Skip to main content

What We Do and Do Not Know About the Cellular Functions of Polyisoprenoids

  • Chapter
  • First Online:
  • 2589 Accesses

Abstract

Natural compounds classified as products of secondary metabolism are widely studied as to their potential biological role. Identification of possible cellular functions of polyisoprenoids, generally considered as secondary products, has been our focus for some 30 years already. The results of these studies for instance in the context of membrane permeability and protein modification are briefly described and discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Asawatreratanakul K, Zhang YW, Wititsuwannakul D et al (2003) Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis. A key factor participating in natural rubber biosynthesis. Eur J Biochem 270: 4671–4680

    Article  PubMed  CAS  Google Scholar 

  • Bajda A, Chojnacki T, Hertel J et al (2005) Light conditions alter accumulation of long chain polyprenols in leaves of trees and shrubs throughout the vegetation season. Acta Biochim Pol 52:233–241

    PubMed  CAS  Google Scholar 

  • Bajda A, Konopka-Postupolska D, Krzymowska M et al (2009) Role of polyisoprenoids in tobacco resistance against biotic stresses. Physiol Plant 135:351–364

    Article  PubMed  CAS  Google Scholar 

  • Belgareh-Touze N, Corral-Debrinski M, Launhardt H et al (2003) Yeast functional analysis: identification of two essential genes involved in ER to Golgi trafficking. Traffic 4:607–617

    Article  PubMed  CAS  Google Scholar 

  • Bergamini E, Bizzarri R, Cavallini G et al (2004) Ageing and oxidative stress: a role for dolichol in the antioxidant machinery of cell membranes? J Alzheimers Dis 6:129–135

    PubMed  CAS  Google Scholar 

  • Bruenger E, Rilling HC (1986) Prenylated protein from kidney. Biochem Biophys Res Commun 139:209–214

    Article  PubMed  CAS  Google Scholar 

  • Burda P, Aebi M (1999) The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta 1426:239–257

    Article  PubMed  CAS  Google Scholar 

  • Cantagrel V, Lefeber DJ, Ng BG et al (2010) SRD5A3 is required for converting polyprenol to dolichol and is mutated in congenital glycosylation disorders. Cell 142:203–217

    Article  PubMed  CAS  Google Scholar 

  • Chojnacki T, Dallner G (1988) The biological role of dolichol. Biochem J 251:1–7

    PubMed  CAS  Google Scholar 

  • Ciepichal E, Jemiola-Rzeminska M, Hertel J, Swiezewska E, Strzalka K (2011) Configuration of polyisoprenoids affects the permeability and thermotropic properties of phospholipids/polyisoprenoid model membranes. Chem Phys Lipids 164:300–306

    Article  PubMed  CAS  Google Scholar 

  • Crowell DN (2000) Functional implications of protein isoprenylation in plants. Prog Lipid Res 39:393–408

    Article  PubMed  CAS  Google Scholar 

  • Cunillera N, Arró M, Fores O, Manzano D, Ferrer A (2000) Characterization of dehydrodolichyl diphosphate synthase of Arabidopsis thaliana, a key enzyme in dolichol biosynthesis. FEBS Lett 477:170–174

    Article  PubMed  CAS  Google Scholar 

  • Galichet A, Gruissem W (2003) Protein farnesylation in plants – conserved mechanisms but different targets. Curr Opin Plant Biol 6:530–535

    Article  PubMed  CAS  Google Scholar 

  • Galichet A, Gruissem W (2006) Developmentally controlled farnesylation modulates AtNAP1;1 function in cell proliferation and cell expansion during Arabidopsis leaf development. Plant Physiol 142:1412–1426

    Article  PubMed  CAS  Google Scholar 

  • Gerber E, Hemmerlin A, Hartmann M et al (2009) The plastidial 2-C-methyl-D-erythritol 4-phosphate pathway provides the isoprenyl moiety for protein geranylgeranylation in tobacco BY-2 cells. Plant Cell 21:285–300

    Article  PubMed  CAS  Google Scholar 

  • Gutkowska M, Bienkowski T, Hung VS et al (2004) Proteins are polyisoprenylated in A. thaliana. Biochem Biophys Res Commun 322:998–1004

    Article  PubMed  CAS  Google Scholar 

  • Harrison KD, Park EJ, Gao N et al (2011) Nogo-B receptor is necessary for cellular dolichol biosynthesis and protein N-glycosylation. EMBO J 30:2490–2500

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlin A, Hoeffler JF, Meyer O et al (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676

