Skip to main content

Molecular Mechanisms of Superoxide Production by the Mitochondrial Respiratory Chain

  • Chapter
  • First Online:
Book cover Mitochondrial Oxidative Phosphorylation

Part of the book series: Advances in Experimental Medicine and Biology ((volume 748))

Abstract

The mitochondrial respiratory chain is a major source of reactive oxygen species (ROS) in eukaryotic cells. Mitochondrial ROS production associated with a dysfunction of respiratory chain complexes has been implicated in a number of degenerative diseases and biological aging. Recent findings suggest that mitochondrial ROS can be integral components of cellular signal transduction as well. Within the respiratory chain, complexes I (NADH:ubiquinone oxidoreductase) and III (ubiquinol:cytochrome c oxidoreductase; cytochrome bc 1 complex) are generally considered as the main producers of superoxide anions that are released into the mitochondrial matrix and the intermembrane space, respectively. The primary function of both respiratory chain complexes is to employ energy supplied by redox reactions to drive the vectorial transfer of protons into the mitochondrial intermembrane space. This process involves a set of distinct electron carriers designed to minimize the unwanted leak of electrons from reduced cofactors onto molecular oxygen and hence ROS generation under normal circumstances. Nevertheless, it seems plausible that superoxide is derived from intermediates of the normal catalytic cycles of complexes I and III. Therefore, a detailed understanding of the molecular mechanisms driving these enzymes is required to understand mitochondrial ROS production during oxidative stress and redox signalling. This review summarizes recent findings on the chemistry and control of the reactions within respiratory complexes I and III that result in increased superoxide generation. Regulatory contributions of other components of the respiratory chain, especially complex II (succinate:ubiquinone oxidoreductase) and the redox state of the ubiquinone pool (Q-pool) will be briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angerer H, Zwicker K, Wumaier Z, Sokolova L, Heide H, Steger M, Kaiser S, Nübel E, Brutschy B, Radermacher M, Brandt U, Zickermann V (2011) A scaffold of accessory subunits links the peripheral arm and the distal proton pumping module of mitochondrial complex I. Biochem J 437:279–288

    PubMed  CAS  Google Scholar 

  • Arnold S (2012) The power of life-cytochrome c oxidas takes center stage in metabolic control, cell signalling and survival. Mitochondrion 12:46–56

    PubMed  CAS  Google Scholar 

  • Belevich G, Knuuti J, Verkhovsky MI, Wikström M, Verkhovskaya M (2011) Probing the mechanistic role of the long alpha-helix in subunit L of respiratory complex I from Escherichia coli by site-directed mutagenesis. Mol Microbiol 82:1086–1095

    PubMed  CAS  Google Scholar 

  • Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GRS, Chandel NS (2007) The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol 177:1029–1036

    PubMed  CAS  Google Scholar 

  • Borek A, Sarewicz M, Osyczka A (2008) Movement of the iron-sulfur head domain of cytochrome bc 1 transiently opens the catalytic Qo site for reaction with oxygen. Biochemistry 47:12365–12370

    PubMed  CAS  Google Scholar 

  • Boveris A, Cadenas E, Stoppani AO (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 156:435–444

    PubMed  CAS  Google Scholar 

  • Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45:466–472

    PubMed  CAS  Google Scholar 

  • Brandt U (1996) Bifurcated ubihydroquinone-oxidation in the cytochrome bc 1 complex by proton-gated charge-transfer. FEBS Lett 387:1–6

    PubMed  CAS  Google Scholar 

  • Brandt U (1998) The chemistry and mechanics of ubihydroquinone oxidation at center P (Qo) of the cytochrome bc 1 complex. Biochim Biophys Acta 1365:261–268

    PubMed  CAS  Google Scholar 

  • Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92

    PubMed  CAS  Google Scholar 

  • Brandt U (2011) A two-state stabilization-change mechanism for proton-pumping complex I. Biochim Biophys Acta 1807:1364–1369

    PubMed  CAS  Google Scholar 

  • Brandt U, Trumpower BL (1994) The protonmotive Q cycle in mitochondria and bacteria. CRC Crit Rev Biochem 29:165–197

