Skip to main content

Experimental Injury Biomechanics of the Pediatric Neck

  • Chapter
  • First Online:
Pediatric Injury Biomechanics

Abstract

Motor vehicle related crashes rank as the most common cause of spinal related injuries in the pediatric population (Platzer et al. 2007; Brown et al. 2001; Kokoska et al. 2001; Eleraky et al. 2000; Hamilton and Myles 1992a; Bonadio 1993; Babcock 1975). Pediatric spinal related trauma accounts for between 1 and 12 % of all spinal related injuries (Hamilton and Myles 1992a; Hadley et al. 1988; Aufdermaur 1974). Cervical spine trauma in children accounts for approximately 2 % of all cervical spinal injuries (Henrys et al. 1977). Approximately 1–2 % of all children admitted for traumatic injury are related to injuries to the cervical spine (Platzer et al. 2007; Brown et al. 2001; Kokoska et al. 2001; Orenstein et al. 1994; Rachesky et al. 1987). Overall, pediatric neck injury rates are significantly lower than adult rates; however, the neck injury rate in children between the ages of 11 and 15 years approaches the adult rate of 18.8 per 100,000 (McGrory et al 1993; Myers and Winkelstein 1995). For children less than 11 years of age, neck injuries are relatively rare (1.2 per 100,000), but have particularly devastating consequences (McGrory et al. 1993). The overall mortality rate amongst victims of pediatric spinal trauma is approximately 16–41 % but considerably higher for the youngest ages (Platzer et al. 2007; Brown et al. 2001; Kokoska et al. 2001; Eleraky et al. 2000; Givens et al. 1996; Orenstein et al. 1994; Hamilton and Myles 1992b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams VI (1992) Neck injuries: II. Atlantoaxial dislocation – a pathologic study of 14 traffic fatalities. J Forensic Sci 37:565–573

    Google Scholar 

  • Angel CA, Ehlers RA (2001) Atloido-occipital dislocation in a small child after air-bag deployment. N Engl J Med 345:1256

    Article  Google Scholar 

  • Arbogast KB, Balasubramanian S, Seacrist T, Maltese MR, Garcia-Espana JF, Hopely T, Constans E, Lopez-Valdes FJ, Kent RW, Tanji H, Higuchi K (2009) Comparison of kinematic responses of the head and spine for children and adults in low-speed frontal sled tests. Stapp Car Crash J 53:329–372

    Google Scholar 

  • Aufdermaur M (1974) Spinal injuries in juveniles. Necropsy findings in twelve cases. J Bone Joint Surg 56:513–519

    Google Scholar 

  • Babcock JL (1975) Spinal injuries in children. Pediatr Clin N Am 22:487–500

    Google Scholar 

  • Bailey DK (1952) The normal cervical spine in infants and children. Radiology 59:712–719

    Google Scholar 

  • Bhattacharyya SK (1974) Fracture and displacement of the odontoid process in a child. J Bone Joint Surg 56:1071–1072

    Google Scholar 

  • Blauth M, Schmidt U, Otte D et al (1996) Fractures of the odontoid process in small children: biomechanical analysis and report of three cases. Eur Spine J 5:63–70

    Article  Google Scholar 

  • Bodenham A, Swindells S, Newman RJ (1992) Permanent tetraplegia in an infant following improper use of a car seat restraint. Inj Br J Accid Surg 23:420–422

    Google Scholar 

  • Bonadio WA (1993) Cervical spine trauma in children: part I. General concepts, normal anatomy, radiographic evaluation. Am J Emerg Med 11:158–165

    Article  Google Scholar 

  • Brown DK, Roe EJ, Henry TE (1995) A fatality associated with the deployment of an automobile airbag. J Trauma 39:1204–1206

    Article  Google Scholar 

  • Brown RL, Brunn MA, Garcia VF (2001) Cervical spine injuries in children: a review of 103 patients treated consecutively at a level 1 pediatric trauma center. J Pediatr Surg 36:1107–1114

    Article  Google Scholar 

  • Brun Cassan F, Page M, Pincemaille Y et al (1993) Comparative study of restrained child dummies and cadavers in experimental crashes. SAE Publication SP-986. Child Occupant Protection (SAE Technical Paper 933105). pp. 243–260. Warrendale, PA: Society of Automotive Engineers

    Google Scholar 

  • Camacho DLA, Nightingale RW, Robinette JJ et al (1997) Experimental flexibility measurements for the development of a computational head-neck model validated for near-vertex head impact. In: Proceedings from the 41st Stapp car crash conference. Lake Buena Vista, FL. 41:473–486. Warrendale, PA: Society of Automotive Engineers, Inc

    Google Scholar 

  • Cattell S, Filtzer DL (1965) Pseudosubluxation and other normal variations in the cervical spine in children. J Bone Joint Surg 47A(7):1295–1309

    Google Scholar 

  • Chancey VC, Nightingale RW, Van Ee CA et al (2003) Improved estimation of human neck tensile tolerance: reducing the range of reported tolerance using anthropometrically correct muscles and optimized physiologic initial conditions. Stapp Car Crash J 47:135–153

    Google Scholar 

  • Ching RP, Nuckley DJ, Hertsted SM, Eck MP, Mann FA, Sun EA (2001) Tensile mechanics of the developing cervical spine. Stapp Car Crash J 45:329–336

    Google Scholar 

  • Clarke EC, Appleyard RC, Bilston LE (2007) Immature sheep spines are more flexible than mature spines: an in vitro biomechanical study. Spine 32:2970

    Article  Google Scholar 

  • Clasper JC, Pailthorpe CA (1995) Delayed diagnosis of an odontoid process fracture in an infant. Inj Intl J Care Inj 26:281–282

    Google Scholar 

  • Dalmotas DJ, German A, Hendrick BE et al (1995) Airbag deployments: the Canadian experience. J Trauma 38:476–481

    Article  Google Scholar 

  • Dejeammes M, Tarriere C, Thomas C et al (1984) Exploration of biomechanical data towards a better evaluation of tolerance for children involved in automotive accidents. SAE Tech Paper #840530:427–441

    Google Scholar 

  • Dibb AT, Nightingale RW, Luck JF, Chancey VC, Fronheiser LE, Myers BS (2009) Tension and combined tension-extension structural response and tolerance properties of the human male ligamentous cervical spine. J Biomech Eng 131(8):081008-1-081008-11

    Google Scholar 

  • Duncan JM (1874) Laboratory note: on the tensile strength of the fresh adult fœtus. Br Med J 2:763

    Article  Google Scholar 

  • Eleraky MA, Theodore N, Adams M et al (2000) Pediatric cervical spine injuries: report of 102 cases and review of the literature. J Neurosurg 92:12–17

    Google Scholar 

  • Eppinger R, Sun E, Bandak F et al (1999) Development of improved injury criteria for the assessment of advanced automotive restraint systems – II. Supplement to NHTSA Docket 9. Washington, D.C.: NHTSA

    Google Scholar 

  • Ewald FC (1971) Fracture of the odontoid process in a seventeen-month-old infant treated with a halo. J Bone Joint Surg 53:1636–1640

    Google Scholar 

  • Fesmire FM, Luten RC (1989) The pediatric cervical spine: developmental anatomy and clinical aspects. J Emerg Med 7:133–142

    Article  Google Scholar 

  • Fuchs S, Barthel MJ, Flannery AM, Christoffel KK (1989) Cervical spine fractures sustained by young children in forward-facing car seats. Pediatrics 84(2):348–354

    Google Scholar 

  • Giguere JF, St-Vil D, Turmel A et al (1998) Airbags and children: a spectrum of c-spine injuries. J Pediatr Surg 33:811–816

    Article  Google Scholar 

  • Givens TG, Polley KA, Smith GF, Hardin WD Jr (1996) Pediatric cervical spine injury: a three-year experience. J Trauma 41(2):310–314

    Article  Google Scholar 

  • Graham JD, Goldie SJ, Segui-Gomez M et al (1998) Reducing risks to children in vehicles with passenger airbags. Pediatrics 102:1–7

    Article  Google Scholar 

  • Hadley MN, Zabramski JM, Browner CM, Rekate H, Sonntag VKH (1988) Pediatric spinal trauma: review of 122 cases of spinal cord and vertebral column injuries. J Neurosurg 68:18–24

    Article  Google Scholar 

  • Hamilton M, Myles S (1992a) Pediatric spinal injury: review of 174 hospital admissions. J Neurosurg 77:700–704

    Article  Google Scholar 

  • Hamilton MG, Myles ST (1992b) Pediatric spinal injury: review of 61 deaths. J Neurosurg 77:705–708

    Article  Google Scholar 

  • Hartemann F, Thomas C, Henry C et al (1977) Belted or not belted: the only difference between two matched samples of 200 car occupants. In: Proceedings from the 21st Stapp car crash conference, New Orleans, LA. 21:95–150. Warrendale, PA: Society of Automotive Engineers, Inc

    Google Scholar 

  • Heilman CB, Riesenburger RI (2001) Simultaneous noncontiguous cervical spine injuries in a pediatric patient: case report. Neurosurgery 49:1017–1021

    Google Scholar 

  • Henrys P, Lyne ED, Lifton C (1977) Clinical review of cervical spine injuries in children. Clin Orthop Relat Res 129:172–176

    Google Scholar 

  • Hilker CE, Yoganandan N, Pintar FA et al (2002) Experimental determination of adult and pediatric neck scale factors. Stapp Car Crash J 46:323–351

    Google Scholar 

  • Huelke DF, Mendelsohn RA, States JD (1978) Cervical fractures and fracture-dislocations sustained without head impact. J Trauma 18:533–538

    Article  Google Scholar 

  • Huelke DF, O’Day J, Mendelsohn RA (1981) Cervical injuries suffered in automobile crashes. J Neurosurg 54:316–322

    Article  Google Scholar 

  • Huelke DF, Mackay GM, Morris A (1992) Car crashes and non-head impact cervical spine injuries in infants and children. SAE Tech Paper 920562

    Google Scholar 

  • Huelke DF, Mackay GM, Morris A et al (1993) A review of cervical fractures and fracture-dislocations without head impacts sustained by restrained occupants. Accid Anal Prev 25:731–743

    Article  Google Scholar 

  • Huelke DF, Mackay GM, Morris A (1995) Vertebral column injuries and lap–shoulder belts. J Trauma 8:547–556

    Article  Google Scholar 

  • Irwin AL, Mertz HJ (1997) Biomechanical bases for the CRABI and Hybrid III child dummies. SAE Tech Paper 106:3551–3562

    Google Scholar 

  • Kallieris D, Barz J, Schmidt G et al (1976) Comparison between child cadavers and child dummy by using child restraint systems in simulated collisions. In: Proceedings from the 20th Stapp car crash conference. Dearborn, MI. 20:511–542. Warrendale, PA: Society of Automotive Engineers, Inc

    Google Scholar 

  • Kasai T, Ikata T, Katoh S et al (1996) Growth of the cervical spine with special reference to its lordosis and mobility. Spine 21:2067

    Article  Google Scholar 

  • Keller J, Mosdal C (1990) Traumatic odontoid epiphysiolysis in an infant fixed in a child’s car seat. Inj Br J Accid Surg 21:191–192

    Google Scholar 

  • Kleinberger M, Sun E, Eppinger R et al (1998) Development of improved injury criteria for the assessment of advanced automotive restraint systems. Washington, D.C.: NHTSA

    Google Scholar 

  • Klinich KD, Saul RA, Auguste G et al (1996) Techniques for developing child dummy protection reference values. NHTSA Event Report, Docket Submission, #74-14. Washington, D.C.: NHTSA