    Article  PubMed  CAS  Google Scholar 

  • Hemming FW (1985) Glycosyl phosphopolyprenols. In: Wiegandt L (ed) Glycolipids. Elsevier Science, Amsterdam

    Google Scholar 

  • Hjertman M, Wejde J, Dricu A et al (1997) Evidence for protein dolichylation. FEBS Lett 416:235–238

    Article  PubMed  CAS  Google Scholar 

  • Janas T, Walinska K, Chojnacki T et al (2000) Modulation of properties of phospholipid membranes by the long-chain polyprenol (C(160)). Chem Phys Lipids 106:31–40

    Article  PubMed  CAS  Google Scholar 

  • Kaushal GP, Elbein AD (1989) Glycoprotein processing enzymes of plants. Methods Enzymol 179:452–475

    Article  PubMed  CAS  Google Scholar 

  • Kranz C, Jungeblut C, Denecke J et al (2007) A defect in dolichol phosphate biosynthesis causes a new inherited disorder with death in early infancy. Am J Hum Genet 80:433–440

    Article  PubMed  CAS  Google Scholar 

  • Lehle L, Tanner W (1983) Polyprenol-linked sugars and glycoprotein synthesis in plants. Biochem Soc Trans 11:568–574

    PubMed  CAS  Google Scholar 

  • Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol 24:361–367

    Article  PubMed  CAS  Google Scholar 

  • Mazel A, Leshem Y, Tiwari BS, Levine A (2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol 134:118–128

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, McCourt P (1999) Protein farnesylation in plants: a greasy tale. Curr Opin Plant Biol 2:388–392

    Article  PubMed  CAS  Google Scholar 

  • Oh SK, Han KH, Ryu SB, Kang H (2000) Molecular ­cloning, expression, and functional analysis of a cis-prenyltransferase from Arabidopsis thaliana. Implications in rubber biosynthesis. J Biol Chem 275: 18482–18488

    Article  PubMed  CAS  Google Scholar 

  • Olsson JM, Eriksson LC, Dallner G (1991) Lipid compositions of intracellular membranes isolated from rat liver nodules in Wistar rats. Cancer Res 51: 3774–3780

    PubMed  CAS  Google Scholar 

  • Olsson JM, Schedin S, Teclebrhan H et al (1995) Enzymes of the mevalonate pathway in rat liver nodules induced by 2-acetylaminofluorene treatment. Carcinogenesis 16:599–605

    Article  PubMed  CAS  Google Scholar 

  • Parentini I, Bergamini E, Cecchi L et al (2003) The effect of carbon tetrachloride and ultraviolet radiation on dolichol levels in liver cells isolated from 3- and 24-month-old male Sprague–Dawley rats. Biogerontology 4:365–370

    Article  PubMed  CAS  Google Scholar 

  • Parmryd I, Dallner G (1999) In vivo prenylation of rat proteins: modification of proteins with penta- and hexaprenyl groups. Arch Biochem Biophys 364:153–160

    Article  PubMed  CAS  Google Scholar 

  • Parmryd I, Andersson B, Dallner G (1999) Protein prenylation in spinach chloroplasts. Proc Natl Acad Sci USA 96:10074–10079

    Article  PubMed  CAS  Google Scholar 

  • Peñuelas J, Munné-Bosch S (2005) Isoprenoids: an evolutionary pool for photoprotection. Trends Plant Sci 10:166–169

    Article  PubMed  Google Scholar 

  • Randall SK, Marshall MS, Crowell DN (1993) Protein isoprenylation in suspension-cultured tobacco cells. Plant Cell 5:433–442

    PubMed  CAS  Google Scholar 

  • Rodríguez-Concepción M, Yalovsky S, Gruissem W (1999) Protein prenylation in plants: old friends and new targets. Plant Mol Biol 39:865–870

    Article  PubMed  Google Scholar 

  • Running MP, Lavy M, Sternberg H et al (2004) Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proc Natl Acad Sci USA 101:7815–7820

    Article  PubMed  CAS  Google Scholar 

  • Sakakihara Y, Imabayashi T, Suzuki Y, Kamoshita S (1994) Elevated levels of dolichol in the brains of mucopolysaccharidosis and related disorders. Mol Chem Neuropathol 22:97–102

    Article  PubMed  CAS  Google Scholar 

  • Samuelson J, Banerjee S, Magnelli P et al (2005) The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc Natl Acad Sci USA 102:1548–1553

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Sato K, Nishikawa S, Hirata A et al (1999) The yeast RER2 gene, identified by endoplasmic reticulum protein localization mutations, encodes cis-prenyltransferase, a key enzyme in dolichol synthesis. Mol Cell Biol 19:471–483

    PubMed  CAS  Google Scholar 

  • Shibaev VN (1986) Biosynthesis of bacterial polysaccharide chains composed of repeating units. Adv Carbohydr Chem Biochem 44:277–339

    Article  PubMed  CAS  Google Scholar 

  • Shipton CA, Parmryd I, Swiezewska E, Andersson B, Dallner G (1995) Isoprenylation of plant proteins in vivo. J Biol Chem 270:566–572

    Article  PubMed  CAS  Google Scholar 

  • Skorupinska-Tudek K, Bienkowski T, Olszowska O et al (2003) Divergent pattern of polyprenols and dolichols in different organs in Coluria geoides. Lipids 38: 981–991

    Article  PubMed  CAS  Google Scholar 

  • Skorupinska-Tudek K, Poznanski J, Wojcik J et al (2008a) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of dolichols in plants. J Biol Chem 283:21024–21035

    Article  PubMed  CAS  Google Scholar 

  • Skorupinska-Tudek K, Wojcik J, Swiezewska E (2008b) Polyisoprenoid alcohols – recent results of structural studies. Chem Rec 8:33–45

    Article  PubMed  CAS  Google Scholar 

  • Surmacz L, Swiezewska E (2011) Polyisoprenoids – ­secondary metabolites or physiologically important superlipids? Biochem Biophys Res Commun 407:627–632

    Article  PubMed  CAS  Google Scholar 

  • Swiezewska E, Danikiewicz W (2005) Polyisoprenoids: structure, biosynthesis and function. Prog Lipid Res 44:235–258

    Article  PubMed  CAS  Google Scholar 

  • Swiezewska E, Thelin A, Dallner G, Andersson B, Ernster L (1993) Occurrence of prenylated proteins in plant cells. Biochem Biophys Res Commun 192:161–166

    Article  PubMed  CAS  Google Scholar 

  • Swiezewska E, Sasak W, Mankowski T, Jankowski WJ, Vogtman T, Krajewska I, Hertel J, Skoczylas E, Chojnacki T (1994) The search for plant polyprenols. Acta Biochim Pol 41:221–260

    PubMed  CAS  Google Scholar 

  • Thelin A, Low P, Chojnacki T, Dallner G (1991) Covalent binding of dolichyl phosphate to proteins in rat liver. Eur J Biochem 195:755–761

    Article  PubMed  CAS  Google Scholar 

  • Trentalance A (1994) Dolichols and proliferating systems. Acta Biochim Pol 41:339–344

    PubMed  CAS  Google Scholar 

  • Valtersson C, van Duijn G, Verkleij AJ et al (1985) The influence of dolichol, dolichyl esters, and dolichyl phosphate on phospholipid polymorphism and fluidity in model membranes. J Biol Chem 260:2742–2751

    PubMed  CAS  Google Scholar 

  • Wallis JG, Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41:254–278

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Ying J, Kuzma M et al (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    Article  PubMed  CAS  Google Scholar 

  • Wilson IB (2002) Glycosylation of proteins in plants and invertebrates. Curr Opin Struct Biol 12:569–577

    Article  PubMed  CAS  Google Scholar 

  • Yalovsky S, Rodriguez-Concepción M, Gruissem W (1999) Lipid modifications of proteins – slipping in and out of membranes. Trends Plant Sci 4:439–445

    Article  PubMed  Google Scholar 

  • Zeng Q, Wang X, Running MP (2007) Dual lipid modification of Arabidopsis G γ-subunits is required for efficient plasma membrane targeting. Plant Physiol 143:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK, Bressan RA, Hasegawa PM (1993) Isoprenylation of the plant molecular chaperone ANJ1 facilitates membrane association and function at high temperature. Proc Natl Acad Sci USA 90:8557–8561

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are deeply grateful to Professor Thomas Bach for his stimulation and inestimable help during the preparation of this chapter. Studies performed in our laboratory described here were partially financed by the Ministry of Science and Higher Education grants No PBZ/MEiN/01/2006/45 and MNiSW NN303 311837 and by the grant funded by the Polish National Cohesion Strategy Innovative Economy UDA-POIG 01.03.01-14-036/09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Surmacz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Surmacz, L., Swiezewska, E. (2012). What We Do and Do Not Know About the Cellular Functions of Polyisoprenoids. In: Bach, T., Rohmer, M. (eds) Isoprenoid Synthesis in Plants and Microorganisms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4063-5_21

Download citation

Publish with us

Policies and ethics