Skip to main content

Inflammasomes in Inflammatory Bowel Disease

  • Chapter
  • First Online:
Crohn's Disease and Ulcerative Colitis

Abstract

The immune system facilitates diverse mechanism to recognize threats for the host including distinct families of germ-line encoded receptors. Inflammasomes are multiprotein complexes that are built around several different sensor proteins including NLRP1, NLRP3, NLRC4, and AIM2. Upon induced assembly they regulate the activity of inflammatory caspases including caspase-1. Activation of Caspase-1 results in the production of two potent cytokines, IL-1beta and IL-18, by processing of the pro-proteins into their mature form. The assembly of inflammasomes is induced by many signals that include pathogen-derived molecules or stress-induced endogenous molecules. While inflammasome function is important in antimicrobial defense, mutations in inflammasome components have been identified as causal factors in several human inherited auto inflammatory diseases. Furthermore, inflammasome activity is important in many pathological conditions including type II diabetes, arthrosclerosis, and pulmonary diseases by driving inflammation. Recognition of the underlying diseases mechanisms opens the door for the development of novel and specific therapies for these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

    Article  PubMed  CAS  Google Scholar 

  2. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1(2):135–45.

    Article  PubMed  CAS  Google Scholar 

  3. Geijtenbeek TB, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol. 2009;9(7):465–79.

    Article  PubMed  CAS  Google Scholar 

  4. Takeuchi O, Akira S. MDA5/RIG-I and virus recognition. Curr Opin Immunol. 2008;20(1):17–22.

    Article  PubMed  CAS  Google Scholar 

  5. Kanneganti TD, Lamkanfi M, Nunez G. Intracellular NOD-like receptors in host defense and disease. Immunity. 2007;27(4):549–59.

    Article  PubMed  CAS  Google Scholar 

  6. Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50.

    Article  PubMed  CAS  Google Scholar 

  7. Kuida K, Lippke JA, Ku G, et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science. 1995;267(5206):2000–3.

    Article  PubMed  CAS  Google Scholar 

  8. Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol. 2009;27:229–65.

    Article  PubMed  CAS  Google Scholar 

  9. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.

    Article  PubMed  CAS  Google Scholar 

  10. Hornung V, Ablasser A, Charrel-Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458(737):514–8.

    Article  PubMed  CAS  Google Scholar 

  11. Mariathasan S, Newton K, Monack DM, et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature. 2004;430(6996):213–8.

    Article  PubMed  CAS  Google Scholar 

  12. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004;20(3):319–25.

    Article  PubMed  CAS  Google Scholar 

  13. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10(3):241–7.

    Article  PubMed  CAS  Google Scholar 

  14. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet. 2001;29(3):301–5.

    Article  PubMed  CAS  Google Scholar 

  15. Dowds TA, Masumoto J, Zhu L, Inohara N, Nunez G. Cryopyrin-induced interleukin 1beta secretion in monocytic cells: enhanced activity of disease-associated mutants and requirement for ASC. J Biol Chem. 2004;279(21):21924–8.

    Article  PubMed  CAS  Google Scholar 

  16. Tschopp J, Schroder K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010;10(3):210–5.

    Article  PubMed  CAS  Google Scholar 

  17. Hornung V, Latz E. Critical functions of priming and lysosomal damage for NLRP3 activation. Eur J Immunol. 2010;40(3):620–3.

    Article  PubMed  CAS  Google Scholar 

  18. Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 2007;14(9):1583–9.

    Article  PubMed  CAS  Google Scholar 

  19. Kanneganti TD, Lamkanfi M, Kim YG, et al. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity. 2007;26(4):433–43.

    Article  PubMed  CAS  Google Scholar 

  20. Hornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9(8):847–56.

    Article  PubMed  CAS  Google Scholar 

  21. Newman ZL, Leppla SH, Moayeri M. CA-074Me protection against anthrax lethal toxin. Infect Immun. 2009;77(10):4327–36.

