Skip to main content

A Review of Mathematical Models of Cancer–Immune Interactions in the Context of Tumor Dormancy

  • Chapter
  • First Online:
Systems Biology of Tumor Dormancy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 734))

Abstract

The role of the immune system in tumor dormancy is now well established. In an immune-induced dormant state, potentially lethal cancer cells persist in a state where growth is restricted, to little or no increase, by the host’s immune response. To describe this state in the context of cancer progression and immune response, basic temporal (spatially homogeneous) quantitative predator–prey constructs are discussed, along with some current and proposed augmentations that incorporate potentially significant biological phenomena such as the cancer cell transition to a quiescent state or the time delay in T-cell activation. Advances in cancer-immune modeling that describe complex interactions underlying the ability of the immune system to both promote and inhibit tumor growth are emphasized. Finally, the review concludes by discussing future mathematical challenges and their biological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the original article has a positive ( + ) sign and we have a negative ( − ) sign on the γx term. This change represents what the author believes to be the correct nondimensionalization of the proposed system.

References

  1. Page KM, Uhr JW (2005) Mathematical models of cancer dormancy. Leuk Lymphoma 46(3):313–327

    Article  PubMed  CAS  Google Scholar 

  2. Janeway CA Jr, Travers P, Walport M, Shlomchik MJ (2005) Immunobiology the immune system in health and disease. Garland Science Publishing, New York

    Google Scholar 

  3. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    Article  PubMed  CAS  Google Scholar 

  4. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  PubMed  CAS  Google Scholar 

  5. Lord EM, Nardella G (1980) The multicellular tumor spheroid model. II. Characterization of the primary allograft response in unsensitized mice. Transplantation 29(2):119–124

    CAS  Google Scholar 

  6. Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C et al (2012) Origins of tumor-associated macrophages and neutrophils. PNAS 109(7):2491–2496

    Article  PubMed  CAS  Google Scholar 

  7. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  PubMed  CAS  Google Scholar 

  8. Teng MWL, Swann JB, Koebel CM, Schreiber RD, Smyth MJ (2008) Immune-mediated dormancy: An equilibrium with cancer. J Leukoc Biol 84(4):988–993

    Article  PubMed  CAS  Google Scholar 

  9. MacKie RM, Reid R, Junor B (2003) Fatal Melanoma transferred in a donated kidney 16 years after melanoma surgery. N Engl J Med 348(6):567–568

    Article  PubMed  Google Scholar 

  10. Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ et al (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–907

    Article  PubMed  CAS  Google Scholar 

  11. Breslow N, Chan CW, Dhom G, Drury RA, Franks LM, Gellei B et al (1977) Latent carcinoma of prostate at autopsy in seven areas. Int J Canc 20(5):680–688

    Article  CAS  Google Scholar 

  12. Black WC, Welch HG (1993) Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N Engl J Med 328(17):1237–1243

    Article  PubMed  CAS  Google Scholar 

  13. Welch HG, Black WC (2010) Overdiagnosis in cancer. J Natl Canc Inst 102(9):605–613

    Article  Google Scholar 

  14. Müller M, Gounari F, Prifti S, Hacker HJ, Schirrmacher V, Khazaie K (1988) EblacZ tumor dormancy in bone marrow and lymph nodes: Active control of proliferating tumor cells by CD8+ immune T cells. Canc Res 58(23):5439–5446

    Google Scholar 

  15. Uhr JW, Scheuermann RH, Street NE, Vitetta ES (1997) Cancer dormancy: Opportunities for new therapeutic approaches. Nat Med 3(5):505–509

    Article  PubMed  CAS  Google Scholar 

  16. Weiss L, Morecki S, Vitetta ES, Slavin S (1983) Suppression and elimination of BCL1 leukemia by allogeneic bone marrow transplantation. J Immunol 130(5):2452–2455

    PubMed  CAS  Google Scholar 

  17. Folkman J (1985) Tumor angiogenesis. Adv Canc Res 43:175–203

    Article  CAS  Google Scholar 

  18. Dvorak HF (1986) Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659

    CAS  Google Scholar 

  19. Matsuzawa A, Takeda Y, Narita M, Ozawa H (1991) Survival of leukemic cells in a dormant state following cyclophosphamide-induced cure of strongly immunogenic mouse leukemia (DL811). Int J Canc 49(2):303–309

    Article  CAS  Google Scholar 

  20. Adam JA, Bellomo N (1997) A survey of models for tumor-immune system dynamics. Modeling and simulation in science, engineering and technology. Birkhäuser, Basel