    Google Scholar 

  • Kokoska ER, Keller MS, Rallo MC et al (2001) Characteristics of pediatric cervical spine injuries. J Pediatr Surg 36:100–105

    Article  Google Scholar 

  • Kuhns LR (1998) Imaging of spinal trauma in children: an atlas and text. BC Decker Inc, Hamilton

    Google Scholar 

  • Kumaresan S, Yoganandan N, Pintar FA (1997) Age-specific pediatric cervical spine biomechanical responses: three-dimensional nonlinear finite element models. In: Proceedings from the 41st Stapp car crash conference. Lake Buena Vista, FL. 41:31–61. Warrendale, PA: Society of Automotive Engineers, Inc

    Google Scholar 

  • Kumaresan S, Yoganandan N, Pintar F et al (1998) One, three and six year old pediatric cervical spine finite element models. In: Yoganandan N (ed) Frontiers in head and neck trauma. IOS Press, Amsterdam

    Google Scholar 

  • Kumaresan S, Yoganandan N, Pintar FA et al (2000a) Biomechanical study of pediatric human cervical spine: a finite element approach. J Biomech Eng 122:60–71

    Article  Google Scholar 

  • Kumaresan S, Yoganandan N, Pintar FA et al (2000b) Biomechanics of pediatric cervical spine: compression, flexion and extension responses. Traffic Inj Prev 2:87–101

    Google Scholar 

  • Luck JF, Nightingale RW, Loyd AM et al (2008) Tensile mechanical properties of the perinatal and pediatric PMHS osteoligamentous cervical spine. Stapp Car Crash J 52:107–134

    Google Scholar 

  • Luck JF, Bass CRB, Owen SJ, Nightingale RW (2012) An apparatus for tensile and bending tests of perinatal, neonatal, pediatric and adult cadaver osteoligamentous cervical spines. J Biomech 45(2):386–389

    Google Scholar 

  • Lui TN, Lee ST, Wong CW (1996) C1–C2 fracture–dislocations in children and adolescents. J Trauma 40:408–411

    Article  Google Scholar 

  • McGowan D, Voo L, Liu Y (1993) Distraction failure of the immature spine. Presented at ASME summer annual, Breckenridge, CO, pp 24–25

    Google Scholar 

  • McGrory BJ, Klassen RA, Chao EYS et al (1993) Acute fractures and dislocations of the cervical spine in children and adolescents. J Bone Joint Surg 75:988–995

    Google Scholar 

  • Melvin J (1995) Injury assessment reference values for the CRABI 6-month infant dummy in a rear-facing infant restraint with airbag deployment. SAE Tech Paper #950872:1–12

    Google Scholar 

  • Mertz HJ, Weber DA (1982) Interpretations of the impact responses of a 3-year-old child dummy relative to child injury potential. In: Proceedings from the ninth international technical conference on experimental safety vehicles, Kyoto, Japan 9:368–376

    Google Scholar 

  • Mertz HJ, Driscoll GD, Lenox JB et al (1982) Responses of animals exposed to deployment of various passenger inflatable restraint system concepts for a variety of collision severities and animal positions. In: Proceedings from the ninth international technical conference on experimental safety vehicles, Kyoto, Japan 9:352–367

    Google Scholar 

  • Mikawa Y, Watanabe R, Yamano Y et al (1987) Fracture through a synchondrosis of the anterior arch of the atlas. J Bone Joint Surg 69:483

    Google Scholar 

  • Myers BS, Winkelstein BA (1995) Epidemiology, classification, mechanism, and tolerance of human cervical spine injuries. Biomed Eng 23:307–410

    Google Scholar 

  • NHTSA SCI (2009) Counts of frontal air bag related fatalities and seriously injured persons. DOT HS 811 104. Washington, D.C.: NHTSA. http://www-nrd.nhtsa.dot.gov/Pubs/811104.pdf. Last accessed 12 Jun 2012

