Skip to main content

F1-ATPase: A Prototypical Rotary Molecular Motor

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 726))

Abstract

F1-ATPase, the soluble portion of ATP synthase, has been shown to be a rotary molecular motor in which the central γ subunit rotates inside the cylinder made of α3β3 subunits. The rotation is powered by ATP hydrolysis in three catalytic sites, and reverse rotation of the γ subunit by an external force leads to ATP synthesis in the catalytic sites. Here I look back how our lab became involved in the study of this marvelous rotary machine, and discuss some aspects of its rotary mechanism while confessing we are far from understanding. This article is a very personal essay, not a scientific review, for this otherwise viral machines book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) Structure at 2.8Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628

    Article  PubMed  CAS  Google Scholar 

  • Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, Itoh H, Yoshida M, Kinosita K Jr (2007) Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130:309–321

    Article  PubMed  CAS  Google Scholar 

  • Adachi K, Furuike S, Hossain MD, Itoh H, Kinosita K Jr, Onoue Y, Shimo-Kon R (2010) Chemo-mechanical coupling in the rotary molecular motor F1-ATPase. In: Gräslund A, Rigler R, Widengren J (eds) Single molecule spectroscopy in chemistry, physics and biology – Nobel symposium, vol 96, Chemical physics. Springer, Heidelberg, pp 271–288

    Chapter  Google Scholar 

  • Adachi K, Nishizaka T, Kinosita K Jr (2011) Rotational catalysis by F1-ATPase. In: Ferguson S (ed) Comprehensive biophysics, vol 9. Elsevier, Amsterdam, in press

    Google Scholar 

  • Ali MY, Uemura S, Adachi K, Itoh H, Kinosita K Jr, Ishiwata S (2002) Myosin V is a left-handed spiral motor on the right-handed actin helix. Nat Struct Biol 9:464–467

    Article  PubMed  CAS  Google Scholar 

  • Ali MY, Homma K, Iwane AH, Adachi K, Itoh H, Kinosita K Jr, Yanagida T, Ikebe M (2004) Unconstrained steps of myosin VI appear longest among known molecular motors. Biophys J 86:3804–3810

    Article  PubMed  CAS  Google Scholar 

  • Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54

    Article  PubMed  CAS  Google Scholar 

  • Boyer PD (1998) Energy, life, and ATP (Nobel lecture). Angew Chem Int Ed 37:2296–2307

    Article  Google Scholar 

  • Boyer PD (2002) Catalytic site occupancy during ATP synthase catalysis. FEBS Lett 512:29–32

    Article  PubMed  CAS  Google Scholar 

  • Boyer PD, Kohlbrenner WE (1981) The present status of the binding-change mechanism and its relation to ATP formation by chloroplasts. In: Selman BR, Selman-Reimer S (eds) Energy coupling in photosynthesis. Elsevier, Amsterdam, pp 231–240

    Google Scholar 

  • del Rizzo PA, Bi Y, Dunn SD, Shilton BH (2002) The “second stalk” of Escherichia coli ATP synthase: structure of the isolated dimerization domain. Biochemistry 41:6875–6884

    Article  PubMed  Google Scholar 

  • Diez M, Zimmermann B, Börsch M, König M, Schweinberger E, Steigmiller S, Reuter R, Felekyan S, Kudryavtsev V, Seidel CAM, Gräber P (2004) Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase. Nat Struct Mol Biol 11:135–141

    Article  PubMed  CAS  Google Scholar 

  • Dmitriev O, Jones PC, Jiang W, Fillingame RH (1999) Structure of the membrane domain of subunit b of the Escherichia coli F0F1 ATP synthase. J Biol Chem 274:15598–15604

    Article  PubMed  CAS  Google Scholar 

  • Dou C, Fortes PAG, Allison WS (1998) The α3(βY341W)3γ subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 fails to dissociate ADP when MgATP is hydrolyzed at a single catalytic site and attains maximal velocity when three catalytic sites are saturated with MgATP. Biochemistry 37:16757–16764

    Article  PubMed  CAS  Google Scholar 

  • Furuike S, Hossain MD, Maki Y, Adachi K, Suzuki T, Kohori A, Itoh H, Yoshida M, Kinosita K Jr (2008) Axle-less F1-ATPase rotates in the correct direction. Science 319:955–958

    Article  PubMed  CAS  Google Scholar 

  • Furuike S, Nakano M, Adachi K, Noji H, Kinosita K Jr, Yokoyama K (2011) Resolving stepping rotation in Thermus thermophilus H+-ATPase/synthase with an essentially drag free probe. Nat Commun 2:233

    Article  PubMed  Google Scholar 

  • Gibbons C, Montgomery MG, Leslie AGW, Walker JE (2000) The structure of the central stalk in bovine F1-ATPase at 2.4Å resolution. Nat Struct Biol 7:1055–1061

