Melvin J et al (1979) Child restraint evaluation by experimental and mathematical simulation. SAE Tech Paper #791017

    Google Scholar 

  • Yamada (1970) In: Evans FG (ed) Strength of biological materials. The Williams & Wilkins Co, Baltimore, MD

    Google Scholar 

  • Yeh W, Li P, Jeng Y et al (2002) Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med Biol 28:467–474

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Kent Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kent, R., Ivarsson, J., Maltese, M.R. (2013). Experimental Injury Biomechanics of the Pediatric Thorax and Abdomen. In: Crandall, J., Myers, B., Meaney, D., Zellers Schmidtke, S. (eds) Pediatric Injury Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4154-0_6

Download citation

Publish with us

Policies and ethics