    Google Scholar 

  21. Gatenby PA, Basten A, Creswick P (1981) “Sneaking Through”: A T-cell-dependent phenomenon. Br J Canc 44(5):753–756

    Article  CAS  Google Scholar 

  22. Lefever R, Horsthemke W (1979) Bistability in fluctuating environments. Implications in tumor immunology. Bull Math Biol 41:469–490

    CAS  Google Scholar 

  23. Angelis ED, Lods B (2008) On the kinetic theory for active particles: A model for tumor–immune system competition. Math Comput Model 47:196–209

    Article  Google Scholar 

  24. Bellomo N, Delitala M (2008) From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells. Phys Life Rev 5:183–206

    Article  Google Scholar 

  25. Brazzoli I, Angelis ED, Jabin PE (2010) A mathematical model of immune competition related to cancer dynamics. Math Meth Appl Sci 33(6):733–750

    Google Scholar 

  26. Matzavinos A, Chaplain MAJ, Kuznetsov VA (2004) Mathematical modelling of the spatio–temporal response of cytotoxic T–lymphocytes to a solid tumour. Math Med Biol 21(1):1–34

    Article  PubMed  Google Scholar 

  27. Roose T, Chapman SJ, Maini RK (2007) Mathematical models of avascular tumor growth. SIAM Rev 49(2):179–208

    Article  Google Scholar 

  28. Takayanagi T, Kawamura H, Ohuchi A (2006) Cellular automaton model of a tumor tissue consisting of tumor cells, cytotoxic T lymphocytes (CTLs), and cytokine produced by CTLs. IPSJ Trans Math Model Appl 47(1):61–67

    Google Scholar 

  29. Araujo RP, McElwain DLS (2004) A history of the study of solid tumour growth: The contribution of mathematical modelling. Bull Math Biol 66(5):1039–1091

    Article  PubMed  CAS  Google Scholar 

  30. Woelke AL, Murgueitio MS, Preissner R (2010) Theoretical modeling techniques and their impact on tumor immunology. Clin Dev Immunol 2010:271794

    Article  PubMed  Google Scholar 

  31. Bellomo N, Bellouquid A, Angelis ED (2003) The modelling of the immune competition by generalized kinetic (Boltzmann) models: Review and research perspectives. Math Comp Model 37(1–2):65–86

    Article  Google Scholar 

  32. Eftimie R, Bramson JL, Earn DJ (2011) Interactions between the immune system and cancer: A brief review of non-spatial mathematical models. Bull Math Biol 73(1):2–32

    Article  PubMed  Google Scholar 

  33. Spratt JS, Meyer JS, Spratt JA (1996) Rates of growth of human neoplasms: Part II. J Surg Oncol 61(1):68–83

    Article  PubMed  CAS  Google Scholar 

  34. d’Onofrio A (2005) A general framework for modeling tumor–immune system competition and immunotherapy: Mathematical analysis and biomedical inferences. Physica D 208(3–4):220–235

    Google Scholar 

  35. Laird AK (1964) Dynamics of tumor growth. Br J Canc 18(3):490–502

    Article  Google Scholar 

  36. Hahnfeldt P, Panigraphy D, Folkman J, Hlatky L (1999) Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy. Canc Res 59(19):4770–4775

    CAS  Google Scholar 

  37. Wheldon TE (1988) Mathematical models in cancer research. A. Hilger Publishing, Bristol

    Google Scholar 

  38. Vaidya VG, Alexandro FJJ (1982) Evaluation of some mathematical models for tumor growth. Int J Biomed Comput 13(1):19–36

    Article  PubMed  CAS  Google Scholar 

  39. Hart D, Shochat E, Agur Z (1998) The growth law of primary breast cancer as inferred from mammography screening trials data. Br J Canc 78(3):382–387

    Article  CAS  Google Scholar 

  40. Guiot C, Degiorgis PG, Delsanto PP, Gabriele P, Deisboeck TS (2003) Does tumor growth follow a “universal law”? J Theor Biol 225(2):147–151

    Article  PubMed  Google Scholar 

  41. Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: Immunoselection and immunosubversion. Nat Rev Immunol 6(10):715–727

    Article  PubMed  CAS  Google Scholar 

  42. Bell GI (1973) Predator–prey equations simulating an immune response. Math Biosci 16(3–4):291–314

    Article  Google Scholar 

  43. Sotolongo-Costa O, Molina LM, Perez DR, Antoranz JC, Reyes MC (2003) Behavior of tumors under nonstationary therapy. Physica D 178(3–4):242–253

    Article  Google Scholar 

  44. Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS (1994) Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis. Bull Math Biol 56(2):295–321

    PubMed  CAS  Google Scholar 

  45. Joshi B, Wang X, Banerjee S, Tian H, Matzavinos A, Chaplain MA (2009) On immunotherapies and cancer vaccination protocols: A mathematical modelling approach. J Theor Biol 259(4):820–827

    Article  PubMed  Google Scholar 

  46. d’Onofrio A, Fasano A, Monechi B (2011) A generalization of Gompertz law compatible with the Gyllenberg-Webb theory for tumour growth. Math Biosci 230(1):45–54

    Google Scholar 

  47. Stepanova NV (1980) Course of the immune reaction during the development of a malignant tumor. Biophysics 24:917–923

    Google Scholar 

  48. de Pillis LG, Radunskaya A (2001) A mathematical tumor model with immune resistance and drug therapy: An optimal control approach. J Theor Med 3:79–100

    Article  Google Scholar 

  49. DeLisi C, Rescigno A (1977) Immune surveillance and neoplasia–1 a minimal mathematical model. Bull Math Biol 39(2):201–221

    PubMed  CAS  Google Scholar 

  50. Kirschner D, Panetta JC (1998) Modeling immunotherapy of the tumor–immune interaction. J Math Biol 37(3):235–252

    Article  PubMed  CAS  Google Scholar 

  51. de Pillis LG, Radunskaya AE, Wiseman CL (2005) A validated mathematical model of cell–mediated immune response to tumor growth. Canc Res 65(17):7950–7958

    Google Scholar 

  52. Sachs RK, Hlatky LR, Hahnfeldt P (2001) Simple ODE models of tumor growth and anti–angiogenic or radiation treatment. Math Comput Model 33(12–13):1297–1305

    Article  Google Scholar 

  53. Arciero JC, Jackson TL, Kirschner DE (2004) A mathematical model of tumor–immune evasion and siRNA treatment. Discrete Cont Dyn-B 4(1):39–58

    Google Scholar 

  54. Gowal S, Giacomi Md, Boudec JYL (2007) Comment on: A validated mathematical model of cell–mediated immune response to tumor growth. Canc Res 67(17):8419–8420

    Article  CAS  Google Scholar 

  55. de Pillis LG, Radunskaya AE, Wiseman CL (2007) Comment on: A validated mathematical model of cell–mediated immune response to tumor growth. Canc Res 67(17):8420

    Article  Google Scholar 

  56. d’Onofrio A (2010) Bounded-noise-induced transitions in a tumor–immune system interplay. Phys Rev E 81(2):021923:1–7

    Google Scholar 

  57. de Vladar HP, González JA (2004) Dynamic response of cancer under the influence of immunological activity and therapy. J Theor Biol 227(3):335–348

    Article  PubMed  Google Scholar 

  58. d’Onofrio A (2007) Tumor evasion from immune control: Strategies of a MISS to become a MASS. Chaos, Solitons and Fractals 31:261–268

    Google Scholar 

  59. Cattani C, Ciancio A (2010) Early stage of tumor–immune competition with time dependent parameter and external source. UPB Sci Bull A 72(3):113–128

    Google Scholar 

  60. Higham EM, Shen CH, Wittrup KD, Chen J (2010) Cutting edge: Delay and reversal of T cell tolerance by intratumoral injection of antigen-loaded dendritic cells in an autochthonous tumor model. J Immunol 184(11):5954–5948

    Article  PubMed  CAS  Google Scholar 

  61. Michelson S, Leith JT (1994) Dormancy, regression, and recurrence: towards a unifying theory of tumor growth control. J Theor Biol 169:327–338

    Article  PubMed  CAS  Google Scholar 

  62. Kuznetsov VA (1988) Mathematical modeling of the development of dormant tumors and immune stimulation of their growth. Cybern Syst Anal 23(4):556–564

    Article  Google Scholar 

  63. Diefenbach A, Jensen ER, Jamieson AM, Raulet DH (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413(6852):165–171

    Article  PubMed  CAS  Google Scholar 

  64. Rodriguez AR, Lutcher CL (1976) Marked cyclic leukocytosis–leukopenia in chronic myelogenous leukemia. Am J Med 60(7):1041–1047

    Article  PubMed  CAS  Google Scholar 

  65. Chikkappa G, Chanana AD, Chandra P, Cronkite EP, Thompson KH (1980) Cyclic oscillation of blood neutrophils in a patient with multiple myeloma. Blood 55(1):61–66

    PubMed  CAS  Google Scholar 

  66. Posadas EM, Criley SR, Coffey DS (1996) Chaotic oscillations in cultured cells: Rat prostate cancer. Canc Res 56(16):3682–3688

    CAS  Google Scholar 

  67. Uhr JW, Tucker T, May RD, Siu H, Vitetta ES (1991) Cancer dormancy: Studies of the murine BCL1 lymphoma. Canc Res 51(18 Suppl):5045s–5053s

    CAS  Google Scholar 

  68. Krikorian JG, Portlock CS, Cooney P, Rosenberg SA (1980) Spontaneous regression of non-Hodgkin’s lymphoma: A report of nine cases. Cancer 46(9):2093–2099

    Article  PubMed  CAS  Google Scholar 

  69. Mehta BC, Agarwal MB (1980) Cyclic oscillations in leukocyte count in chronic myeloid leukemia. Acta Haematol 63(2): 68–70

    Article  PubMed  CAS  Google Scholar 

  70. Rakhra K, Bachireddy P, Zabuawala T, Zeiser R, Xu L, Kopelman A et al (2010) CD4+ T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Canc Cell 18(5):485–498

    Article  CAS  Google Scholar 

  71. Prehn RT (1983) The dose-response curve in tumor-immunity. Int J Immunopharmacol 5(4):255–257

    Article  PubMed  CAS  Google Scholar 

  72. Sampson D, Peters TG, Lewis JD, Metzig J, Kurtz BE (1977) Dose dependence of immunopotentiation of tumor regression induced by levamisole. Canc Res 37(10):3526–3529

    CAS  Google Scholar 

  73. Prehn RT (1972) The immune reaction as a stimulator of tumor growth. Science 176(31): 170–171

    Article  PubMed  CAS  Google Scholar 

  74. Jeejeebhoy HF (1974) Stimulation of tumor growth by the immune response. Int J Canc 13(4):665–678

    Article  CAS  Google Scholar 

  75. Umiel T, Trainin N (1974) Immunological enhancement of tumor growth by syngeneic thymus-derived lymphocytes. Transplantation 18(3):244–250

    Article  PubMed  CAS  Google Scholar 

  76. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: The next generation. Cell 144(5): 646–674

    Article  PubMed  CAS  Google Scholar 

  77. Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117(5):1175–1183

    Article  PubMed  CAS  Google Scholar 

  78. Quesnel B (2008) Tumor dormancy and immunoescape. APMIS 116(7–8):685–694

    Article  PubMed  Google Scholar 

  79. Chan L, Hardwick NR, Guinn BA, Darling D, Gäken J, Galea-Lauri J et al (2006) An immune edited tumour versus a tumour edited immune system: Prospects for immune therapy of acute myeloid leukaemia. Canc Immunol Immunother 55(8):1017–1024

    Article  CAS  Google Scholar 

  80. Schatton T, Frank MH (2009) Antitumor immunity and cancer stem cells. Ann NY Acad Sci 1176:154–169

    Article  PubMed  CAS  Google Scholar 

  81. Noh KH, Kang TH, Kim JH, Pai SI, Lin KY, Hung CF et al (2009) Activation of Akt as a mechanism for tumor immune evasion. Mol Ther 3:439–447

    Article  Google Scholar 

  82. Galante A, Tamada K, Levy D (2012) B7-H1 and a mathematical model for cytotoxic t cell and tumor cell interaction. Bull Math Biol 74:91–102

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Dr. P. Hahnfeldt and Dr. L. Hlatky for their careful editing and support, and Dr. M. La Croix for his support and for the excellent graphical illustrations. This project was supported by the National Cancer Institute under Award Number U54CA149233 (to L. Hlatky) and by the Office of Science (BER), U.S. Department of Energy, under Award Number DE-SC0001434 (to P. Hahnfeldt). The content is solely the responsibility of the author and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen P. Wilkie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilkie, K.P. (2013). A Review of Mathematical Models of Cancer–Immune Interactions in the Context of Tumor Dormancy. In: Enderling, H., Almog, N., Hlatky, L. (eds) Systems Biology of Tumor Dormancy. Advances in Experimental Medicine and Biology, vol 734. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1445-2_10

Download citation

Publish with us

Policies and ethics