    CAS  Google Scholar 

  • Brandt U, Haase U, Schägger H, von Jagow G (1991) Significance of the “Rieske” iron-sulfur protein for formation and function of the ubiquinol oxidation pocket of mitochondrial cytochrome c reductase (bc 1 complex). J Biol Chem 266:19958–19964

    PubMed  CAS  Google Scholar 

  • Cadenas E, Boveris A (1980) Enhancement of hydrogen-peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria. Biochem J 188:31–37

    PubMed  CAS  Google Scholar 

  • Cadenas E, Boveris A, Ragan CI, Stoppani AO (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 180:248–257

    PubMed  CAS  Google Scholar 

  • Cape JL, Bowman MK, Kramer DM (2007) A semiquinone intermediate generated at the Qo site of the cytochrome bc 1 complex: importance for the Q-cycle and superoxide production. Proc Natl Acad Sci USA 104:7887–7892

    PubMed  CAS  Google Scholar 

  • Cape JL, Aidasani D, Kramer DM, Bowman MK (2009) Substrate redox potential controls superoxide production kinetics in the cytochrome bc 1 complex. Biochemistry 48:10716–10723

    PubMed  CAS  Google Scholar 

  • Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (2006) Bovine complex I is a complex of 45 different subunits. J Biol Chem 281:32724–32727

    PubMed  CAS  Google Scholar 

  • Castellani M, Covian R, Kleinschroth T, Anderka O, Ludwig B, Trumpower BL (2010) Direct demonstration of half-of-the-sites reactivity in the dimeric cytochrome bc 1 complex. J Biol Chem 285:502–510

    PubMed  CAS  Google Scholar 

  • Cecchini G (2003) Function and structure of complex II of the respiratory chain. Annu Rev Biochem 72:77–109

    PubMed  CAS  Google Scholar 

  • Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia. A mechanism of O2 sensing. J Biol Chem 275:25130–25138

    PubMed  CAS  Google Scholar 

  • Chen SX, Schopfer P (1999) Hydroxyl-radical production in physiological reactions - A novel function of peroxidase. Eur J Biochem 260:726–735

    PubMed  CAS  Google Scholar 

  • Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive ­oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027–36031

    PubMed  CAS  Google Scholar 

  • Chua YL, Dufour E, Dassa EP, Rustin P, Jacobs HT, Taylor CT, Hagen T (2010) Stabilization of hypoxia-inducible factor-1 alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. J Biol Chem 285:31277–31284

    PubMed  CAS  Google Scholar 

  • Clason T, Ruiz T, Schägger H, Peng G, Zickermann V, Brandt U, Michel H, Radermacher M (2010) The structure of eukaryotic and prokaryotic complex I. J Struct Biol 169:81–88

    PubMed  CAS  Google Scholar 

  • Costa RAP, Romagna CD, Pereira JL, Souza-Pinto NC (2011) The role of mitochondrial DNA damage in the cytotoxicity of reactive oxygen species. J Bioenerg Biomembr 43:25–29

    PubMed  CAS  Google Scholar 

  • Covian R, Trumpower BL (2005) Rapid electron transfer between monomers when the cytochrome bc 1 complex dimer is reduced through center N. J Biol Chem 280:22732–22740

    PubMed  CAS  Google Scholar 

  • Covian R, Trumpower BL (2006) Regulatory interactions between ubiquinol oxidation and ubiquinone reduction sites in the dimeric cytochrome bc 1 complex. J Biol Chem 281:30925–30932

    PubMed  CAS  Google Scholar 

  • Covian R, Trumpower BL (2008) Regulatory interactions in the dimeric cytochrome bc 1 complex: the advantages of being a twin. Biochim Biophys Acta 1777:1079–1091

    PubMed  CAS  Google Scholar 

  • Cox AG, Winterbourn CC, Hampton MB (2010) Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J 425:313–325

    CAS  Google Scholar 

  • Crofts AR (2004) Proton-coupled electron transfer at the Qo-site of the bc 1 complex controls the rate of ubihydroquinone oxidation. Biochim Biophys Acta 1655:77–92

    PubMed  CAS  Google Scholar 

  • de Vries S, Albracht SPJ, Berden JA, Slater EC (1981) A new species of bound ubisemiquinone anion in QH2: cytochrome c oxidoreductase. J Biol Chem 256:11996–11998