    Article  PubMed  CAS  Google Scholar 

  • Harada Y, Ohara O, Takatsuki A, Itoh H, Shimamoto N, Kinosita K Jr (2001) Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature 409:113–115

    Article  PubMed  CAS  Google Scholar 

  • Howard J (1996) The movement of kinesin along microtubules. Annu Rev Physiol 58:703–729

    Article  PubMed  CAS  Google Scholar 

  • Hugel T, Michaelis J, Hetherington CL, Jardine PJ, Grimes S, Walter JM, Falk W, Anderson DL, Bustamante C (2007) Experimental test of connector rotation during DNA packaging into bacteriophage φ29 capsids. PLoS Biol 5:e59

    Article  PubMed  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318

    PubMed  CAS  Google Scholar 

  • Huxley HE (1969) The mechanism of muscular contraction. Science 164:1356–1366

    Article  PubMed  CAS  Google Scholar 

  • Iko Y, Tabata KV, Sakakihara S, Nakashima T, Noji H (2009) Acceleration of the ATP-binding rate of F1-ATPase by forcible forward rotation. FEBS Lett 583:3187–3191

    Article  PubMed  CAS  Google Scholar 

  • Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R, Yoshida M, Kinosita K Jr (2004) Mechanically driven ATP synthesis by F1-ATPase. Nature 427:465–468

    Article  PubMed  CAS  Google Scholar 

  • Junge W, Sielaff H, Engelbrecht S (2009) Torque generation and elastic power transmission in the rotary FOF1-ATPase. Nature 459:364–370

    Article  PubMed  CAS  Google Scholar 

  • Kabaleeswaran V, Shen H, Symersky J, Walker JE, Leslie AGW, Mueller DM (2009) Asymmetric structure of the yeast F1 ATPase in the absence of bound nucleotides. J Biol Chem 284:10546–10551

    Article  PubMed  CAS  Google Scholar 

  • Kinosita K Jr, Yasuda R, Noji H, Ishiwata S, Yoshida M (1998) F1-ATPase: a rotary motor made of a single molecule. Cell 93:21–24

    Article  PubMed  CAS  Google Scholar 

  • Kinosita K Jr, Yasuda R, Noji H, Adachi K (2000) A rotary molecular motor that can work at near 100% efficiency. Philos Trans R Soc Lond B 355:473–489

    Article  CAS  Google Scholar 

  • Kinosita K Jr, Adachi K, Itoh H (2004) Rotation of F1-ATPase: how an ATP-driven molecular machine may work. Annu Rev Biophys Biomol Struct 33:245–268

    Article  PubMed  CAS  Google Scholar 

  • Kinosita K Jr, Ali MY, Adachi K, Shiroguchi K, Itoh H (2005) How two-foot molecular motors may walk. Adv Exp Med Biol 565:205–219

    Article  PubMed  CAS  Google Scholar 

  • Kohori A, Chiwata R, Hossain MD, Furuike S, Shiroguchi K, Adachi K, Yoshida M, Kinosita K Jr (2011) Torque generation in F1-ATPase devoid of the entire amino-terminal helix of the rotor that fills half of the stator orifice. Biophys J 101:188–195

    Article  PubMed  CAS  Google Scholar 

  • Komori Y, Iwane AH, Yanagida T (2007) Myosin-V makes two Brownian 90° rotations per 36-nm step. Nat Struct Mol Biol 14:968–973

    Article  PubMed  CAS  Google Scholar 

  • Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 44:98–104

    Article  PubMed  CAS  Google Scholar 

  • Menz RI, Walker JE, Leslie AGW (2001) Structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis. Cell 106:331–341

    Article  PubMed  CAS  Google Scholar 

  • Mizuno H, Higashida C, Yuan Y, Ishizaki T, Narumiya S, Watanabe N (2011) Rotational movement of the formin mDia1 along the double helical strand of an actin filament. Science 331:80–83

    Article  PubMed  CAS  Google Scholar 

  • Moffitt JR, Chemla YR, Aathavan K, Grimes S, Jardine PJ, Anderson DL, Bustamante C (2009) Intersubunit coordination in a homomeric ring ATPase. Nature 457:446–451

    Article  PubMed  CAS  Google Scholar 

  • Monod J, Wyman J, Changeux J-P (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Pänke O, Junge W, Engelbrecht S (2002) F1-ATPase, the C-terminal end of subunit γ is not required for ATP hydrolysis-driven rotation. J Biol Chem 277:23308–23313

    Article  PubMed  Google Scholar 

  • Nishizaka T, Yagi T, Tanaka Y, Ishiwata S (1993) Right-handed rotation of an actin filament in an in vitro motile system. Nature 361:269–271

    Article  PubMed  CAS  Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302

    Article  PubMed  CAS  Google Scholar 

  • Oosawa F, Hayashi S (1986) The loose coupling mechanism in molecular machines of living cells. Adv Biophys 22:151–183