  • Nightingale RW, Winkelstein BA, Knaub K et al (2002) Comparative bending strengths and structural properties of the upper and lower cervical spine. J Biomech 35:725–732

    Article  Google Scholar 

  • Nightingale RW, Chancey VC, Ottaviano D et al (2007) Flexion and extension structural properties and strengths for male cervical spine segments. J Biomech 40:535–542

    Article  Google Scholar 

  • Nitecki S, Moir CR (1994) Predictive factors of the outcome of traumatic cervical spine fracture in children. J Pediatr Surg 29:1409–1411

    Article  Google Scholar 

  • Nuckley DJ, Ching RP (2006) Developmental biomechanics of the cervical spine: tension and compression. J Biomech 39:3045–3054

    Article  Google Scholar 

  • Nuckley DJ, Hertsted SM, Ku GS, Eck MP, Ching RP (2002) Compressive tolerance of the maturing cervical spine. Stapp Car Crash J 46:431–440

    Google Scholar 

  • Nuckley DJ, Yliniemi EM, Cohen AM, Harrington RM, Ching RP (2005a) Compressive mechanics of the maturing human spine. In: Proceedings from the ASB 29th annual meeting. Cleveland, OH

    Google Scholar 

  • Nuckley DJ, Hertsted SM, Eck MP et al (2005b) Effect of displacement rate on the tensile mechanics of pediatric cervical functional spinal units. J Biomech 38:2266–2275

    Article  Google Scholar 

  • Nuckley DJ, Linders DR, Ching RP (2007) Human cervical spine mechanics across the maturation spectrum. In: Proceedings from the ASB 31st annual meeting. Palo Alto, CA

    Google Scholar 

  • Odent T, Langlais J, Glorion C et al (1999) Fractures of the odontoid process: a report of 15 cases in children younger than 6 years. J Pediatr Orthop 19:51–54

    Article  Google Scholar 

  • Ogden JA (1984a) Radiology of postnatal skeletal development: XI the first cervical vertebra. Skeletal Radiol 12:12–20

    Article  ADS  Google Scholar 

  • Ogden JA (1984b) Radiology of postnatal skeletal development: XII the second cervical vertebra. Skeletal Radiol 12:169–177

    Article  ADS  Google Scholar 

  • Orenstein JB, Klein BL, Gotschall CS et al (1994) Age and outcome in pediatric cervical spine injury: 11-year experience. Pediatr Emerg Care 10:132–137

    Article  Google Scholar 

  • Ouyang J, Zhu Q, Zhao W et al (2005) Biomechanical assessment of the pediatric cervical spine under bending and tensile loading. Spine 30:716–723

    Article  Google Scholar 

  • Peacock A (1952) Observations on the postnatal structure of the intervertebral disc in man. J Anat 86:162

    Google Scholar 

  • Pintar F, Mayer R, Yoganandan N et al (2000) Child neck strength characteristics using an animal model SAE Tech Paper #2000-01-SC06:44

    Google Scholar 

  • Platzer P, Jaindl M, Thalhammer G, Dittrich S, Kutscha-Lissberg F, Vecsei V, Gaebler C (2007) Cervical spine injuries in pediatric patients. J Trauma 62(2):389–396

    Article  Google Scholar 

  • Prasad P, Daniel RP (1984) A biomechanical analysis of head, neck and torso injuries to child surrogates due to sudden torso acceleration. SAE Tech Paper 841656:25–40

    Google Scholar 

  • Rachesky I, Boyce WT, Duncan B, Bjelland J, Sibley B (1987) Clinical prediction of cervical spine injuries in children. Am J Dis Child 141:199–201

    Google Scholar 

  • Roche C, Carty H (2001) Spinal trauma in children. Pediatr Radiol 31:677–700

    Article  Google Scholar 

  • Sanderson SP, Houten JK (2002) Fracture through the C2 synchondrosis in a young child. Pediatr Neurosurg 36:277–278

