Skip to main content

Nongenomic Actions of Estrogens and Xenoestrogens Affecting Endocrine Cancer Cells

  • Chapter
  • First Online:
Advances in Rapid Sex-Steroid Action

Abstract

Estrogens act via multiple membrane-associated receptors (α, β, and GPR30) to mediate diverse rapid signaling cascades affecting functional endpoints in both normal and cancer cells. The mitogen-activated protein kinases are a summative signaling node that integrates upstream signaling cascades into responses for major functional cellular outcomes such as proliferation, migration, differentiation, and death. These responses are complex; they oscillate with time, as well as fluctuate up and down with increasing ligand concentration (hormesis). Nonphysiologic estrogenic compounds also use these receptors and signaling systems, but do so imperfectly, causing disruptions to both the phasing and dose-responsiveness of physiologic estrogens. Disruptions to the signaling of different physiologic estrogens could cause life stage-specific tissue malfunctions or cancer vulnerabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BPA:

bisphenol A

Ca++:

calcium

E1:

estrone

E2:

estradiol

E3:

estriol

ER:

estrogen receptor

ERK:

extracellular regulated kinase

JUNK:

Jun-kinase

MAPK:

mitogen-activated protein kinase

mERs:

membrane estrogen receptors

mERα:

membrane ERα

NHANES:

National Health and Nutrition Examination Survey

References

  1. Pietras RJ, Szego CM (1977) Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells. Nature 265:69–72

    Article  PubMed  CAS  Google Scholar 

  2. Castoria G, Migliaccio A, D’Amato L, Di SR, Ciociola A, Lombardi M, Bilancio A, Di Domenico M, de Falco A, Auricchio F (2008) Integrating signals between cAMP and MAPK pathways in breast cancer. Front Biosci 13:1318–1327

    Article  PubMed  CAS  Google Scholar 

  3. Watson CS (2003) The identities of membrane steroid receptors…and other proteins mediating nongenomic steroid action. Kluwer Academic Publishers, Boston

    Google Scholar 

  4. Watson CS, Gametchu B (2003) Proteins of multiple classes participate in nongenomic steroid actions. Exp Biol Med 228:1272–1281

    CAS  Google Scholar 

  5. Thomas P, Alyea R, Pang Y, Peyton C, Dong J, Berg AH (2010) Conserved estrogen binding and signaling functions of the G protein-coupled estrogen receptor 1 (GPER) in mammals and fish. Steroids 75:595–602

    Article  PubMed  CAS  Google Scholar 

  6. Kang L, Zhang X, Xie Y, Tu Y, Wang D, Liu Z, Wang ZY (2010) Involvement of estrogen receptor variant ER-α36, not GPR30, in nongenomic estrogen signaling. Mol Endocrinol 24:709–721

    Article  PubMed  CAS  Google Scholar 

  7. Filardo EJ, Quinn JA, Frackelton AR, Bland KI (2002) Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol Endocrinol 16:70–84

    Article  PubMed  CAS  Google Scholar 

  8. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER (2005) A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307:1625–1630

    Article  PubMed  CAS  Google Scholar 

  9. Giraldi T, Giovannelli P, Di Donato M, Castoria G, Migliaccio A, Auricchio F (2010) Steroid signaling activation and intracellular localization of sex steroid receptors. J Cell Commun Signal 4:161–172

    Article  PubMed  Google Scholar 

  10. Chambliss KL, Shaul PW (2002) Rapid activation of endothelial NO synthase by estrogen: evidence for a steroid receptor fast-action complex (SRFC) in caveolae. Steroids 67:413–419

    Article  PubMed  CAS  Google Scholar 

  11. Razandi M, Oh P, Pedram A, Schnitzer J, Levin ER (2002) ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol Endocrinol 16:100–115

    Article  PubMed  CAS  Google Scholar 

  12. Zivadinovic D, Watson CS (2005) Membrane estrogen receptor-alpha levels predict estrogen-induced ERK1/2 activation in MCF-7 cells. Breast Cancer Res 7:R130–R144

    Article  PubMed  CAS  Google Scholar 

  13. Pedram A, Razandi M, Sainson RC, Kim JK, Hughes CC, Levin ER (2007) A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem 282:22278–22288

    Article  PubMed  CAS  Google Scholar 

  14. Zivadinovic D, Gametchu B, Watson CS (2005) Membrane estrogen receptor-α levels in MCF-7 breast cancer cells predict cAMP and proliferation responses PMCID:15642158. Breast Cancer Res 7:R101–R112

    Article  PubMed  CAS  Google Scholar 

  15. Kushner PJ, Hort E, Shine J, Baxter JD, Greene GL (1990) Construction of cell lines that express high levels of the human estrogen receptor and are killed by estrogens. Mol Endocrinol 4:1465–1473

    Article  PubMed  CAS  Google Scholar 

  16. Maximov PY, Lewis-Wambi JS, Jordan VC (2009) The paradox of oestradiol-induced breast cancer cell growth and apoptosis. Curr Signal Transduct Ther 4:88–102

    Article  PubMed  CAS  Google Scholar 

  17. Razandi M, Pedram A, Greene GL, Levin ER (1999) Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: Studies of ERα and ERβ expressed in chinese hamster ovary cells. Mol Endocrinol 13:307–319

    Article  PubMed  CAS  Google Scholar 

  18. Song RX, Santen RJ, Kumar R, Adam L, Jeng MH, Masamura S, Yue W (2002) Adaptive mechanisms induced by long-term estrogen deprivation in breast cancer cells. Mol Cell Endocrinol 193:29–42

    Article  PubMed  CAS  Google Scholar 

  19. Jeng YJ, Watson CS (2009) Proliferative and anti-proliferative effects of dietary levels of phytoestrogens in rat pituitary GH3/B6/F10 cells—the involvement of rapidly activated kinases and caspases. BMC Cancer 9:334

    Article  PubMed  Google Scholar 

  20. Carter AC, Sedransk N, Kelley RM, Ansfield FJ, Ravdin RG, Talley RW, Potter NR (1977) Diethylstilbestrol: recommended dosages for different categories of breast cancer patients. Report of the cooperative breast cancer group. JAMA 237:2079–2085

    Article  PubMed  CAS  Google Scholar 

  21. Ariazi EA, Brailoiu E, Yerrum S, Shupp HA, Slifker MJ, Cunliffe HE, Black MA, Donato AL, Arterburn JB, Oprea TI, Prossnitz ER, Dun NJ, Jordan VC (2010) The G protein-coupled receptor GPR30 inhibits proliferation of estrogen receptor-positive breast cancer cells. Cancer Res 70:1184–1194

    Article  PubMed  CAS  Google Scholar 

  22. Alyea RA, Laurence SE, Kim SH, Katzenellenbogen BS, Katzenellenbogen JA, Watson CS (2008) The roles of membrane estrogen receptor subtypes in modulating dopamine transporters in PC-12 cells. J Neurochem 106:1525–1533

    Article  PubMed  CAS  Google Scholar 

  23. Jeng YJ, Watson CS (2011) Combinations of physiologic estrogens with xenoestrogens alter ERK phosphorylation profiles in rat pituitary cells. Environ Health Perspect 119:104–112

    Article  PubMed  CAS  Google Scholar 

  24. Hall JM, McDonnell DP (1999) The estrogen receptor β-isoform (ERβ) of the human estrogen receptor modulates ERα transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocr 140:5566–5578

    Article  CAS  Google Scholar 

  25. Paech K, Webb P, Kuiper GGJM, Nilsson S, Gustafsson J-Å, Kushner PJ, Scanlan TS (1997) Differential ligand activation of estrogen receptors ERa and ERb at AP1 sites. Science 227:1508–1510

    Article  Google Scholar 

  26. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J-Å (1996) Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93:5925–5930

    Article  PubMed  CAS  Google Scholar 

  27. Hewitt SC, Deroo BJ, Korach KS (2005) Signal transduction. A new mediator for an old hormone? Science 307:1572–1573

    Article  PubMed  CAS  Google Scholar 

  28. Morissette M, Le SM, D’Astous M, Jourdain S, Al SS, Morin N, Estrada-Camarena E, Mendez P, Garcia-Segura LM, Di PT (2008) Contribution of estrogen receptors alpha and beta to the effects of estradiol in the brain. J Steroid Biochem Mol Biol 108:327–338

    Article  PubMed  CAS  Google Scholar 

  29. Bulayeva NN, Watson CS (2004) Xenoestrogen-induced ERK-1 and ERK-2 activation via multiple membrane-initiated signaling pathways. Environ Health Perspect 112:1481–1487

    Article  PubMed  CAS  Google Scholar 

  30. Watson CS, Jeng YJ, Kochukov MY (2008) Nongenomic actions of estradiol compared with estrone and estriol in pituitary tumor cell signaling and proliferation. FASEB J 22:3328–3336

    Article  PubMed  CAS  Google Scholar 

  31. Calabrese EJ (2010) Hormesis is central to toxicology, pharmacology and risk assessment. Hum Exp Toxicol 29:249–261

    Article  PubMed  Google Scholar 

  32. Watson CS, Norfleet AM, Pappas TC, Gametchu B (1999) Rapid actions of estrogens in GH3/B6 pituitary tumor cells via a plasma membrane version of estrogen receptor-alpha. Steroids 64:5–13

    Article  PubMed  CAS  Google Scholar 

  33. Watson CS, Gametchu B (1999) Membrane-initiated steroid actions and the proteins that mediate them. Proc Soc Exp Biol Med 220:9–19

    Article  PubMed  CAS  Google Scholar 

  34. Belcheva MM, Coscia CJ (2002) Diversity of G protein-coupled receptor signaling pathways to ERK/MAP kinase. Neurosignals 11:34–44

    Article  PubMed  CAS  Google Scholar 

  35. Jeng YJ, Watson CS (2010) Combinations of physiologic estrogens with xenoestrogensxenoestrogens alter ERK phosphorylation profiles in rat pituitary cells. Environ Health Perspect. doi:10.1289/ehp.1002512

  36. Jeng YJ, Watson CS (2011) Combinations of physiologic estrogens with xenoestrogens alter ERK phosphorylation profiles in rat pituitary cells. Environ Health Perspect 119:104–112

    Article  PubMed  CAS  Google Scholar 

  37. Bermudez O, Marchetti S, Pages G, Gimond C (2008) Post-translational regulation of the ERK phosphatase DUSP6/MKP3 by the mTOR pathway. Oncogene 27:3685–3691

    Article  PubMed  CAS  Google Scholar 

  38. Boutros T, Chevet E, Metrakos P (2008) Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 60:261–310

    Article  PubMed  CAS  Google Scholar 

  39. Hayashi Y, Sanada K, Fukada Y (2001) Circadian and photic regulation of MAP kinase by Ras- and protein phosphatase-dependent pathways in the chick pineal gland. FEBS Lett 491:71–75

    Article  PubMed  CAS  Google Scholar 

  40. Wang Z, Zhang B, Wang M, Carr BI (2005) Cdc25A and ERK interaction: EGFR-independent ERK activation by a protein phosphatase Cdc25A inhibitor, compound 5. J Cell Physiol 204:437–444

    Article  PubMed  CAS  Google Scholar 

  41. Yu LG, Packman LC, Weldon M, Hamlett J, Rhodes JM (2004) Protein phosphatase 2A, a negative regulator of the ERK signaling pathway, is activated by tyrosine phosphorylation of putative HLA class II-associated protein I (PHAPI)/pp32 in response to the antiproliferative lectin, jacalin. J Biol Chem 279:41377–41383

    Article  PubMed  CAS  Google Scholar 

  42. Watson CS, Norfleet AM, Pappas TC, Gametchu B (1999) Rapid actions of estrogens in GH3/B6 pituitiary tumor cells via a plasma membrane version of estrogen receptor-aplha. Steroids 64:5–13

    Article  PubMed  CAS  Google Scholar 

  43. Jeng YJ, Kochukov MY, Watson CS (2009) Membrane estrogen receptor-alpha-mediated nongenomic actions of phytoestrogens in GH3/B6/F10 pituitary tumor cells. J Mol Signal 4:2

    Article  PubMed  Google Scholar 

  44. Alyea RA, Watson CS (2009) Differential regulation of dopamine transporter function and location by low concentrations of environmental estrogens and 17β-estradiol. Environ Health Perspect 117:778–783

    Article  PubMed  CAS  Google Scholar 

  45. Bulayeva NN, Wozniak A, Lash LL, Watson CS (2005) Mechanisms of membrane estrogen receptor-{alpha}-mediated rapid stimulation of Ca2+ levels and prolactin release in a pituitary cell line. Am J Physiol Endocrinol Metab 288:E388–E397

    Article  PubMed  CAS  Google Scholar 

  46. Burgoyne RD, Morgan A (2003) Secretory granule exocytosis. Physiol Rev 83:581–632

    PubMed  CAS  Google Scholar 

  47. Greenspan FS, Gardner DG (2004) Basic and clinical endocrinology, 7th edn. Lange Medical Books, McGraw Hill, New York

    Google Scholar 

  48. Shenhav S, Gemer O, Volodarsky M, Zohav E, Segal S (2003) Midtrimester triple test levels in women with severe preeclampsia and HELLP syndrome. Acta Obstet Gynecol Scand 82:912–915

    Article  PubMed  Google Scholar 

  49. Chard T, Macintosh MC (1995) Screening for down’s syndrome. J Perinat Med 23:421–436

    Article  PubMed  CAS  Google Scholar 

  50. Meinhardt U, Mullis PE (2002) The essential role of the aromatase/p450arom. Semin Reprod Med 20:277–284

    Article  PubMed  CAS  Google Scholar 

  51. Jansson L, Holmdahl R (2001) Enhancement of collagen-induced arthritis in female mice by estrogen receptor blockage. Arthritis Rheum 44:2168–2175

    Article  PubMed  CAS  Google Scholar 

  52. Midoro-Horiuti T, Tiwari R, Watson CS, Goldblum RM (2010) Maternal bisphenol a exposure promotes the development of experimental asthma in mouse pups. Environ Health Perspect 118:273–277

    Article  PubMed  CAS  Google Scholar 

  53. Nadal A, Alonso-Magdalena P, Soriano S, Quesada I, Ropero AB (2009) The pancreatic beta-cell as a target of estrogens and xenoestrogens: implications for blood glucose homeostasis and diabetes. Mol Cell Endocrinol 304:63–68

    Article  PubMed  CAS  Google Scholar 

  54. Soto AM, Vandenberg LN, Maffini MV, Sonnenschein C (2008) Does breast cancer start in the womb? Basic Clin Pharmacol Toxicol 102:125–133

    Article  PubMed  CAS  Google Scholar 

  55. Talsness CE, Andrade AJ, Kuriyama SN, Taylor JA, vom Saal FS (2009) Components of plastic: experimental studies in animals and relevance for human health. Philos Trans R Soc Lond B Biol Sci 364:2079–2096

    Article  PubMed  CAS  Google Scholar 

  56. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30:75–95

    Article  PubMed  CAS  Google Scholar 

  57. Li DK, Zhou Z, Miao M, He Y, Wang J, Ferber J, Herrinton LJ, Gao E, Yuan W (2011) Urine bisphenol-A (BPA) level in relation to semen quality. Fertil Steril 95:625–630

    Article  PubMed  CAS  Google Scholar 

  58. Stahlhut RW, Welshons WV, Swan SH (2009) Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ Health Perspect 117:784–789

    PubMed  CAS  Google Scholar 

  59. Thompson RC, Moore CJ, vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc Lond B Biol Sci 364:2153–2166

    Article  PubMed  CAS  Google Scholar 

  60. Kortenkamp A (2008) Low dose mixture effects of endocrine disrupters: implications for risk assessment and epidemiology. Int J Androl 31:233–240

    Article  PubMed  CAS  Google Scholar 

  61. Kochukov MY, Jeng Y-J, Watson CS (2009) Alkylphenol xenoestrogens with varying carbon chain lengths differentially and potently activate signaling and functional responses in GH3/B6/F10 somatomammotropes. Env Health Perspect 117:723–730

    CAS  Google Scholar 

  62. Watson CS, Alyea RA, Jeng YJ, Kochukov MY (2007) Nongenomic actions of low concentration estrogens and xenoestrogens on multiple tissues PMCID:17601655. Mol Cell Endocrinol 274:1–7

    Article  PubMed  CAS  Google Scholar 

  63. Watson CS, Bulayeva NN, Wozniak AL, Alyea RA (2007) Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids 72:124–134

    Article  PubMed  CAS  Google Scholar 

  64. Watson CS, Jeng YJ, Kochukov MY (2010) Nongenomic signaling pathways of estrogen toxicity. Toxicol Sci 115:1–11

    Article  PubMed  CAS  Google Scholar 

  65. Jeng YJ, Kochukov MY, Watson CS (2010) Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells. BMC Environ Health 9:61

    Article  Google Scholar 

  66. Jeng YJ, Kochukov M, Watson CS (2010) Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells. Environ Health 9:61

    Article  PubMed  Google Scholar 

  67. Narita S, Goldblum RM, Watson CS, Brooks EG, Estes DM, Curran EM, Midoro-Horiuti T (2007) Environmental estrogens induce mast cell degranulation and enhance IgE-mediated release of allergic mediators. Environ Health Perspect 115:48–52

    Article  PubMed  CAS  Google Scholar 

  68. Zaitsu M, Narita S, Lambert KC, Grady JJ, Estes DM, Curran EM, Brooks EG, Watson CS, Goldblum RM, Midoro-Horiuti T (2007) Estradiol activates mast cellsmast cells via a non-genomic estrogen receptor-alpha and calcium influx PMCID:17084457. Mol Immunol 44:1987–1995

    Article  Google Scholar 

  69. Cunningham M, Gilkeson G (2011) Estrogen receptors in immunity and autoimmunity. Clin Rev Allergy Immunol 40:66–73

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the following funding sources over the last decade for support of our work discussed here: DOD Breast Cancer Initiative (DAMD17-01-1-0418); NIH (ES010987, ES015292, ES006676); American Institute for Cancer Research (06A126); NIH training grants (T32 ES07254, T32 DA07287); the UTMB Center for Addiction Research; the UTMB Sealy Memorial Endowment Fund; and the UTMB Clinical and Translational Science Award UL1RR029876.

Permissions to use previously published materials: We have used two figure panels from previously published work [12] and we authorize its use here according to the rules set forth by BioMed Central on its Web Site. BMC articles are licensed by their respective authors for use and distribution subject to citation of the original source in accordance with the Open Access license.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl S. Watson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Watson, C.S. et al. (2012). Nongenomic Actions of Estrogens and Xenoestrogens Affecting Endocrine Cancer Cells. In: Castoria, G., Migliaccio, A. (eds) Advances in Rapid Sex-Steroid Action. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1764-4_8

Download citation

Publish with us

Policies and ethics