    Article  PubMed  CAS  Google Scholar 

  • Palanisami A, Okamoto T (2010) Torque-induced slip of the rotary motor F1-ATPase. Nano Lett 10:4146–4149

    Article  PubMed  CAS  Google Scholar 

  • Pänke O, Cherepanov DA, Gumbiowski K, Engelbrecht S, Junge W (2001) Visco-elastic dynamics of actin filaments coupled to rotary F-ATPase: angular torque profile of the enzyme. Biophys J 81:1220–1233

    Article  PubMed  Google Scholar 

  • Rastogi VK, Girvin ME (1999) Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402:263–268

    Article  PubMed  CAS  Google Scholar 

  • Rondelez Y, Tresset G, Nakashima T, Kato-Yamada Y, Fujita H, Takeuchi S, Noji H (2005) Highly coupled ATP synthesis by F1-ATPase single molecules. Nature 433:773–777

    Article  PubMed  CAS  Google Scholar 

  • Sase I, Miyata H, Ishiwata S, Kinosita K Jr (1997) Axial rotation of sliding actin filaments revealed by single-fluorophore imaging. Proc Natl Acad Sci USA 94:5646–5650

    Article  PubMed  CAS  Google Scholar 

  • Shimabukuro K, Muneyuki E, Yoshida M (2006) An alternative reaction pathway of F1-ATPase suggested by rotation without 80°/40° substeps of a sluggish mutant at low ATP. Biophys J 90:1028–1032

    Article  PubMed  CAS  Google Scholar 

  • Shimo-Kon R, Muneyuki E, Sakai H, Adachi K, Yoshida M, Kinosita K Jr (2010) Chemo-mechanical coupling in F1-ATPase revealed by catalytic site occupancy during catalysis. Biophys J 98:1227–1236

    Article  PubMed  CAS  Google Scholar 

  • Stock D, Leslie AGW, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705

    Article  PubMed  CAS  Google Scholar 

  • Toei M, Gerle C, Nakano M, Tani K, Gyobu N, Tamakoshi M, Sone N, Yoshida M, Fujiyoshi Y, Mitsuoka K, Yokoyama K (2007) Dodecamer rotor ring defines H+/ATP ratio for ATP synthesis of prokaryotic V-ATPase from Thermus thermophilus. Proc Natl Acad Sci USA 104:20256–20261

    Article  PubMed  CAS  Google Scholar 

  • Vale RD, Toyoshima YY (1988) Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia. Cell 52:459–469

    Article  PubMed  CAS  Google Scholar 

  • Walker RA, Salmon ED, Endow SA (1990) The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347:780–782

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Oster G (1998) Energy transduction in the F1 motor of ATP synthase. Nature 396:279–282

    Article  PubMed  CAS  Google Scholar 

  • Watanabe R, Iino R, Noji H (2010) Phosphate release in F1-ATPase catalytic cycle follows ADP release. Nat Chem Biol 6:814–820

    Article  PubMed  CAS  Google Scholar 

  • Watanabe-Nakayama T, Toyabe S, Kudo S, Sugiyama S, Yoshida M, Muneyuki E (2008) Effect of external torque on the ATP-driven rotation of F1-ATPase. Biochem Biophys Res Commun 366:951–957

    Article  PubMed  CAS  Google Scholar 

  • Watt IN, Montgomery MG, Runswick MJ, Leslie AGW, Walker JE (2010) Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci USA 107:16823–16827

    Article  PubMed  CAS  Google Scholar 

  • Weber J, Wilke-Mounts S, Lee RS, Grell E, Senior AE (1993) Specific placement of tryptophan in the catalytic sites of the Escherichia coli F1-ATPase provides a direct probe of nucleotide binding: maximal ATP hydrolysis occurs with three sites occupied. J Biol Chem 268:20126–20133

    PubMed  CAS  Google Scholar 

  • Yajima J, Mizutani K, Nishizaka T (2008) A torque component present in mitotic kinesin Eg5 revealed by three-dimensional tracking. Nat Struct Mol Biol 15:1119–1121

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Sone N, Hirata H, Kagawa Y (1977) Reconstitution of adenosine triphosphatase of thermophilic bacterium from purified individual subunits. J Biol Chem 252:3480–3485

    PubMed  CAS  Google Scholar 

  • Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase – a marvelous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank members of Kinosita and Yoshida labs for collaboration and discussion, R. Kanda-Terada for technical support, and S. Takahashi, K. Sakamaki, M. Fukatsu, and H. Umezawa for encouragement and lab management. This work was supported by Grants-in-Aids for Specially Promoted Research from the Ministry of Education, Sports, Culture, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Kinosita Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kinosita, K. (2012). F1-ATPase: A Prototypical Rotary Molecular Motor. In: Rossmann, M., Rao, V. (eds) Viral Molecular Machines. Advances in Experimental Medicine and Biology, vol 726. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0980-9_2

Download citation

Publish with us

Policies and ethics