    Article  Google Scholar 

  • Saveika JA, Thorogood C (2006) Airbag-mediated pediatric atlanto-occipital dislocation. Am J Phys Med Rehabil 85:1007–1010

    Article  Google Scholar 

  • Scheuer L, Black S (2004) The juvenile skeleton. Elsevier Academic Press, New York

    Google Scholar 

  • Schippers N, Konings P, Hassler W et al (1996) Typical and atypical fractures of the odontoid process in young children: report of two cases and a review of the literature. Acta Neurochir 138:524–530

    Article  Google Scholar 

  • Seimon LP (1977) Fracture of the odontoid process in young children. J Bone Joint Surg 59:943–948

    Google Scholar 

  • Shaw BA, Murphy KM (1999) Displaced odontoid fracture in a 9-month-old child. Am J Emerg Med 17:73–75

    Article  Google Scholar 

  • Smith JT, Skinner SR, Shonnard NH (1993) Persistant synchondrosis of the second cervical ertebra simulating a hangman’s fracture in a child. J Bone Joint Surg 75:1228–1230

    Google Scholar 

  • Swischuk LE (1977) Anterior displacement of C2 in children: physiologic or pathologic? A helpful differentiating line. Pediatr Radiol 122:759–763

    Google Scholar 

  • Swischuk LE (1998) Five month old in a motor vehicle accident. Pediatr Emerg Care 14:299–301

    Article  Google Scholar 

  • Taylor JR (1975) Growth of human intervertebral discs and vertebral bodies. J Anat 120:49

    Google Scholar 

  • Thakar C, Harish S, Saifuddin A et al (2005) Displaced fracture through the anterior atlantal synchondrosis. Skeletal Radiol 34:547–549

    Article  Google Scholar 

  • Van Ee CA, Chasse AL, Myers BS (1998) The effect of postmortem time and freezer storage on the mechanical properties of skeletal muscle. In: Proceedings from the 42nd Stapp car crash conference, Tempe, AZ. 42:169–178. Warrendale, PA: Society of Automotive Engineers, Inc

    Google Scholar 

  • Van Ee CA, Nightingale RW, Camacho DL (2000) Tensile properties of the human muscular and ligamentous cervical spine. Stapp Car Crash J 44:85–102

    Google Scholar 

  • Viano DC (1995) Restraint effectiveness, availability and use in fatal crashes: implications to injury control. J Trauma 38:538–546

    Article  Google Scholar 

  • Weiss MH, Kaufman B (1973) Hangman’s fracture in an infant. Am J Dis Child 126:268–269

    Google Scholar 

  • Wigren A, Amici F (1973) Traumatic atlanto-axial dislocation without neurological disorder. J Bone Joint Surg 55:642–644

    Google Scholar 

  • Wismans J, Maltha J, Melvin JW (1979) Child restraint evaluation by experimental and mathematical simulation. In: Proceedings from the 23rd Stapp car crash conference, San Diego, CA. 23:383–415. Warrendale, PA: Society of Automotive Engineers, Inc

    Google Scholar 

  • Yamada H (1970) Strength of biological materials. Williams and Wilkins Co, Baltimore, MD

    Google Scholar 

  • Yoganandan N, Kumaresan S, Pintar FA (2001) Biomechanics of the cervical spine part 2. cervical spine soft tissue responses and biomechanical modeling. Clin Biomech 16:1–27

    Article  Google Scholar 

  • Yoganandan N, Kumaresan S, Pintar F et al (2002) Pediatric biomechanics. In: Naham A, Melvin JW (eds) Accidental injury: biomechanics and prevention. Springer-Verlag, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger W. Nightingale Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nightingale, R.W., Luck, J.F. (2013). Experimental Injury Biomechanics of the Pediatric Neck. In: Crandall, J., Myers, B., Meaney, D., Zellers Schmidtke, S. (eds) Pediatric Injury Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4154-0_5

Download citation

Publish with us

Policies and ethics