    PubMed  Google Scholar 

  • Drechsel DA, Patel M (2010) Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. J Biol Chem 285:27850–27858

    PubMed  CAS  Google Scholar 

  • Dröse S, Brandt U (2008) The mechanism of mitochondrial superoxide production by the cytochrome bc 1 complex. J Biol Chem 283:21649–21654

    PubMed  Google Scholar 

  • Dröse S, Galkin A, Brandt U (2005) Proton pumping by complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica reconstituted into proteoliposomes. Biochim Biophys Acta 1710:87–95

    PubMed  Google Scholar 

  • Dröse S, Brandt U, Hanley PJ (2006) K+-independent actions of diazoxide question the role of inner membrane KATP channels in mitochondrial cytoprotective signaling. J Biol Chem 281:23733–23739

    PubMed  Google Scholar 

  • Dröse S, Hanley PJ, Brandt U (2009a) Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III. Biochim Biophys Acta 1790:558–565

    PubMed  Google Scholar 

  • Dröse S, Galkin A, Brandt U (2009b) Measurement of superoxide formation by mitochondrial complex I of Yarrowia lipolytica. Methods Enzymol 456:475–490

    PubMed  Google Scholar 

  • Dröse S, Bleier L, Brandt U (2011a) A common mechanism links differently acting complex II inhibitors to cardioprotection: modulation of mitochondrial reactive oxygen species production. Mol Pharmacol 79:814–822

    PubMed  Google Scholar 

  • Dröse S, Krack S, Sokolova L, Zwicker K, Barth HD, Morgner N, Heide H, Steger M, Nübel E, Zickermann V, Kerscher S, Brutschy B, Radermacher M, Brandt U (2011b) Functional dissection of the proton pumping modules of mitochondrial complex I. PLoS Biol 9:e1001128

    PubMed  Google Scholar 

  • Efremov RG, Sazanov LA (2011) Structure of the membrane domain of respiratory complex I. Nature 476:414–420

    PubMed  CAS  Google Scholar 

  • Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445

    PubMed  CAS  Google Scholar 

  • Esterhazy D, King MS, Yakovlev G, Hirst J (2008) Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria. Biochemistry 47:3964–3971

    PubMed  CAS  Google Scholar 

  • Euro L, Belevich G, Verkhovsky MI, Wikström M, Verkhovskaya M (2008) Conserved lysine residues of the membrane subunit NuoM are involved in energy conversion by the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Biochim Biophys Acta 1777:1166–1172

    PubMed  CAS  Google Scholar 

  • Fato R, Bergamini C, Bortolus M, Maniero AL, Leoni S, Ohnishi T, Lenaz G (2009) Differential effects of mitochondrial complex I inhibitors on production of reactive oxygen species. Biochim Biophys Acta 1787:384–392

    PubMed  CAS  Google Scholar 

  • Fendel U, Tocilescu MA, Kerscher S, Brandt U (2008) Exploring the inhibitor binding pocket of respiratory complex I. Biochim Biophys Acta 1777:660–665

    PubMed  CAS  Google Scholar 

  • Forbes RA, Steenbergen C, Murphy E (2001) Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res 88:802–809

    PubMed  CAS  Google Scholar 

  • Forquer I, Covian R, Bowman MK, Trumpower BL, Kramer DM (2006) Similar transition states mediate the Q-cycle and superoxide production by the cytochrome bc 1 complex. J Biol Chem 281:38459–38465

    PubMed  CAS  Google Scholar 

  • Galkin A, Brandt U (2005) Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica. J Biol Chem 280:30129–30135

    PubMed  CAS  Google Scholar 

  • Galkin AS, Grivennikova VG, Vinogradov AD (1999) → H+/2 e- stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles. FEBS Lett 451:157–161

    PubMed  CAS  Google Scholar 

  • Galkin A, Dröse S, Brandt U (2006) The proton pumping stoichiometry of purified mitochondrial complex I reconstituted into proteoliposomes. Biochim Biophys Acta 1757:1575–1581

    PubMed  CAS  Google Scholar 

  • Galkin A, Abramov AY, Frakich N, Duchen MR, Moncada S (2009) Lack of oxygen deactivates mitochondrial complex I. J Biol Chem 284:36055–36061

    PubMed  CAS  Google Scholar 

  • Genova ML, Ventura B, Giuliano G, Bovina C, Formiggini G, Parenti Castelli G, Lenaz G (2001) The site of production of superoxide radical in mitochondrial complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett 505:364–368

    PubMed  CAS  Google Scholar 

  • Gomes A, Fernandes E, Lima JLFC (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80

    PubMed  CAS  Google Scholar 

  • Gong X, Yu L, Xia D, Yu CA (2005) Evidence for electron equilibrium between the two hemes b(L) in the dimeric cytochrome bc 1 complex. J Biol Chem 280:9251–9257

    PubMed  CAS  Google Scholar 

  • Grivennikova VG, Vinogradov AD (2006) Generation of superoxide by the mitochondrial complex I. Biochim Biophys Acta 1757:553–561

    PubMed  CAS  Google Scholar 

  • Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819

    PubMed  CAS  Google Scholar 

  • Guzy RD, Hoyos B, Robin E, Chen H, Liu LP, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–408

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Pasdois P (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta 1787:1402–1415

    PubMed  CAS  Google Scholar 

  • Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35:505–513

    PubMed  CAS  Google Scholar 

  • Hanley PJ, Mickel M, Löffler M, Brandt U, Daut J (2002) KATP channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol 542:735–741

    PubMed  CAS  Google Scholar 

  • Herrmann JM, Riemer J (2010) The intermembrane space of mitochondria. Antioxid Redox Signal 13:1341–1358

    PubMed  CAS  Google Scholar 

  • Hirata N, Shim YH, Pravdic D, Lohr NL, Pratt PF, Weihrauch D, Kersten JR, Warltier DC, Bosnjak ZJ, Bienengraeber M (2011) Isoflurane differentially modulates mitochondrial reactive oxygen species production via forward versus reverse electron transport flow. Anesthesiology 115:531–540

    PubMed  CAS  Google Scholar 

  • Hoffman DL, Brookes PS (2009) Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions. J Biol Chem 284:16236–16245

    PubMed  CAS  Google Scholar 

  • Hoffman DL, Salter JD, Brookes PS (2007) Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling. Am J Physiol Heart Circul Physiol 292:H101–H108

    CAS  Google Scholar 

  • Hunte C, Palsdottir H, Trumpower BL (2003) Protonmotive pathways and mechanisms in the cytochrome bc 1 complex. FEBS Lett 545:39–46

    PubMed  CAS  Google Scholar 

  • Hunte C, Solmaz S, Palsdóttir H, Wenz T (2008) A structural perspective on mechanism and function of the cytochrome bc 1 complex. Results Probl Cell Differ 45:253–278

    PubMed  CAS  Google Scholar 

  • Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329:448–451

    PubMed  CAS  Google Scholar 

  • James AM, Cocheme HM, Smith RAJ, Murphy MP (2005) Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species - Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem 280:21295–21312

    PubMed  CAS  Google Scholar 

  • Jung HJ, Shim JS, Lee J, Song YM, Park KC, Choi SH, Kim ND, Yoon JH, Mungai PT, Schumacker PT, Kwon HJ (2010) Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxia-induced reactive oxygen species production and cellular oxygen sensing. J Biol Chem 285:11584–11595

    PubMed  CAS  Google Scholar 

  • Kadenbach B, Ramzan R, Vogt S (2009) Degenerative diseases, oxidative stress and cytochrome c oxidase function. Trends Mol Med 15:139–147

    PubMed  CAS  Google Scholar 

  • Kerscher S, Dröse S, Zickermann V, Brandt U (2008) The three families of respiratory NADH dehydrogenases. Results Problems Cell Different 45:185–222

    CAS  Google Scholar 

  • King MS, Sharpley MS, Hirst J (2009) Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (complex I) and production of reactive oxygen species. Biochemistry 48:2053–2062

    PubMed  CAS  Google Scholar 

  • Kowaltowski AJ, Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47:333–343

    PubMed  CAS  Google Scholar 

  • Ksenzenko M, Konstantinov AA, Khomutov GB, Tikhonov AN, Ruuge EK (1983) Effect of electron transfer inhibitors on superoxide generation in the cytochrome bc 1 site of the mitochondrial respiratory chain. FEBS Lett 155:19–24

    PubMed  CAS  Google Scholar 

  • Ksenzenko M, Konstantinov AA, Khomutov GB, Tikhonov AN, Ruuge EK (1984) Relationships between the effects of redox potential, alpha-thenoyltrifluoroacetone and malonate on O -2 and H2O2 generation by submitochondrial particles in the presence of succinate and antimycin. FEBS Lett 175:105–108

    PubMed  CAS  Google Scholar 

  • Kushnareva Y, Murphy AN, Andreyev A (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem J 368:545–553

    PubMed  CAS  Google Scholar 

  • Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH: ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA 103:7607–7612

    PubMed  CAS  Google Scholar 

  • Lambert AJ, Brand MD (2004a) Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem J 382:511–517

    PubMed  CAS  Google Scholar 

  • Lambert AJ, Brand MD (2004b) Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 279:39414–39420

    PubMed  CAS  Google Scholar 

  • Lanciano P, Lee DW, Yang HH, Darrouzet E, Daldal F (2011) Intermonomer electron transfer between the low-potential b hemes of cytochrome bc 1. Biochemistry 50:1651–1663

    PubMed  CAS  Google Scholar 

  • Lee DW, Selamoglu N, Lanciano P, Cooley JW, Forquer I, Kramer DM, Daldal F (2011) Loss of a conserved tyrosine residue of cytochrome b induces reactive oxygen species production by cytochrome bc 1. J Biol Chem 286:18139–18148

    PubMed  CAS  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    PubMed  CAS  Google Scholar 

  • Liu SS (2010) Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics. Ann N Y Acad Sci 1201:84–95

    PubMed  CAS  Google Scholar 

  • Liu Y, Fiskum G, Schubert D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80:780–787

    PubMed  CAS  Google Scholar 

  • Liu B, Zhu XH, Chen CL, Hu KL, Swartz HM, Chen YR, He GL (2010) Opening of the mitoK(ATP) channel and decoupling of mitochondrial complex II and III contribute to the suppression of myocardial reperfusion hyperoxygenation. Mol Cell Biochem 337:25–38

    PubMed  CAS  Google Scholar 

  • Magnitsky S, Toulokhonova L, Yano T, Sled VD, Hägerhall C, Grivennikova VG, Burbaev DS, Vinogradov AD, Ohnishi T (2002) EPR characterization of ubisemiquinones and iron-sulfur cluster N2, central components of the energy coupling in the NADH- ubiquinone oxidoreductase (complex I) in situ. J Bioenerg Biomembr 34:193–208

    PubMed  CAS  Google Scholar 

  • Maklashina E, Sher Y, Zhou HZ, Gray MO, Karliner JS, Cecchini G (2002) Effect of anoxia/reperfusion on the reversible active/de-active transition of NADH-ubiquinone oxidoreductase (complex I) in rat heart. Biochim Biophys Acta 1556:6–12

    PubMed  CAS  Google Scholar 

  • Mathiesen C, Hägerhäll C (2002) Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim Biophys Acta 1556:121–132

    PubMed  CAS  Google Scholar 

  • Matsuno-Yagi A, Yagi T (2001) Introduction: complex I - an L-shaped black box. J Bioenerg Biomembr 33:155–157

    PubMed  CAS  Google Scholar 

  • Michel J, DeLeon-Rangel J, Zhu ST, Van Ree K, Vik SB (2011) Mutagenesis of the L, M, and N subunits of complex I from Escherichia coli indicates a common role in function. PLoS One 6:e17420

    PubMed  CAS  Google Scholar 

  • Mitchell P (1975) The protonmotive Q cycle: a general formulation. FEBS Lett 59:137–139

    PubMed  CAS  Google Scholar 

  • Morgner N, Zickermann V, Kerscher S, Wittig I, Abdrakhmanova A, Barth HD, Brutschy B, Brandt U (2008) Subunit mass fingerprinting of mitochondrial complex I. Biochim Biophys Acta 1777:1384–1391

    PubMed  CAS  Google Scholar 

  • Mourier A, Larsson NG (2011) Tracing the trail of protons through complex I of the mitochondrial respiratory chain. PLoS Biol 9:e1001129

    PubMed  CAS  Google Scholar 

  • Muller F (2000) The nature and mechanism of superoxide production by the electron transport chain: its relevance to aging. J Am Aging Assoc 23:227–253

    CAS  Google Scholar 

  • Muller F, Crofts AR, Kramer DM (2002) Multiple Q-cycle bypass reactions at the Qo site of the cytochrome bc 1 complex. Biochemistry 41:7866–7874

    PubMed  CAS  Google Scholar 

  • Muller FL, Roberts AG, Bowman MK, Kramer DM (2003) Architecture of the Qo site of the cytochrome bc 1 complex probed by superoxide production. Biochemistry 42:6493–6499

    PubMed  CAS  Google Scholar 

  • Muller FL, Liu YH, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–49073

    PubMed  CAS  Google Scholar 

  • Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free Radic Biol Med 43:477–503

    PubMed  CAS  Google Scholar 

  • Muller FL, Liu YH, Abdul-Ghani MA, Lustgarten MS, Bhattacharya A, Jang YC, Van Remmen H (2008) High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates. Biochem J 409:491–499

    PubMed  CAS  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    PubMed  CAS  Google Scholar 

  • Murphy MP, Holmgren A, Larsson NG, Halliwell B, Chang CJ, Kalyanaraman B, Rhee SG, Thornalley PJ, Partridge L, Gems D, Nystrom T, Belousov V, Schumacker PT, Winterbourn CC (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13:361–366

    PubMed  CAS  Google Scholar 

  • Nakamaru-Ogiso E, Kao MC, Chen H, Sinha SC, Yagi T, Ohnishi T (2010) The membrane subunit NuoL(ND5) is involved in the indirect proton pumping mechanism of Escherichia coli complex I. J Biol Chem 285:39070–39078

    PubMed  CAS  Google Scholar 

  • Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:C670–C686

    PubMed  CAS  Google Scholar 

  • Ohnishi T, Trumpower BL (1980) Differential effects of antimycin on ubisemiquinone bound in different environments in isolated succinate:cytochrome c reductase complex. J Biol Chem 255:3278–3284

    PubMed  CAS  Google Scholar 

  • Ohnishi ST, Ohnishi T, Muranaka S, Fujita H, Kimura H, Uemura K, Yoshida K, Utsumi K (2005) A possible site of superoxide generation in the complex I segment of rat heart mitochondria. J Bioenerg Biomembr 37:1–15

    PubMed  CAS  Google Scholar 

  • Ohnishi T, Nakamaru-Ogiso E, Ohnishi ST (2010) A new hypothesis on the simultaneous direct and indirect proton pump mechanisms in NADH-quinone oxidoreductase (complex I). FEBS Lett 584:4131–4137

    PubMed  CAS  Google Scholar 

  • Osyczka A, Moser CC, Daldal F, Dutton PL (2004) Reversible redox energy coupling in electron transfer chains. Nature 427:607–612

    PubMed  CAS  Google Scholar 

  • Osyczka A, Moser CC, Dutton PL (2005) Fixing the Q cycle. Trends Biochem Sci 30:176–182

    PubMed  CAS  Google Scholar 

  • Ozcan C, Bienengraeber M, Dzeja PP, Terzic A (2002) Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. Am J Physiol Heart Circ Physiol 282:H531–H539

    PubMed  CAS  Google Scholar 

  • Pasdois P, Beauvoit B, Tariosse L, Vinassa B, Bonoron-Adele S, Dos Santos P (2008) Effect of diazoxide on flavoprotein oxidation and reactive oxygen species generation during ischemia-reperfusion: a study on Langendorff-perfused rat hearts using optic fibers. Am J Physiol Heart Circ Physiol 294:H2088–H2097

    PubMed  CAS  Google Scholar 

  • Pasdois P, Parker JE, Griffiths EJ, Halestrap AP (2011) The role of oxidized cytochrome c in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia. Biochem J 436:493–505

    PubMed  CAS  Google Scholar 

  • Pryde KR, Hirst J (2011) Superoxide is produced by the reduced flavin in mitochondrial complex I. J Biol Chem 286:18056–18065

    PubMed  CAS  Google Scholar 

  • Quinlan CL, Gerencser AA, Treberg JR, Brand MD (2011) The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. J Biol Chem 286:31361–31372

    PubMed  CAS  Google Scholar 

  • Ralph SJ, Moreno-Sanchez R, Neuzil J, Rodriguez-Enriquez S (2011) Inhibitors of succinate:quinone reductase/complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death. Pharm Res 28:2695–2730

    PubMed  CAS  Google Scholar 

  • Rana M, de Coo I, Diaz F, Smeets H, Moraes CT (2000) An out-of-frame cytochrome b gene deletion from a patient with parkinsonism is associated with impaired complex III assembly and an increase in free radical production. Ann Neurol 48(5):774–781

    PubMed  CAS  Google Scholar 

  • Rottenberg H, Covian R, Trumpower BL (2009) Membrane potential greatly enhances superoxide generation by the cytochrome bc 1 complex reconstituted into phospholipid vesicles. J Biol Chem 284:19203–19210

    PubMed  CAS  Google Scholar 

  • Rydström J (2006) Mitochondrial NADPH, transhydrogenase and disease. Biochim Biophys Acta 1757:721–726

    PubMed  Google Scholar 

  • Sarewicz M, Borek A, Cieluch E, Swierczek M, Osyczka A (2010) Discrimination between two possible reaction sequences that create potential risk of generation of deleterious radicals by cytochrome bc1. Implications for the mechanism of superoxide production. Biochim Biophys Acta 1797:1820–1827

    Google Scholar 

  • Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436

    PubMed  CAS  Google Scholar 

  • Schäfer G, Wegener C, Portenhauser R, Bojanovski D (1969) Diazoxide, an inhibitor of succinate oxidation. Biochem Pharmacol 18:2678–2681

    PubMed  Google Scholar 

  • Scheffler IE (2008) Mitochondria, 2nd edn. Wiley, Hoboken, NJ, pp 1–484

    Google Scholar 

  • Selivanov VA, Zeak JA, Roca J, Cascante M, Trucco M, Votyakova TV (2008) The role of external and matrix pH in mitochondrial reactive oxygen species generation. J Biol Chem 283:29292–29300

    PubMed  CAS  Google Scholar 

  • St Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790

    PubMed  CAS  Google Scholar 

  • Stanley BA, Sivakumaran V, Shi S, McDonald I, Lloyd D, Watson WH, Aon MA, Paolocci N (2011) Thioredoxin reductase-2 is essential for keeping low levels of H2O2 emission from isolated heart mitochondria. J Biol Chem 286:33669–33677

    PubMed  CAS  Google Scholar 

  • Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147:37–52

    PubMed  CAS  Google Scholar 

  • Starkov AA, Fiskum G (2001) Myxothiazol induces H2O2 production from mitochondrial respiratory chain. Biochem Biophys Res Commun 281:645–650

    PubMed  CAS  Google Scholar 

  • Starkov AA, Fiskum G (2003) Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem 86:1101–1107

    PubMed  CAS  Google Scholar 

  • Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF (2004) Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 24:7779–7788

    PubMed  CAS  Google Scholar 

  • Steimle S, Bajzath C, Dorner K, Schulte M, Bothe V, Friedrich T (2011) Role of subunit NuoL for proton translocation by respiratory complex I. Biochemistry 50:3386–3393

    PubMed  CAS  Google Scholar 

  • Swierczek M, Cieluch E, Sarewicz M, Borek A, Moser CC, Dutton PL, Osyczka A (2010) An electronic bus bar lies in the core of cytochrome bc 1. Science 329:451–454

    PubMed  CAS  Google Scholar 

  • Tahara EB, Navarete FDT, Kowaltowski AJ (2009) Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic Biol Med 46:1283–1297

    PubMed  CAS  Google Scholar 

  • Tocilescu MA, Fendel U, Zwicker K, Kerscher S, Brandt U (2007) Exploring the ubiquinone binding cavity of respiratory complex I. J Biol Chem 282:29514–29520

    PubMed  CAS  Google Scholar 

  • Tocilescu MA, Fendel U, Zwicker K, Dröse S, Kerscher S, Brandt U (2010) The role of a conserved tyrosine in the 49-kDa subunit of complex I for ubiquinone binding and reduction. Biochim Biophys Acta 1797:625–632

    PubMed  CAS  Google Scholar 

  • Torres-Bacete J, Nakamaru-Ogiso E, Matsuno-Yagi A, Yagi T (2007) Characterization of the NuoM (ND4) subunit in Escherichia coli NDH-1 - Conserved charged residues essential for energy-coupled activities. J Biol Chem 282:36914–36922

    PubMed  CAS  Google Scholar 

  • Treberg JR, Brand MD (2011) A model of the proton translocation mechanism of complex I. J Biol Chem 286:17579–17584

    PubMed  CAS  Google Scholar 

  • Treberg JR, Quinlan CL, Brand MD (2010) Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production - a correction using glutathione depletion. FEBS J 277:2766–2778

    PubMed  CAS  Google Scholar 

  • Treberg JR, Quinlan CL, Brand MD (2011) Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). J Biol Chem 286:27103–27110

    PubMed  CAS  Google Scholar 

  • Tretter L, Adam-Vizi V (2007) Moderate dependence of ROS formation on ΔΨm in isolated brain mitochondria supported by NADH-linked substrates. Neurochem Res 32:569–575

    PubMed  CAS  Google Scholar 

  • Trumpower BL (2002) A concerted, alternating sites mechanism of ubiquinol oxidation by the dimeric cytochrome bc 1 complex. Biochim Biophys Acta 1555:166–173

    PubMed  CAS  Google Scholar 

  • Trumpower BL, Simmons Z (1979) Diminished inhibition of mitochondrial electron transfer from succinate to cytochrome c by thenoyltrifluoroacetone induced by antimycin. J Biol Chem 254:4608–4616

    PubMed  CAS  Google Scholar 

  • Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT (1998) Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem 273:18092–18098

    PubMed  CAS  Google Scholar 

  • Vinogradov AD (1998) Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition. Biochim Biophys Acta 1364:169–185

    PubMed  CAS  Google Scholar 

  • Vinogradov AD, Grivennikova VG (2005) Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria. Biochemistry (Mosc) 70:120–127

    CAS  Google Scholar 

  • Votyakova TV, Reynolds IJ (2001) Δψm-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79:266–277

    PubMed  CAS  Google Scholar 

  • Votyakova TV, Reynolds IJ (2004) Detection of hydrogen peroxide with Amplex Red: interference by NADH and reduced glutathione auto-oxidation. Arch Biochem Biophys 431:138–144

    PubMed  CAS  Google Scholar 

  • Wikström MKF (1984) Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone. FEBS Lett 169:300–304

    PubMed  Google Scholar 

  • Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45:549–561

    PubMed  CAS  Google Scholar 

  • Zhang H, Osyczka A, Dutton PL, Moser CC (2007) Exposing the Complex III Qo semiquinone radical. Biochim Biophys Acta 1767:883–887

    PubMed  CAS  Google Scholar 

  • Zhou MJ, Diwu ZJ, Panchuk Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:162–168

    PubMed  CAS  Google Scholar 

  • Zhu J, Egawa T, Yeh SR, Yu LD, Yu CA (2007) Simultaneous reduction of iron-sulfur protein and cytochrome b L during ubiquinol oxidation in cytochrome bc 1 complex. Proc Natl Acad Sci USA 104:4864–4869

    PubMed  CAS  Google Scholar 

  • Zoccarato F, Cavallini L, Alexandre A (2004) Respiration-dependent removal of exogenous H2O2 in brain mitochondria - Inhibition by Ca2+. J Biol Chem 279:4166–4174

    PubMed  CAS  Google Scholar 

  • Zoccarato F, Cavallini L, Bortolami S, Alexandre A (2007) Succinate modulation of H2O2 release at NADH:ubiquinone oxidoreductase (complex I) in brain mitochondria. Biochem J 406:125–129

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Lea Bleier, Volker Zickermann and Klaus Zwicker for careful and critical reading of our manuscript and for helpful discussion. Funding by the Deutsche Forschungsgemeinschaft, SFB815 Project A2, and the BMBF project 0315584A: GerontoMitoSys, is gratefully acknowledged. This study was also supported by the Excellence Initiative of the German Federal and State Governments (EXC 115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Dröse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dröse, S., Brandt, U. (2012). Molecular Mechanisms of Superoxide Production by the Mitochondrial Respiratory Chain. In: Kadenbach, B. (eds) Mitochondrial Oxidative Phosphorylation. Advances in Experimental Medicine and Biology, vol 748. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3573-0_6

Download citation

Publish with us

Policies and ethics