    Article  PubMed  CAS  Google Scholar 

  22. Ewald SE, Lee BL, Lau L, et al. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature. 2008;456(7222):658–62.

    Article  PubMed  CAS  Google Scholar 

  23. Dostert C, Guarda G, Romero JF, et al. Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS ONE. 2009;4(8):e6510.

    Article  PubMed  Google Scholar 

  24. Cassel SL, Eisenbarth SC, Iyer SS, et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA. 2008;105(26):9035–40.

    Article  PubMed  CAS  Google Scholar 

  25. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320(5876):674–7.

    Article  PubMed  CAS  Google Scholar 

  26. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5.

    Article  PubMed  CAS  Google Scholar 

  27. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11(2):136–40.

    Article  PubMed  CAS  Google Scholar 

  28. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol. 2001;19:423–74.

    Article  PubMed  CAS  Google Scholar 

  29. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517.

    Article  PubMed  CAS  Google Scholar 

  30. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity. 2009;31(2):331–41.

    Article  PubMed  CAS  Google Scholar 

  31. Chung Y, Chang SH, Martinez GJ, et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity. 2009;30(4):576–87.

    Article  PubMed  CAS  Google Scholar 

  32. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007;8(9):942–9.

    Article  PubMed  CAS  Google Scholar 

  33. Hoshino T, Wiltrout RH, Young HA. IL-18 is a potent coinducer of IL-13 in NK and T cells: a new potential role for IL-18 in modulating the immune response. J Immunol. 1999;162(9):5070–7.

    PubMed  CAS  Google Scholar 

  34. Robinson D, Shibuya K, Mui A, et al. IGIF does not drive Th1 development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NFkappaB. Immunity. 1997;7(4):571–81.

    Article  PubMed  CAS  Google Scholar 

  35. Sutterwala FS, Ogura Y, Szczepanik M, et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity. 2006;24(3):317–27.

    Article  PubMed  CAS  Google Scholar 

  36. Gris D, Ye Z, Iocca HA, et al. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J Immunol. 2010;185(2):974–81.

    Article  PubMed  CAS  Google Scholar 

  37. Ghiringhelli F, Apetoh L, Tesniere A, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med. 2009;15(10):1170–8.

    Article  PubMed  CAS  Google Scholar 

  38. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 2008;453(7198):1122–6.

    Article  PubMed  CAS  Google Scholar 

  39. Li H, Willingham SB, Ting JP, Re F. Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol. 2008;181(1):17–21.

    PubMed  CAS  Google Scholar 

  40. Gattorno M, Tassi S, Carta S, et al. Pattern of interleukin-1beta secretion in response to lipopolysaccharide and ATP before and after interleukin-1 blockade in patients with CIAS1 mutations. Arthritis Rheum. 2007;56(9):3138–48.

    Article  PubMed  CAS  Google Scholar 

  41. Hoffman HM, Rosengren S, Boyle DL, et al. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet. 2004;364(9447):1779–85.

    Article  PubMed  CAS  Google Scholar 

  42. Dinarello CA. Blocking IL-1 in systemic inflammation. J Exp Med. 2005;201(9):1355–9.

    Article  PubMed  CAS  Google Scholar 

  43. McDermott MF. A common pathway in periodic fever syndromes. Trends Immunol. 2004;25(9):457–60.

    Article  PubMed  CAS  Google Scholar 

  44. Wise CA, Gillum JD, Seidman CE, et al. Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum Mol Genet. 2002;11(8):961–9.

    Article  PubMed  CAS  Google Scholar 

  45. Consortium TIF. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. The International FMF Consortium. Cell. 1997;90(4):797–807.

    Article  Google Scholar 

  46. Shoham NG, Centola M, Mansfield E, et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci USA. 2003;100(23):13501–6.

    Article  PubMed  CAS  Google Scholar 

  47. Chae JJ, Wood G, Masters SL, et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1beta production. Proc Natl Acad Sci USA. 2006;103(26):9982–7.

    Article  PubMed  CAS  Google Scholar 

  48. Chae JJ, Komarow HD, Cheng J, et al. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell. 2003;11(3):591–604.

    Article  PubMed  CAS  Google Scholar 

  49. Magitta NF, Boe Wolff AS, Johansson S, et al. A coding polymorphism in NALP1 confers risk for autoimmune Addison’s disease and type 1 diabetes. Genes Immun. 2009;10(2):120–4.

    Article  PubMed  CAS  Google Scholar 

  50. Jin Y, Mailloux CM, Gowan K, et al. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med. 2007;356(12):1216–25.

    Article  PubMed  CAS  Google Scholar 

  51. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–41.

    Article  PubMed  CAS  Google Scholar 

  52. Masters SL, Dunne A, Subramanian SL, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol. 2010;11(10):897–904.

    Article  PubMed  CAS  Google Scholar 

  53. Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–61.

    Article  PubMed  CAS  Google Scholar 

  54. Mandrup-Poulsen T, Pickersgill L, Donath MY. Blockade of interleukin 1 in type 1 diabetes mellitus. Nat Rev Endocrinol. 2010;6(3):158–66.

    Article  PubMed  CAS  Google Scholar 

  55. McDermott MF. Rilonacept in the treatment of chronic inflammatory disorders. Drugs Today (Barc). 2009;45(6):423–30.

    Article  CAS  Google Scholar 

  56. Klingenberg R, Hansson GK. Treating inflammation in atherosclerotic cardiovascular disease: emerging therapies. Eur Heart J. 2009;30(23):2838–44.

    Article  PubMed  CAS  Google Scholar 

  57. Siegmund B, Lehr HA, Fantuzzi G, Dinarello CA. IL-1 beta -converting enzyme (caspase-1) in intestinal inflammation. Proc Natl Acad Sci USA. 2001;98(23):13249–54.

    Article  PubMed  CAS  Google Scholar 

  58. Loher F, Bauer C, Landauer N, et al. The interleukin-1 beta-converting enzyme inhibitor pralnacasan reduces dextran sulfate sodium-induced murine colitis and T helper 1 T-cell activation. J Pharmacol Exp Ther. 2004;308(2):583–90.

    Article  PubMed  CAS  Google Scholar 

  59. Salcedo R, Worschech A, Cardone M, et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med. 2010;207(8):1625–36.

    Article  PubMed  CAS  Google Scholar 

  60. Takagi H, Kanai T, Okazawa A, et al. Contrasting action of IL-12 and IL-18 in the development of dextran sodium sulphate colitis in mice. Scand J Gastroenterol. 2003;38(8):837–44.

    Article  PubMed  CAS  Google Scholar 

  61. Allen IC, TeKippe EM, Woodford RM, et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 2010;207(5):1045–56.

    Article  PubMed  CAS  Google Scholar 

  62. Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M, Kanneganti TD. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity. 2010;32(3):379–91.

    Article  PubMed  CAS  Google Scholar 

  63. Hirota SA, Ng J, Lueng A, et al. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm Bowel Dis. 2010;17(6):1359–72. doi:10.1002/ibd.21478.

    Article  PubMed  Google Scholar 

  64. Dupaul-Chicoine J, Yeretssian G, Doiron K, et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity. 2010;32(3):367–78.

    Article  PubMed  CAS  Google Scholar 

  65. Bauer C, Duewell P, Mayer C, et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut. 2010;59(9):1192–9. doi:10.1136/gut.2009.197822.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Flavell PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Strowig, T., Flavell, R.A. (2012). Inflammasomes in Inflammatory Bowel Disease. In: Baumgart, D. (eds) Crohn's Disease and Ulcerative Colitis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0998-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0998-4_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0997-7

  • Online ISBN: 978-1-4614-0998-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics