Skip to main content

Management of Blood Products in Orthopedic Surgery

  • Chapter
  • First Online:
Perioperative Care of the Orthopedic Patient

Abstract

Major orthopedic procedures entail significant blood loss in patient groups with high prevalence of anemia. The vital role of allogeneic blood is widely established in managing life-threatening blood loss. However, the safety profile of such transfusions is still far from perfect. Various perioperative modalities have proven capable of minimizing or even eliminating transfusion requirements in elective orthopedic procedures. Perioperative blood management is a multimodal planned approach to patient care. It should be regarded as the standard of care in elective orthopedic procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McManus KT, Velchik MG, Alavi A, Lotke PA. Non-invasive assessment of post-operative bleeding in TKA patients with Tc-99m RBCs. J Nucl Med. 1987;28:565.

    Google Scholar 

  2. Shapiro F, Zurakowski D, Sethna NF. Tranexamic acid diminishes intraoperative blood loss and transfusion in spinal fusions for duchenne muscular dystrophy scoliosis. Spine (Phila Pa 1976). 2007;32(20):2278–83.

    Google Scholar 

  3. Goodnough LT, Shander A, Brecher ME. Transfusion medicine: looking to the future. Lancet. 2003;361(9352):161–9.

    PubMed  Google Scholar 

  4. Tobias JD. Strategies for minimizing blood loss in orthopedic surgery. Semin Hematol. 2004;41(1 Suppl 1):145–56.

    PubMed  Google Scholar 

  5. Eder AF, et al. The American Red Cross Hemovigilance Program: advancing the safety of blood donation and transfusion. Immunohematology. 2009;25(4):179–85.

    CAS  PubMed  Google Scholar 

  6. Blajchman MA. Transfusion immunomodulation or TRIM: what does it mean clinically? Hematology. 2005; 10 Suppl 1:208–14.

    Google Scholar 

  7. Triulzi DJ, et al. A clinical and immunologic study of blood transfusion and postoperative bacterial infection in spinal surgery. Transfusion. 1992;32(6):517–24.

    CAS  PubMed  Google Scholar 

  8. Fernandez MC, Gottlieb M, Menitove JE. Blood transfusion and postoperative infection in orthopedic patients. Transfusion. 1992;32(4):318–22.

    CAS  PubMed  Google Scholar 

  9. Adams RC, Lundy JS. Anesthesia in cases of poor surgical risk. Some suggestions for decreasing the risk. Surg Gynecol Obstet. 1942;74:1011–9.

    Google Scholar 

  10. McLean E, et al. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr. 2009;12(4):444–54.

    PubMed  Google Scholar 

  11. Spahn DR. Anemia and patient blood management in hip and knee surgery: a systematic review of the literature. Anesthesiology. 2010;113(2):482–95.

    PubMed  Google Scholar 

  12. Callaghan JJ, Rosenberg AG, Rubash HE. The adult hip. Philadelphia, PA: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  13. Pola E, et al. Clinical factors associated with an increased risk of perioperative blood transfusion in nonanemic patients undergoing total hip arthroplasty. J Bone Joint Surg Am. 2004;86-A(1):57–61.

    PubMed  Google Scholar 

  14. Callaghan JJ, Spitzer AI. Blood management and patient specific transfusion options in total joint replacement surgery. Iowa Orthop J. 2000;20:36–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Clemens J, Spivak JL. Serum immunoreactive erythropoietin during the perioperative period. Surgery. 1994;115(4):510–5.

    CAS  PubMed  Google Scholar 

  16. van Iperen CE, et al. Iron metabolism and erythropoiesis after surgery. Br J Surg. 1998;85(1):41–5.

    PubMed  Google Scholar 

  17. Rosencher N, et al. Blood conservation approaches in orthopedic surgery. Transfus Clin Biol. 2008;15(5):294–302.

    CAS  PubMed  Google Scholar 

  18. Keating EM. Preoperative evaluation and methods to reduce blood use in orthopedic surgery. Anesthesiol Clin North America. 2005;23(2):305–13. vi–vii.

    PubMed  Google Scholar 

  19. Chassot PG, Delabays A, Spahn DR. Perioperative use of anti-platelet drugs. Best Pract Res Clin Anaesthesiol. 2007;21(2):241–56.

    CAS  PubMed  Google Scholar 

  20. Bong MR, et al. Risks associated with blood transfusion after total knee arthroplasty. J Arthroplasty. 2004;19(3):281–7.

    PubMed  Google Scholar 

  21. Carson JL, et al. Effect of anaemia and cardiovascular disease on surgical mortality and morbidity. Lancet. 1996;348(9034):1055–60.

    CAS  PubMed  Google Scholar 

  22. Glassner PJ, et al. Blood, bugs, and motion—what do we really know in regard to total joint arthroplasty? Bull NYU Hosp Jt Dis. 2011;69(1):73–80.

    PubMed  Google Scholar 

  23. Transfusion alert: use of autologous blood. National Heart, Lung, and Blood Institute Expert Panel on the use of Autologous Blood. Transfusion. 1995;35(8):703–11.

    Google Scholar 

  24. Karger R, Kretschmer V. Modern concepts of autologous haemotherapy. Transfus Apher Sci. 2005;32(2):185–96.

    PubMed  Google Scholar 

  25. Garcia-Erce JA, et al. Predeposit autologous donation in spinal surgery: a multicentre study. Eur Spine J. 2004;13 Suppl 1:S34–9.

    Google Scholar 

  26. Munoz M, et al. Blood conservation strategies in major orthopaedic surgery: efficacy, safety and European regulations. Vox Sang. 2009;96(1):1–13.

    CAS  PubMed  Google Scholar 

  27. Kleinert K, et al. Alternative procedures for reducing allogeneic blood transfusion in elective orthopedic surgery. HSS J. 2010;6(2):190–8.

    PubMed Central  PubMed  Google Scholar 

  28. Sculco TP. Global blood management in orthopaedic surgery. Clin Orthop Relat Res. 1998;357:43–9.

    PubMed  Google Scholar 

  29. Stanisavljevic S, Walker RH, Bartman CR. Autologous blood transfusion in total joint arthroplasty. J Arthroplasty. 1986;1(3):207–9.

    CAS  PubMed  Google Scholar 

  30. Bae H, et al. The effect of preoperative donation of autologous blood on deep-vein thrombosis after total hip arthroplasty. J Bone Joint Surg Br. 2001;83(5):676–9.

    CAS  PubMed  Google Scholar 

  31. Anders MJ, et al. Effect of preoperative donation of autologous blood on deep-vein thrombosis following total joint arthroplasty of the hip or knee. J Bone Joint Surg Am. 1996;78(4):574–80.

    CAS  PubMed  Google Scholar 

  32. Henry DA, et al. Pre-operative autologous donation for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2002(2):CD003602.

    Google Scholar 

  33. Tse EY, et al. Reducing perioperative blood loss and allogeneic blood transfusion in patients undergoing major spine surgery. J Bone Joint Surg Am. 2011;93(13):1268–77.

    PubMed  Google Scholar 

  34. Carless P, et al. Autologous transfusion techniques: a systematic review of their efficacy. Transfus Med. 2004;14(2):123–44.

    CAS  PubMed  Google Scholar 

  35. Rosencher N, et al. Orthopedic Surgery Transfusion Hemoglobin European Overview (OSTHEO) study: blood management in elective knee and hip arthroplasty in Europe. Transfusion. 2003;43(4):459–69.

    PubMed  Google Scholar 

  36. Bierbaum BE, et al. An analysis of blood management in patients having a total hip or knee arthroplasty. J Bone Joint Surg Am. 1999;81(1):2–10.

    CAS  PubMed  Google Scholar 

  37. Bezwada HP, et al. Preoperative use of recombinant human erythropoietin before total joint arthroplasty. J Bone Joint Surg Am. 2003;85-A(9):1795–800.

    PubMed  Google Scholar 

  38. Garcia-Erce JA, et al. Recombinant human erythropoietin facilitates autologous blood donation in children undergoing corrective spinal surgery. Transfusion. 2005;45(5):820–1. author reply 821–2.

    PubMed  Google Scholar 

  39. Millett PJ, et al. Analysis of transfusion predictors in shoulder arthroplasty. J Bone Joint Surg Am. 2006;88(6):1223–30.

    PubMed  Google Scholar 

  40. Boettner F, et al. Nonanemic patients do not benefit from autologous blood donation before total hip replacement. HSS J. 2010;6(1):66–70.

    PubMed Central  PubMed  Google Scholar 

  41. Karger R, Kretschmer V. Pre-operative autologous blood and plasma donation and retransfusion. Baillieres Clin Anaesthesiol. 2005;11:319–33.

    Google Scholar 

  42. Beris P, et al. Perioperative anaemia management: consensus statement on the role of intravenous iron. Br J Anaesth. 2008;100(5):599–604.

    CAS  PubMed  Google Scholar 

  43. Andrews CM, Lane DW, Bradley JG. Iron pre-load for major joint replacement. Transfus Med. 1997;7(4):281–6.

    CAS  PubMed  Google Scholar 

  44. Auerbach M, Coyne D, Ballard H. Intravenous iron: from anathema to standard of care. Am J Hematol. 2008;83(7):580–8.

    CAS  PubMed  Google Scholar 

  45. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352(10):1011–23.

    CAS  PubMed  Google Scholar 

  46. Cuenca J, et al. Preoperative haematinics and transfusion protocol reduce the need for transfusion after total knee replacement. Int J Surg. 2007;5(2):89–94.

    PubMed  Google Scholar 

  47. Garcia-Erce JA, et al. Perioperative intravenous iron preserves iron stores and may hasten the recovery from post-operative anaemia after knee replacement surgery. Transfus Med. 2006;16(5):335–41.

    CAS  PubMed  Google Scholar 

  48. Garcia-Erce JA, et al. Perioperative stimulation of erythropoiesis with intravenous iron and erythropoietin reduces transfusion requirements in patients with hip fracture. A prospective observational study. Vox Sang. 2005;88(4):235–43.

    CAS  PubMed  Google Scholar 

  49. Salerno SM, et al. Impact of perioperative cardiac assessment guidelines on management of orthopedic surgery patients. Am J Med. 2007;120(2):185.e1–6.

    Google Scholar 

  50. Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003;102(3):783–8.

    CAS  PubMed  Google Scholar 

  51. van der Putten K, et al. Mechanisms of disease: erythropoietin resistance in patients with both heart and kidney failure. Nat Clin Pract Nephrol. 2008;4(1):47–57.

    PubMed  Google Scholar 

  52. Fotland SS, et al. Does the preoperative iron status predict transfusion requirement of orthopedic patients? Transfus Apher Sci. 2009;40(3):213–7.

    PubMed  Google Scholar 

  53. Chertow GM, et al. Update on adverse drug events associated with parenteral iron. Nephrol Dial Transplant. 2006;21(2):378–82.

    CAS  PubMed  Google Scholar 

  54. Kumar A. Perioperative management of anemia: limits of blood transfusion and alternatives to it. Cleve Clin J Med. 2009;76 Suppl 4:S112–8.

    PubMed  Google Scholar 

  55. Faris PM, Ritter MA, Abels RI. The effects of recombinant human erythropoietin on perioperative transfusion requirements in patients having a major orthopaedic operation. The American Erythropoietin Study Group. J Bone Joint Surg Am. 1996;78(1):62–72.

    CAS  PubMed  Google Scholar 

  56. Feagan BG, et al. Erythropoietin with iron supplementation to prevent allogeneic blood transfusion in total hip joint arthroplasty. A randomized, controlled trial. Ann Intern Med. 2000;133(11):845–54.

    CAS  PubMed  Google Scholar 

  57. Weber EW, et al. Effects of epoetin alfa on blood transfusions and postoperative recovery in orthopaedic surgery: the European Epoetin Alfa Surgery Trial (EEST). Eur J Anaesthesiol. 2005;22(4):249–57.

    CAS  PubMed  Google Scholar 

  58. Fauci A, Braunwald E, Kasper D, Hauser S, Longo D, Jameson J, et al. Harrison's principles of internal medicine. 17th ed. New York: McGraw-Hill; 2008.

    Google Scholar 

  59. Moonen AF, et al. Pre-operative injections of epoetin-alpha versus post-operative retransfusion of autologous shed blood in total hip and knee replacement: a prospective randomised clinical trial. J Bone Joint Surg Br. 2008;90(8):1079–83.

    CAS  PubMed  Google Scholar 

  60. Vitale MG, et al. Efficacy of preoperative erythropoietin administration in pediatric neuromuscular scoliosis patients. Spine (Phila Pa 1976). 2007;32(24):2662–7.

    Google Scholar 

  61. Rosencher N, et al. Two injections of erythropoietin correct moderate anemia in most patients awaiting orthopedic surgery. Can J Anaesth. 2005;52(2):160–5.

    PubMed  Google Scholar 

  62. Regis D, et al. Recombinant human erythropoietin in pediatric patients: efficacy in facilitating autologous blood donation in spinal deformity surgery. Chir Organi Mov. 2004;89(4):299–303.

    CAS  PubMed  Google Scholar 

  63. Colomina MJ, et al. Preoperative erythropoietin in spine surgery. Eur Spine J. 2004;13 Suppl 1:S40–9.

    PubMed Central  PubMed  Google Scholar 

  64. Lee GC, et al. Use of erythropoietin in two-stage reimplantation total hip arthroplasty. Clin Orthop Relat Res. 2003;414:49–54.

    PubMed  Google Scholar 

  65. Wurnig C, et al. Subcutaneous low-dose epoetin beta for the avoidance of transfusion in patients scheduled for elective surgery not eligible for autologous blood donation. Eur Surg Res. 2001;33(5–6):303–10.

    CAS  PubMed  Google Scholar 

  66. Tamir L, et al. Recombinant human erythropoietin reduces allogeneic blood transfusion requirements in patients undergoing major orthopedic surgery. Haematologia (Budap). 2000;30(3):193–201.

    CAS  Google Scholar 

  67. Stowell CP, et al. An open-label, randomized study to compare the safety and efficacy of perioperative epoetin alfa with preoperative autologous blood donation in total joint arthroplasty. Orthopedics. 1999;22(1 Suppl):s105–12.

    CAS  PubMed  Google Scholar 

  68. Mercuriali F, et al. Epoetin alfa in low hematocrit patients to facilitate autologous blood donation in total hip replacement: a randomized, double-blind, placebo-controlled, dose-ranging study. Acta Haematol. 1998;100(2):69–76.

    CAS  PubMed  Google Scholar 

  69. Vitale MG, et al. The effectiveness of preoperative erythropoietin in averting allogenic blood transfusion among children undergoing scoliosis surgery. J Pediatr Orthop B. 1998;7(3):203–9.

    CAS  PubMed  Google Scholar 

  70. Cazenave JP, et al. Epoetin alfa facilitates presurgical autologous blood donation in non-anaemic patients scheduled for orthopaedic or cardiovascular surgery. Eur J Anaesthesiol. 1997;14(4):432–42.

    CAS  PubMed  Google Scholar 

  71. Tryba M. Epoetin alfa plus autologous blood donation in patients with a low hematocrit scheduled to undergo orthopedic surgery. Semin Hematol. 1996;33(2 Suppl 2):22–4. discussion 25–6.

    CAS  PubMed  Google Scholar 

  72. de Andrade JR, et al. Baseline hemoglobin as a predictor of risk of transfusion and response to Epoetin alfa in orthopedic surgery patients. Am J Orthop (Belle Mead NJ). 1996;25(8):533–42.

    Google Scholar 

  73. Goldberg MA, et al. A safety and efficacy comparison study of two dosing regimens of epoetin alfa in patients undergoing major orthopedic surgery. Am J Orthop (Belle Mead NJ). 1996;25(8):544–52.

    CAS  Google Scholar 

  74. Goodnough LT, et al. A phase III trial of recombinant human erythropoietin therapy in nonanemic orthopedic patients subjected to aggressive removal of blood for autologous use: dose, response, toxicity, and efficacy. Transfusion. 1994;34(1):66–71.

    CAS  PubMed  Google Scholar 

  75. Schlaeppi B, Gunter P, Nydegger UE. Enhancing the efficacy of preoperative autologous blood donation by erythropoietin. Transfus Sci. 1994;15(2):171–7.

    CAS  PubMed  Google Scholar 

  76. Mercuriali F, et al. Use of recombinant human erythropoietin to assist autologous blood donation by anemic rheumatoid arthritis patients undergoing major orthopedic surgery. Transfusion. 1994;34(6):501–6.

    CAS  PubMed  Google Scholar 

  77. Beris P, et al. Recombinant human erythropoietin as adjuvant treatment for autologous blood donation. A prospective study. Vox Sang. 1993;65(3):212–8.

    CAS  PubMed  Google Scholar 

  78. Laupacis A, Feagan B, Wong C. Effectiveness of perioperative recombinant human erythropoietin in elective hip replacement. COPES Study Group. Lancet. 1993;342(8867):378.

    CAS  PubMed  Google Scholar 

  79. Biesma DH, et al. The efficacy of subcutaneous recombinant human erythropoietin in the correction of phlebotomy-induced anemia in autologous blood donors. Transfusion. 1993;33(10):825–9.

    CAS  PubMed  Google Scholar 

  80. Mercuriali F, et al. Use of erythropoietin to increase the volume of autologous blood donated by orthopedic patients. Transfusion. 1993;33(1):55–60.

    CAS  PubMed  Google Scholar 

  81. Goodnough LT, et al. Preoperative red cell production in patients undergoing aggressive autologous blood phlebotomy with and without erythropoietin therapy. Transfusion. 1992;32(5):441–5.

    CAS  PubMed  Google Scholar 

  82. Hochreiter J, et al. Preoperative autologous blood collection under erythropoietin stimulation. Preliminary results in patient selection, erythropoietin dosage and administration. Z Orthop Ihre Grenzgeb. 1992;130(6):519–23.

    CAS  PubMed  Google Scholar 

  83. Tasaki T, et al. Recombinant human erythropoietin for autologous blood donation: effects on perioperative red-blood-cell and serum erythropoietin production. Lancet. 1992;339(8796):773–5.

    CAS  PubMed  Google Scholar 

  84. von Bormann B, et al. Recombinant erythropoietin in autologous blood donation. Anaesthesist. 1991;40(7):386–90.

    Google Scholar 

  85. Graf H, et al. Recombinant human erythropoietin as adjuvant treatment for autologous blood donation. BMJ. 1990;300(6740):1627–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Goodnough LT, et al. Increased preoperative collection of autologous blood with recombinant human erythropoietin therapy. N Engl J Med. 1989;321(17):1163–8.

    CAS  PubMed  Google Scholar 

  87. Eschbach JW. Iron requirements in erythropoietin therapy. Best Pract Res Clin Haematol. 2005;18(2):347–61.

    CAS  PubMed  Google Scholar 

  88. Fauci AS. Harrison's principles of internal medicine: companion handbook. 14th ed. New York: McGraw-Hill, Health Professions Division; 1998.

    Google Scholar 

  89. Lemaire R. Strategies for blood management in orthopaedic and trauma surgery. J Bone Joint Surg Br. 2008;90(9):1128–36.

    CAS  PubMed  Google Scholar 

  90. Kourtzis N, Pafilas D, Kasimatis G. Blood saving protocol in elective total knee arthroplasty. Am J Surg. 2004;187(2):261–7.

    PubMed  Google Scholar 

  91. Cheung W, Minton N, Gunawardena K. Pharmacokinetics and pharmacodynamics of epoetin alfa once weekly and three times weekly. Eur J Clin Pharmacol. 2001;57(5):411–8.

    CAS  PubMed  Google Scholar 

  92. Cheung WK, et al. Comparative pharmacokinetics, safety, and tolerability after subcutaneous administration of recombinant human erythropoietin formulated with different stabilizers. Biopharm Drug Dispos. 2000;21(6):211–9.

    CAS  PubMed  Google Scholar 

  93. Faris PM, et al. Unwashed filtered shed blood collected after knee and hip arthroplasties. A source of autologous red blood cells. J Bone Joint Surg Am. 1991;73(8):1169–78.

    CAS  PubMed  Google Scholar 

  94. Goodnough LT, Monk TG, Andriole GL. Erythropoietin therapy. N Engl J Med. 1997;336(13):933–8.

    CAS  PubMed  Google Scholar 

  95. Rosencher N, et al. Preoperative strategy for homologous blood salvage and peri-operative erythropoietin. Transfus Clin Biol. 1999;6(6):370–9.

    CAS  PubMed  Google Scholar 

  96. Henry DA, et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2007(4): CD001886.

    Google Scholar 

  97. Faught C, et al. Adverse effects of methods for minimizing perioperative allogeneic transfusion: a critical review of the literature. Transfus Med Rev. 1998;12(3):206–25.

    CAS  PubMed  Google Scholar 

  98. Mannucci PM. Hemostatic drugs. N Engl J Med. 1998;339(4):245–53.

    CAS  PubMed  Google Scholar 

  99. Eubanks JD. Antifibrinolytics in major orthopaedic surgery. J Am Acad Orthop Surg. 2010;18(3):132–8.

    PubMed  Google Scholar 

  100. Risberg B. The response of the fibrinolytic system in trauma. Acta Chir Scand Suppl. 1985;522:245–71.

    CAS  PubMed  Google Scholar 

  101. Ellis MH, et al. The effect of tourniquet application, tranexamic acid, and desmopressin on the procoagulant and fibrinolytic systems during total knee replacement. J Clin Anesth. 2001;13(7):509–13.

    CAS  PubMed  Google Scholar 

  102. Henry DA, et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2001(1): CD001886.

    Google Scholar 

  103. Smith CR. Management of bleeding complications in redo cardiac operations. Ann Thorac Surg. 1998;65(4 Suppl):S2–8. discussion S27–8.

    CAS  PubMed  Google Scholar 

  104. Royston D. Aprotinin versus lysine analogues: the debate continues. Ann Thorac Surg. 1998;65(4 Suppl):S9–19. discussion S27–8.

    CAS  PubMed  Google Scholar 

  105. Wells PS. Safety and efficacy of methods for reducing perioperative allogeneic transfusion: a critical review of the literature. Am J Ther. 2002;9(5):377–88.

    PubMed  Google Scholar 

  106. Laupacis A, Fergusson D. Drugs to minimize perioperative blood loss in cardiac surgery: meta-analyses using perioperative blood transfusion as the outcome. The International Study of Peri-operative Transfusion (ISPOT) Investigators. Anesth Analg. 1997;85(6):1258–67.

    CAS  PubMed  Google Scholar 

  107. Benoni G, Fredin H. Fibrinolytic inhibition with tranexamic acid reduces blood loss and blood transfusion after knee arthroplasty: a prospective, randomised, double-blind study of 86 patients. J Bone Joint Surg Br. 1996;78(3):434–40.

    CAS  PubMed  Google Scholar 

  108. Orpen NM, et al. Tranexamic acid reduces early post-operative blood loss after total knee arthroplasty: a prospective randomised controlled trial of 29 patients. Knee. 2006;13(2):106–10.

    PubMed  Google Scholar 

  109. Hiippala S, et al. Tranexamic acid (Cyklokapron) reduces perioperative blood loss associated with total knee arthroplasty. Br J Anaesth. 1995;74(5):534–7.

    CAS  PubMed  Google Scholar 

  110. Lin PC, et al. Does tranexamic acid save blood in minimally invasive total knee arthroplasty? Clin Orthop Relat Res. 2011;469(7):1995–2002.

    PubMed Central  PubMed  Google Scholar 

  111. Sukeik M, et al. Systematic review and meta-analysis of the use of tranexamic acid in total hip replacement. J Bone Joint Surg Br. 2011;93(1):39–46.

    CAS  PubMed  Google Scholar 

  112. Gehrig LM. Orthopedic surgery. Am J Surg. 2011;202(3):364–8.

    PubMed  Google Scholar 

  113. Capdevila X, et al. Aprotinin decreases blood loss and homologous transfusions in patients undergoing major orthopedic surgery. Anesthesiology. 1998;88(1):50–7.

    CAS  PubMed  Google Scholar 

  114. Florentino-Pineda I, et al. The effect of epsilon-aminocaproic acid on perioperative blood loss in patients with idiopathic scoliosis undergoing posterior spinal fusion: a preliminary prospective study. Spine (Phila Pa 1976). 2001;26(10):1147–51.

    CAS  Google Scholar 

  115. Neilipovitz DT, et al. A randomized trial of tranexamic acid to reduce blood transfusion for scoliosis surgery. Anesth Analg. 2001;93(1):82–7.

    CAS  PubMed  Google Scholar 

  116. Grant JA, et al. Perioperative blood transfusion requirements in pediatric scoliosis surgery: the efficacy of tranexamic acid. J Pediatr Orthop. 2009;29(3):300–4.

    PubMed  Google Scholar 

  117. Amar D, et al. Antifibrinolytic therapy and perioperative blood loss in cancer patients undergoing major orthopedic surgery. Anesthesiology. 2003;98(2):337–42.

    CAS  PubMed  Google Scholar 

  118. Kovesi T, Royston D. Pharmacological approaches to reducing allogeneic blood exposure. Vox Sang. 2003;84(1):2–10.

    CAS  PubMed  Google Scholar 

  119. Elwatidy S, et al. Efficacy and safety of prophylactic large dose of tranexamic acid in spine surgery: a prospective, randomized, double-blind, placebo-controlled study. Spine (Phila Pa 1976). 2008;33(24):2577–80.

    Google Scholar 

  120. Tsutsumimoto T, et al. Tranexamic acid reduces perioperative blood loss in cervical laminoplasty: a prospective randomized study. Spine (Phila Pa 1976). 2011;36(23):1913–8.

    Google Scholar 

  121. Wong J, et al. Tranexamic acid reduces perioperative blood loss in adult patients having spinal fusion surgery. Anesth Analg. 2008;107(5):1479–86.

    PubMed  Google Scholar 

  122. Urban MK, et al. The efficacy of antifibrinolytics in the reduction of blood loss during complex adult reconstructive spine surgery. Spine (Phila Pa 1976). 2001;26(10):1152–6.

    CAS  Google Scholar 

  123. Kasimian S, et al. Aprotinin in pediatric neuromuscular scoliosis surgery. Eur Spine J. 2008;17(12):1671–5.

    PubMed Central  PubMed  Google Scholar 

  124. Cole JW, et al. Aprotinin reduces blood loss during spinal surgery in children. Spine (Phila Pa 1976). 2003;28(21):2482–5.

    Google Scholar 

  125. Tzortzopoulou A, et al. Antifibrinolytic agents for reducing blood loss in scoliosis surgery in children. Cochrane Database Syst Rev. 2008(3):CD006883.

    Google Scholar 

  126. Engel JM, et al. Regional hemostatic status and blood requirements after total knee arthroplasty with and without tranexamic acid or aprotinin. Anesth Analg. 2001;92(3):775–80.

    CAS  PubMed  Google Scholar 

  127. Langdown AJ, et al. Aprotinin (Trasylol) does not reduce bleeding in primary total hip arthroplasty. J Arthroplasty. 2000;15(8):1009–12.

    CAS  PubMed  Google Scholar 

  128. Tanaka N, et al. Timing of the administration of tranexamic acid for maximum reduction in blood loss in arthroplasty of the knee. J Bone Joint Surg Br. 2001;83(5):702–5.

    CAS  PubMed  Google Scholar 

  129. Zohar E, et al. The postoperative blood-sparing efficacy of oral versus intravenous tranexamic acid after total knee replacement. Anesth Analg. 2004;99(6):1679–83. table of contents.

    PubMed  Google Scholar 

  130. Carless PA, Henry DA, Anthony DM. Fibrin sealant use for minimising peri-operative allogeneic blood transfusion. Cochrane Database Syst Rev. 2003(2):CD004171.

    Google Scholar 

  131. Mangano DT, Tudor IC, Dietzel C. The risk associated with aprotinin in cardiac surgery. N Engl J Med. 2006;354(4):353–65.

    CAS  PubMed  Google Scholar 

  132. Fergusson DA, et al. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med. 2008;358(22):2319–31.

    CAS  PubMed  Google Scholar 

  133. Slaughter TF, Greenberg CS. Antifibrinolytic drugs and perioperative hemostasis. Am J Hematol. 1997;56(1):32–6.

    CAS  PubMed  Google Scholar 

  134. Scheule AM, et al. The significance of preformed aprotinin-specific antibodies in cardiosurgical patients. Anesth Analg. 2000;90(2):262–6.

    CAS  PubMed  Google Scholar 

  135. Mannucci PM. Desmopressin: a nontransfusional form of treatment for congenital and acquired bleeding disorders. Blood. 1988;72(5):1449–55.

    CAS  PubMed  Google Scholar 

  136. Kobrinsky NL, et al. 1-Desamino-8-D-arginine vasopressin (desmopressin) decreases operative blood loss in patients having Harrington rod spinal fusion surgery. A randomized, double-blinded, controlled trial. Ann Intern Med. 1987;107(4):446–50.

    CAS  PubMed  Google Scholar 

  137. Theroux MC, et al. A study of desmopressin and blood loss during spinal fusion for neuromuscular scoliosis: a randomized, controlled, double-blinded study. Anesthesiology. 1997;87(2):260–7.

    CAS  PubMed  Google Scholar 

  138. Thoms RJ, Marwin SE. The role of fibrin sealants in orthopaedic surgery. J Am Acad Orthop Surg. 2009;17(12):727–36.

    PubMed  Google Scholar 

  139. Carless PA, et al. Desmopressin for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2004(1):CD001884.

    Google Scholar 

  140. Shepherd LL, et al. Hyponatremia and seizures after intravenous administration of desmopressin acetate for surgical hemostasis. J Pediatr. 1989;114(3):470–2.

    CAS  PubMed  Google Scholar 

  141. Marquez J, et al. Repeated dose administration of desmopressin acetate in uncomplicated cardiac surgery: a prospective, blinded, randomized study. J Cardiothorac Vasc Anesth. 1992;6(6):674–6.

    CAS  PubMed  Google Scholar 

  142. Brown MR, et al. Desmopressin acetate following cardiopulmonary bypass: evaluation of coagulation parameters. J Cardiothorac Anesth. 1989;3(6):726–9.

    CAS  PubMed  Google Scholar 

  143. Roberts HR, Monroe DM, Hoffman M. Molecular biology and biochemistry of the coagulation factors and pathways of hemostasis. In: Lichtman MA, Beutler E, Coller BS, Kipps TJ, Seligsohn U, editors. Williams hematology. New York: McGraw-Hill; 2011. p. 1409–34.

    Google Scholar 

  144. Hedner U, Lee CA. First 20 years with recombinant FVIIa (NovoSeven). Haemophilia. 2011;17(1):e172–82.

    CAS  PubMed  Google Scholar 

  145. Mariani G, et al. Recombinant, activated factor VII for surgery in factor VII deficiency: a prospective evaluation—the surgical STER. Br J Haematol. 2011;152(3):340–6.

    PubMed  Google Scholar 

  146. Raobaikady R, et al. Use of activated recombinant coagulation factor VII in patients undergoing reconstruction surgery for traumatic fracture of pelvis or pelvis and acetabulum: a double-blind, randomized, placebo-controlled trial. Br J Anaesth. 2005;94(5):586–91.

    CAS  PubMed  Google Scholar 

  147. Kolban M, Balachowska-Kosciolek I, Chmielnicki M. Recombinant coagulation factor VIIa—a novel haemostatic agent in scoliosis surgery? Eur Spine J. 2006;15(6):944–52.

    PubMed Central  PubMed  Google Scholar 

  148. Sachs B, et al. Recombinant activated factor VII in spinal surgery: a multicenter, randomized, double-blind, placebo-controlled, dose-escalation trial. Spine (Phila Pa 1976). 2007;32(21):2285–93.

    Google Scholar 

  149. Levi M, et al. Safety of recombinant activated factor VII in randomized clinical trials. N Engl J Med. 2010;363(19):1791–800.

    CAS  PubMed  Google Scholar 

  150. Schonauer C, et al. The use of local agents: bone wax, gelatin, collagen, oxidized cellulose. Eur Spine J. 2004;13 Suppl 1:S89–96.

    PubMed Central  PubMed  Google Scholar 

  151. Wang GJ, et al. Use of fibrin sealant to reduce bloody drainage and hemoglobin loss after total knee arthroplasty: a brief note on a randomized prospective trial. J Bone Joint Surg Am. 2001;83-A(10):1503–5.

    CAS  PubMed  Google Scholar 

  152. Levy O, et al. The use of fibrin tissue adhesive to reduce blood loss and the need for blood transfusion after total knee arthroplasty. A prospective, randomized, multicenter study. J Bone Joint Surg Am. 1999;81(11):1580–8.

    CAS  PubMed  Google Scholar 

  153. Wang GJ, et al. Fibrin sealant reduces perioperative blood loss in total hip replacement. J Long Term Eff Med Implants. 2003;13(5):399–411.

    PubMed  Google Scholar 

  154. Radosevich M, Goubran HI, Burnouf T. Fibrin sealant: scientific rationale, production methods, properties, and current clinical use. Vox Sang. 1997;72(3):133–43.

    CAS  PubMed  Google Scholar 

  155. Zeh A, et al. The Aquamantys system—an alternative to reduce blood loss in primary total hip arthroplasty? J Arthroplasty. 2010;25(7):1072–7.

    PubMed  Google Scholar 

  156. Marulanda GA, et al. Hemostasis using a bipolar sealer in primary unilateral total knee arthroplasty. Am J Orthop (Belle Mead NJ). 2009;38(12):E179–83.

    Google Scholar 

  157. Marulanda GA, et al. Reductions in blood loss with a bipolar sealer in total hip arthroplasty. Expert Rev Med Devices. 2008;5(2):125–31.

    PubMed  Google Scholar 

  158. Marulanda GA, et al. Reductions in blood loss with use of a bipolar sealer for hemostasis in primary total knee arthroplasty. Surg Technol Int. 2005;14:281–6.

    PubMed  Google Scholar 

  159. Krebs VE, et al. Blood management in joint replacement surgery: what’s in and what’s out. Orthopedics. 2006;29(9):801–3.

    PubMed  Google Scholar 

  160. Sollevi A. Hypotensive anesthesia and blood loss. Acta Anaesthesiol Scand Suppl. 1988;89:39–43.

    CAS  PubMed  Google Scholar 

  161. Niemi TT, et al. Comparison of hypotensive epidural anaesthesia and spinal anaesthesia on blood loss and coagulation during and after total hip arthroplasty. Acta Anaesthesiol Scand. 2000;44(4):457–64.

    CAS  PubMed  Google Scholar 

  162. Juelsgaard P, et al. Hypotensive epidural anesthesia in total knee replacement without tourniquet: reduced blood loss and transfusion. Reg Anesth Pain Med. 2001;26(2):105–10.

    CAS  PubMed  Google Scholar 

  163. Tenholder M, Cushner FD. Intraoperative blood management in joint replacement surgery. Orthopedics. 2004;27(6 Suppl):s663–8.

    PubMed  Google Scholar 

  164. Paul JE, et al. Deliberate hypotension in orthopedic surgery reduces blood loss and transfusion requirements: a meta-analysis of randomized controlled trials. Can J Anaesth. 2007;54(10):799–810.

    PubMed  Google Scholar 

  165. Fukusaki M, et al. Effects of controlled hypotension with sevoflurane anaesthesia on hepatic function of surgical patients. Eur J Anaesthesiol. 1999;16(2):111–6.

    CAS  PubMed  Google Scholar 

  166. Sivarajan M, et al. Blood pressure, not cardiac output, determines blood loss during induced hypotension. Anesth Analg. 1980;59(3):203–6.

    CAS  PubMed  Google Scholar 

  167. Sharrock NE, et al. The effect of two levels of hypotension on intraoperative blood loss during total hip arthroplasty performed under lumbar epidural anesthesia. Anesth Analg. 1993;76(3):580–4.

    CAS  PubMed  Google Scholar 

  168. Little Jr DM. Induced hypotension during anesthesia and surgery. Anesthesiology. 1955;16(3):320–32.

    PubMed  Google Scholar 

  169. JD, G. Hemodilution: physiology and limits of anemia. In: MR Lake CL, editors. Blood: hemostasis, transfusion, and alternatives in the perioperative period. New York: Raven Press; 1995. p. 345–80.

    Google Scholar 

  170. Lake CL, Moore RA. Blood: hemostasis, transfusion, and alternatives in the perioperative period. New York: Raven Press; 1995.

    Google Scholar 

  171. Kumar R, Chakraborty I, Sehgal R. A prospective randomized study comparing two techniques of perioperative blood conservation: isovolemic hemodilution and hypervolemic hemodilution. Anesth Analg. 2002;95(5):1154–61. table of contents.

    CAS  PubMed  Google Scholar 

  172. Bryson GL, Laupacis A, Wells GA. Does acute normovolemic hemodilution reduce perioperative allogeneic transfusion? A meta-analysis. The International Study of Perioperative Transfusion. Anesth Analg. 1998;86(1):9–15.

    CAS  PubMed  Google Scholar 

  173. Kreimeier U, Messmer K. Hemodilution in clinical surgery: state of the art 1996. World J Surg. 1996;20(9):1208–17.

    CAS  PubMed  Google Scholar 

  174. Goodnough LT, et al. A randomized trial comparing acute normovolemic hemodilution and preoperative autologous blood donation in total hip arthroplasty. Transfusion. 2000;40(9):1054–7.

    CAS  PubMed  Google Scholar 

  175. Goodnough LT, et al. A randomized trial of acute normovolemic hemodilution compared to preoperative autologous blood donation in total knee arthroplasty. Vox Sang. 1999;77(1):11–6.

    CAS  PubMed  Google Scholar 

  176. Epstein NE, et al. Impact of intraoperative normovolemic hemodilution on transfusion requirements for 68 patients undergoing lumbar laminectomies with instrumented posterolateral fusion. Spine (Phila Pa 1976). 2006;31(19):2227–30. discussion 2231.

    Google Scholar 

  177. Karakaya D, et al. Acute normovolemic hemodilution and nitroglycerin-induced hypotension: comparative effects on tissue oxygenation and allogeneic blood transfusion requirement in total hip arthroplasty. J Clin Anesth. 1999;11(5):368–74.

    CAS  PubMed  Google Scholar 

  178. Segal JB, et al. Preoperative acute normovolemic hemodilution: a meta-analysis. Transfusion. 2004;44(5):632–44.

    PubMed  Google Scholar 

  179. Bennett SR. Perioperative autologous blood transfusion in elective total hip prosthesis operations. Ann R Coll Surg Engl. 1994;76(2):95–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Van der Linden P, et al. Cardiovascular effects of moderate normovolaemic haemodilution during enflurane-nitrous oxide anaesthesia in man. Acta Anaesthesiol Scand. 1994;38(5):490–8.

    PubMed  Google Scholar 

  181. Gombotz H, et al. Preoperative treatment with recombinant human erythropoietin or predeposit of autologous blood in women undergoing primary hip replacement. Acta Anaesthesiol Scand. 2000;44(6):737–42.

    CAS  PubMed  Google Scholar 

  182. Murphy MF, et al. Guidelines for the clinical use of red cell transfusions. Br J Haematol. 2001;113(1):24–31.

    CAS  PubMed  Google Scholar 

  183. Keating EM. Current options and approaches for blood management in orthopaedic surgery. Instr Course Lect. 1999;48:655–65.

    CAS  PubMed  Google Scholar 

  184. Messmer K. Hemodilution—possibilities and safety aspects. Acta Anaesthesiol Scand Suppl. 1988;89:49–53.

    CAS  PubMed  Google Scholar 

  185. Fukuda A, et al. Effect of tourniquet application on deep vein thrombosis after total knee arthroplasty. Arch Orthop Trauma Surg. 2007;127(8):671–5.

    PubMed  Google Scholar 

  186. Wakankar HM, et al. The tourniquet in total knee arthroplasty. A prospective, randomised study. J Bone Joint Surg Br. 1999;81(1):30–3.

    CAS  PubMed  Google Scholar 

  187. Smith TO, Hing CB. The efficacy of the tourniquet in foot and ankle surgery? A systematic review and meta-analysis. Foot Ankle Surg. 2010;16(1):3–8.

    CAS  PubMed  Google Scholar 

  188. Rama KR, et al. Timing of tourniquet release in knee arthroplasty. Meta-analysis of randomized, controlled trials. J Bone Joint Surg Am. 2007;89(4):699–705.

    PubMed  Google Scholar 

  189. Smith TO, Hing CB. Is a tourniquet beneficial in total knee replacement surgery? A meta-analysis and systematic review. Knee. 2010;17(2):141–7.

    PubMed  Google Scholar 

  190. Tai TW, et al. Tourniquet use in total knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2011;19(7):1121–30.

    PubMed Central  PubMed  Google Scholar 

  191. Li B, et al. The effect of tourniquet use on hidden blood loss in total knee arthroplasty. Int Orthop. 2009;33(5):1263–8.

    PubMed Central  PubMed  Google Scholar 

  192. Larsson J, et al. Early biochemical and hemodynamic changes after operation in a bloodless field. Eur Surg Res. 1977;9(5):311–20.

    CAS  PubMed  Google Scholar 

  193. Abdel-Salam A, Eyres KS. Effects of tourniquet during total knee arthroplasty. A prospective randomised study. J Bone Joint Surg Br. 1995;77(2):250–3.

    CAS  PubMed  Google Scholar 

  194. Noordin S, et al. Surgical tourniquets in orthopaedics. J Bone Joint Surg Am. 2009;91(12):2958–67.

    PubMed  Google Scholar 

  195. Palmer SH, Graham G. Tourniquet-induced rhabdomyolysis after total knee replacement. Ann R Coll Surg Engl. 1994;76(6):416–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Barr L, et al. Tourniquet failure during total knee replacement due to arterial calcification: case report and review of the literature. J Perioper Pract. 2010;20(2):55–8.

    PubMed  Google Scholar 

  197. Bengtson S, Knutson K. The infected knee arthroplasty. A 6-year follow-up of 357 cases. Acta Orthop Scand. 1991;62(4):301–11.

    CAS  PubMed  Google Scholar 

  198. Lundgren CE, Zederfeldt BH. Influence of low oxygen pressure on wound healing. Acta Chir Scand. 1969;135(7):555–8.

    CAS  PubMed  Google Scholar 

  199. Reikeras O, Clementsen T. Time course of thrombosis and fibrinolysis in total knee arthroplasty with tourniquet application. Local versus systemic activations. J Thromb Thrombolysis. 2009;28(4):425–8.

    PubMed  Google Scholar 

  200. Berman AT, et al. Emboli observed with use of transesophageal echocardiography immediately after tourniquet release during total knee arthroplasty with cement. J Bone Joint Surg Am. 1998;80(3):389–96.

    CAS  PubMed  Google Scholar 

  201. Kato N, et al. Abnormal echogenic findings detected by transesophageal echocardiography and cardiorespiratory impairment during total knee arthroplasty with tourniquet. Anesthesiology. 2002;97(5):1123–8.

    PubMed  Google Scholar 

  202. Hersekli MA, et al. The timing of tourniquet release and its influence on blood loss after total knee arthroplasty. Int Orthop. 2004;28(3):138–41.

    PubMed Central  PubMed  Google Scholar 

  203. Yavarikia A, Amjad GG, Davoudpour K. The influence of tourniquet use and timing of its release on blood loss in total knee arthroplasty. Pak J Biol Sci. 2010;13(5):249–52.

    CAS  PubMed  Google Scholar 

  204. Lotke PA, et al. Blood loss after total knee replacement. Effects of tourniquet release and continuous passive motion. J Bone Joint Surg Am. 1991;73(7):1037–40.

    CAS  PubMed  Google Scholar 

  205. Moonen AF, Neal TD, Pilot P. Peri-operative blood management in elective orthopaedic surgery. A critical review of the literature. Injury. 2006;37 Suppl 5:S11–6.

    Google Scholar 

  206. Flynn JC, Metzger CR, Csencsitz TA. Intraoperative autotransfusion (IAT) in spinal surgery. Spine (Phila Pa 1976). 1982;7(5):432–5.

    CAS  Google Scholar 

  207. Huet C, et al. A meta-analysis of the effectiveness of cell salvage to minimize perioperative allogeneic blood transfusion in cardiac and orthopedic surgery. International Study of Perioperative Transfusion (ISPOT) Investigators. Anesth Analg. 1999;89(4):861–9.

    CAS  PubMed  Google Scholar 

  208. Carless PA, et al. Cell salvage for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2010(4):CD001888.

    Google Scholar 

  209. Woolson ST, Wall WW. Autologous blood transfusion after total knee arthroplasty: a randomized, prospective study comparing predonated and postoperative salvage blood. J Arthroplasty. 2003;18(3):243–9.

    PubMed  Google Scholar 

  210. Handel M, et al. Increased interleukin-6 in collected drainage blood after total knee arthroplasty: an association with febrile reactions during retransfusion. Acta Orthop Scand. 2001;72(3):270–2.

    CAS  PubMed  Google Scholar 

  211. Southern EP, et al. Unwashed wound drainage blood. What are we giving our patients? Clin Orthop Relat Res. 1995(320):235–46.

    Google Scholar 

  212. Tate Jr DE, Friedman RJ. Blood conservation in spinal surgery. Review of current techniques. Spine (Phila Pa 1976). 1992;17(12):1450–6.

    Google Scholar 

  213. Hansen E, Hansen MP. Reasons against the retransfusion of unwashed wound blood. Transfusion. 2004;44(12 Suppl):45S–53.

    PubMed  Google Scholar 

  214. Goodnough LT, et al. Transfusion medicine. Second of two parts–blood conservation. N Engl J Med. 1999;340(7):525–33.

    CAS  PubMed  Google Scholar 

  215. Alexander JW, Korelitz J, Alexander NS. Prevention of wound infections. A case for closed suction drainage to remove wound fluids deficient in opsonic proteins. Am J Surg. 1976;132(1):59–63.

    CAS  PubMed  Google Scholar 

  216. Waugh TR, Stinchfield FE. Suction drainage of orthopaedic wounds. J Bone Joint Surg Am. 1961;43-A:939–46.

    CAS  PubMed  Google Scholar 

  217. Casey BH. Bacterial spread in polyethylene tubing. A possible source of surgical wound contamination. Med J Aust. 1971;2(14):718–9.

    CAS  PubMed  Google Scholar 

  218. Willett KM, Simmons CD, Bentley G. The effect of suction drains after total hip replacement. J Bone Joint Surg Br. 1988;70(4):607–10.

    CAS  PubMed  Google Scholar 

  219. Drinkwater CJ, Neil MJ. Optimal timing of wound drain removal following total joint arthroplasty. J Arthroplasty. 1995;10(2):185–9.

    CAS  PubMed  Google Scholar 

  220. Parker MJ, et al. Closed suction surgical wound drainage after orthopaedic surgery. Cochrane Database Syst Rev. 2007(3):CD001825.

    Google Scholar 

  221. Nutritional anaemias. Report of a WHO scientific group. World Health Organ Tech Rep Ser. 1968;405:5–37.

    Google Scholar 

  222. Adams EB. Nutritional anaemias. Br J Clin Pract. 1968;22(12):501–4.

    CAS  PubMed  Google Scholar 

  223. Weiskopf RB, et al. Acute isovolemic anemia does not impair peripheral or central nerve conduction. Anesthesiology. 2003;99(3):546–51.

    PubMed  Google Scholar 

  224. Bracey AW, et al. Lowering the hemoglobin threshold for transfusion in coronary artery bypass procedures: effect on patient outcome. Transfusion. 1999;39(10):1070–7.

    CAS  PubMed  Google Scholar 

  225. Hebert PC, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340(6):409–17.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Boettner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Bou Monsef, J., Perna, M., Boettner, F. (2014). Management of Blood Products in Orthopedic Surgery. In: MacKenzie, C., Cornell, C., Memtsoudis, S. (eds) Perioperative Care of the Orthopedic Patient. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0100-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0100-1_27

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0099-8

  • Online ISBN: 978-1-4614-0100-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics