Skip to main content

Metal Single-Insulator and Multi-Insulator Diodes for Rectenna Solar Cells

  • Chapter
  • First Online:
Rectenna Solar Cells

Abstract

Metal/insulator/metal (MIM) diodes work on the inherently fast mechanism of tunneling and have been used in a number of high-frequency applications. This makes them a promising candidate as the rectifying element in rectenna solar cells. In this chapter we describe the operating mechanism of these diodes and review the work done on using them in rectennas. We also provide a simulation methodology to accurately model low-barrier MIM diodes that are used in rectennas. Analytical models based on the WKB method for probability of tunneling are not well suited for analyzing such diodes. We simulate single-insulator (MIM) diodes with varying asymmetry to point out their limited nonlinearity. We also simulate double-insulator (MIIM) diodes that have improved nonlinearity as compared to MIM diodes providing a path for designing more efficient multi-insulator diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroemer H. Quantum mechanics. Englewood Cliffs, NJ: Prentice-Hall; 1994.

    Google Scholar 

  2. Stratton R. Volt-current characteristics for tunneling through insulating films. J Phys Chem Solids. 1962;23(9):1177–90.

    Article  Google Scholar 

  3. Nagae M. Response time of metal-insulator-metal tunnel junctions. Jpn J Appl Phys. 1972;11(11):1611–21.

    Article  Google Scholar 

  4. Simmons JG. Conduction in thin dielectric films. J Phys D Appl Phys. 1971;4(5):613.

    Article  Google Scholar 

  5. Riccius HD. Improved metal-insulator-metal point-contact diodes for harmonic generation and mixing. Appl Phys A. 1978;17(1):49–52.

    Article  Google Scholar 

  6. Periasamy P, Bergeson JD, Parilla PA, Ginley DS, O’Hayre RP. Metal-insulator-metal point-contact diodes as a rectifier for rectenna. In 35th IEEE Photovoltaic Specialists Conference (PVSC), Honolulu, HI; 2010. p. 2943–5.

    Google Scholar 

  7. Riccius HD, Siemsen KJ. Point-contact diodes. Appl Phys Mater Sci Process. 1984;35:67–74. doi:10.1007/BF00620632.

    Article  Google Scholar 

  8. Evenson KM, Wells JS, Matarrese LM, Elwell LB. Absolute frequency measurements of the 28- and 78- μm cw water vapor LASER lines. Appl Phys Lett. 1970;16(4):159–62.

    Article  Google Scholar 

  9. Sanchez Jr A, Davis CF, Liu KC, Javan A. The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies. J Appl Phys. 1978;49(10):5270–7.

    Article  Google Scholar 

  10. Grover S, Moddel G. Applicability of metal/insulator/metal (MIM) diodes to solar rectennas. IEEE J Photovoltaics. 2011;1(1):78–83.

    Article  Google Scholar 

  11. Grover S, Moddel G. Engineering the current-voltage characteristics of metal-insulator-metal diodes using double-insulator tunnel barriers. Solid State Electron. 2012;67(1):94–9.

    Article  Google Scholar 

  12. Daneu V, Sokoloff D, Sanchez A, Javan A. Extension of laser harmonic-frequency mixing techniques into the 9 micron region with an infrared metal-metal point-contact diode. Appl Phys Lett. 1969;15(12):398–401.

    Article  Google Scholar 

  13. Grover S, Dmitriyeva O, Estes MJ, Moddel G. Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna-coupled rectifiers. IEEE Trans Nanotechnol. 2010;9(6):716–22.

    Article  Google Scholar 

  14. Estes MJ, Moddel G. Terahertz interconnect system and applications. US Patent 6,967,347; 2005.

    Google Scholar 

  15. Fumeaux C, Herrmann W, Kneubühl FK, Rothuizen H. Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation. Infrared Phys Technol. 1998;39(3):123–83.

    Article  Google Scholar 

  16. Abdel Rahman MR, Gonzalez FJ, Zummo G, Middleton CF, Boreman GD. Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR. Proc SPIE. 2004;5410:238–43.

    Article  Google Scholar 

  17. Rockwell S, et al. Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications. In Radio frequency integrated circuits (RFIC) symposium, IEEE, Honolulu, HI; 2007. p. 171–174.

    Google Scholar 

  18. Wang SY, Izawa T, Gustafson TK. Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 μm. Appl Phys Lett. 1975;27(9):481–3.

    Article  Google Scholar 

  19. Codreanu I, Gonzalez FJ, Boreman GD. Detection mechanisms in microstrip dipole antenna-coupled infrared detectors. Infrared Phys Technol. 2003;44(3):155–63.

    Article  Google Scholar 

  20. Yamagishi H, et al. Antenna-coupled rectifying diode for IR detection. Proc SPIE. 2005;2882:102–10.

    Article  Google Scholar 

  21. Kazemi H, et al. First THz and IR characterization of nanometer-scaled antenna-coupled InGaAs/InP Schottky-diode detectors for room temperature infrared imaging. Proc SPIE. 2007;6542(1):65421.

    Article  MathSciNet  Google Scholar 

  22. Marchetti S, Sandri P, Simili R. Theoretical and experimental responsivity of FIR antenna coupled metal-insulator-metal detectors. Int J Infrared Millimeter Waves. 1997;18(7):1395–409.

    Article  Google Scholar 

  23. Tiwari B, et al. Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes. J Vacuum Sci Technol B Microelectron Nanometer Struct. 2009;27(5):2153–60.

    Article  Google Scholar 

  24. Estes MJ, Eliasson BJ, Moddel G, private communication, Phiar Corporation 2007.

    Google Scholar 

  25. Hobbs PC, Laibowitz RB, Libsch FR, LaBianca NC, Chiniwalla NC. Efficient waveguide-integrated tunnel junction detectors at 1.6 μm. Opt Express. 2007;15(25):16376–89.

    Article  Google Scholar 

  26. Eliasson BJ. Metal-insulator-metal diodes for solar energy conversion. PhD Thesis, University of Colorado at Boulder, Boulder; 2001.

    Google Scholar 

  27. Fowler RH, Nordheim L. Electron Emission in Intense Electric Fields. Proc R Soc Lond Ser A. 1928;119(781):173–81.

    Article  MATH  Google Scholar 

  28. Simmons JG. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J Appl Phys. 1963;34(6):1793–803.

    Article  MathSciNet  Google Scholar 

  29. Jonsson B, Eng ST. Solving the Schrodinger equation in arbitrary quantum-well potential profiles using the transfer matrix method. IEEE J Quantum Electron. 1990;26(11):2025–35.

    Article  Google Scholar 

  30. Probst OM. Tunneling through arbitrary potential barriers and the apparent barrier height. Am J Phys. 2002;70(11):1110–6.

    Article  Google Scholar 

  31. Kittel C. Introduction to solid state physics. 7th ed. New York: Wiley; 1996.

    Google Scholar 

  32. Solymar L, Walsh D. Electrical properties of materials. 8th ed. New York: Oxford University Press; 2010.

    Google Scholar 

  33. Sze SM, Ng KK. Physics of semiconductor devices. 3rd ed. San Jose, CA: Wiley-Interscience; 2006.

    Book  Google Scholar 

  34. Hartstein A, Weinberg ZA. On the nature of the image force in quantum mechanics with application to photon assisted tunnelling and photoemission. J Phys C Solid State Phys. 1978;11(11):L469.

    Article  Google Scholar 

  35. Puri A, Schaich WL. Comparison of image-potential theories. Phys Rev B. 1983;28(4):1781–4.

    Article  Google Scholar 

  36. Šunjić M, Marušić L. Dynamical effects in electron tunneling: self-consistent semiclassical image potentials. Phys Rev B. 1991;44(16):9092–5.

    Article  Google Scholar 

  37. Chapline MG, Wang SX. Analytical formula for the tunneling current versus voltage for multilayer barrier structures. J Appl Phys. 2007;101(8):083706.

    Article  Google Scholar 

  38. Lent CS, Kirkner DJ. The quantum transmitting boundary method. J Appl Phys. 1990;67(10):6353–9.

    Article  Google Scholar 

  39. Corporation Phiar. Private communication; 2007.

    Google Scholar 

  40. Hegyi B, Csurgay A, Porod W. Investigation of the nonlinearity properties of the DC I-V characteristics of metal-insulator-metal (MIM) tunnel diodes with double-layer insulators. J Comput Electron. 2007;6:159–62. doi:10.1007/s10825-006-0083-9.

    Article  Google Scholar 

  41. Matsumoto Y, Hanajiri T, Toyabe T, Sugano T. Single electron device with asymmetric tunnel barriers. Jpn J Appl Phys. 1996;35:1126–31.

    Article  Google Scholar 

  42. Moddel G, Eliasson B. High speed electron tunneling device and applications. U.S. Patent No. 6,756,649; 2004.

    Google Scholar 

  43. Camp M, Lecchini SMA. The work function of polycrystalline tungsten foil. Proc Phys Soc. 1965;85(4):815.

    Article  Google Scholar 

  44. Korotkov A, Likharev K. Resonant Fowler-Nordheim tunneling through layered tunnel barriers and its possible applications. In Technical Digest IEDM, Washington, DC; 1999. p. 223–226.

    Google Scholar 

  45. Maraghechi P, Foroughi-Abari A, Cadien K, Elezzabi AY. Enhanced rectifying response from metal-insulator-insulator-metal junctions. Appl Phys Lett. 2011;99:253503.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachit Grover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grover, S., Moddel, G. (2013). Metal Single-Insulator and Multi-Insulator Diodes for Rectenna Solar Cells. In: Moddel, G., Grover, S. (eds) Rectenna Solar Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3716-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3716-1_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3715-4

  • Online ISBN: 978-1-4614-3716-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics