Skip to main content

UHV Deposition and In-Situ Analysis of Thin-Film Superconductors

  • Chapter
Advances in Cryogenic Engineering Materials

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 32))

Abstract

The application of a UHV deposition and surface analysis facility to the fabrication of high-transition-temperature superconducting films for studies of epitaxial growth and development of refractory tunnel junctions is discussed. A description is given of the vacuum system with some detail of the chambers used for co-evaporation and reactive dc magnetron sputtering. Specific examples presented to illustrate the effect of MBE-like deposition conditions, and the role of RHEED, XPS, and, to a lesser extent, other surface-sensitive probes, are: (a) the preparation of clean and damage-free sapphire and Nb3Ir substrates, (b) the epitaxial relationships in a number of superconductor-insulator systems such as sapphire and NbN, Nb3Sn, and Mo-Re, (c) the development of CaF2 and ion-beam oxidized Al and Mg tunnel barriers, and (d) the deposition of refractory counterelectrodes. Correlations are made with tunneling characteristics for appropriate examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. H. Hammond, Electron beam evaporation synthesis of A15 superconducting compounds: Accomplishments and prospects, IEEE Trans, Magn. MAG-11(2):201 (1975).

    Article  MathSciNet  Google Scholar 

  2. J. M. Lumley, R. E. Somekh, J. E. Evetts, and J. H. James, High quality all refractory tunnel junctions for SQUID applications, IEEE Trans. Magn. MAG-21 (2):539 (1985).

    Article  Google Scholar 

  3. S. Sinharoy, LEED and Auger studies of the structure and composition of the (0001) surface of sapphire, submitted to Surface Science.

    Google Scholar 

  4. A. I. Braginski, J. R. Gavaler, and K. Schulze, Formation of A15 phase in epitaxial and polycrystalline Nb-Sn and Nb-Al diffusion couples, presented at the International Cryogenic Materials Conference, Boston, 1985.

    Google Scholar 

  5. S. Sinharoy, A. I. Braginski, J. Talvacchio, and E. Walker, A LEED, AES, and XPS study of single-crystal Nb3Ir surfaces, submitted to Surf. Sci.

    Google Scholar 

  6. S. Sinharoy, private communication

    Google Scholar 

  7. J. R. Gavaler, J. Talvacchio, and A. I. Braginski, Epitaxial growth of NbN films, presented at the International Cryogenics Materials Conference, Boston, 1985.

    Google Scholar 

  8. V. L. Noskov, Y. V. Titenko, F. I. Korzhinskii, R. L. Zelenkevich, and V. A. Komashko, Heteroepitaxial layers of niobium nitride on sapphire, Sov. Phys. Crystallogr. 25(4):504 (1980).

    Google Scholar 

  9. G. Oya and Y. Onodera, Transition temperatures and crystal structures of single-crystal and polycrystalline NbN films, J. Appl. Phys. 45(3):1389 (1974).

    Article  Google Scholar 

  10. M. G. Lagally, Diffraction techniques, in: “Methods of Experimental Physics, Vol.22,” R. L. Park and M. G. Lagally, eds., Academic Press, New York (1983), PP. 237–298.

    Google Scholar 

  11. B. A. Joyce, J. H. Neave, P. J. Dobson, and P. K. Larsen, Analysis of reflection high-energy electron-diffraction data from reconstructed semiconductor surfaces, Phys. Rev. B 29(2):814 (1984).

    Article  Google Scholar 

  12. J. R. Gavaler, A. I. Braginski, M. A. Janocko, and J. Talvacchio, Epitaxial growth of high-Tc superconducting films, presented at the International Conference on the Materials and Mechanisms of Superconductivity, Ames, Iowa, May, 1985.

    Google Scholar 

  13. J. C. Yillegier, L. Vieux-Rochaz, M. Goniche, P. Renard, and M. Vabre, NbN tunnel junctions, IEEE Trans. Magn. MAG-21(2):498 (1985).

    Article  Google Scholar 

  14. R. B. van Dover, D. D. Bacon, and W. R. Sinclair, Superconductive tunneling into NbN deposited near room temperature, Appl. Phys. Lett. 41(8):764 (1982).

    Article  Google Scholar 

  15. V. M. Pan, V. P. Gorishnyak, E. M. Rudenko, V. E. Shaternik, M. V. Belous, S. A. Koziychuk, and F. I. Korzhinsky, Investigation of the properties of niobium nitride films, Cryogenics 23(5):258 (1983).

    Article  Google Scholar 

  16. M. Igarashi, M. Hikita, and K. Takei, Barrier/electrode interface structure and I-V characteristics of NbN Josephson junctions, in: “Advances in Cryogenic Engineering — Materials,” vol. 30, Plenum Press, New York (1984), p. 535.

    Google Scholar 

  17. S. Celaschi, T. H. Geballe, and W. P. Lowe, Tunneling properties of single crystal Nb / Nb2O5 / Pb Josephson junctions, AddI. Phvs. Lett. 43(8):794 (1983).

    Article  Google Scholar 

  18. J. Talvacchio, J. R. Gavaler, A. I. Braginski, and M. A. Janocko, Artificial oxide barriers for NbN tunnel junctions, to be published in J. Appl. Phys.

    Google Scholar 

  19. J. H. Greiner, Oxidation of Pb films by rf sputter etching in an oxygen plasma, J. Appl. Phys. 45(1):32 (1974).

    Article  Google Scholar 

  20. R. Herwig, Ion-beam oxidation of Nb-based Josephson junctions, Electron. Lett. 16:850 (1980).

    Article  Google Scholar 

  21. A. W. Kleinsasser and R. A. Buhrman, High-quality submicron Nb tunnel junctions with reactive ion-beam oxidation, Appl. Phys. Lett. 37(9):841 (1980).

    Article  Google Scholar 

  22. S. S. Pei and R. B. van Dover, Ion beam oxidation for Josephson circuit applications, Appl. Phys. Lett. 44(71)703 (1984).

    Article  Google Scholar 

  23. J. Kwo, G. K. Wertheim, M. Gurvitch, and D. N. E. Buchanan, X-ray photoelectron study of surface oxidation of Nb/Al overlayer structures, Appl. Phys. Lett. 40(8):675 (1982).

    Article  Google Scholar 

  24. J. Kwo, G. K. Wertheim, M. Gurvitch, and D. N. E. Buchanan, XPS and tunneling study of air-oxidized overlayer structures of Nb with thin Mg, Y, and Er, IEEE Trans. Magn. MAG-19(3):795 (1983).

    Article  Google Scholar 

  25. A. I. Braginski, J. R. Gavaler, M. A. Janocko, and J. Talvacchio, New materials for refractory tunnel junctions: Fundamental aspects, presented at the Third International Conference of Superconducting Quantum Devices, Berlin, June, 1985.

    Google Scholar 

  26. D. A. Rudman, F. Hellman, R. H. Hammond, and M. R. Beasley, A15 Nb-Sn Tunnel Junction Fabrication and Properties, J. Appl. Phys. 55(10):3544–3553 (1984).

    Article  Google Scholar 

  27. J. Talvacchio, A. I. Braginski, M. A. Janocko, and S. J. Bending, Tunneling and interface structure of oxidized metal barriers on A15 superconductors, IEEE Trans. Magn. MAG-21(2):521 (1985).

    Article  Google Scholar 

  28. A. F. Marshall, F. Hellman, and B. Oh, Epitaxy of Mb3Sn films on sapphire, in: “Layered structures, Epitaxy, and Interfaces,” Materials Research Society, Pittsburgh (1985), p. 517.

    Google Scholar 

  29. J. M. Phillips, Recent progress in epitaxial fluoride growth on semiconductors, in: “Layered structures, Epitaxy, and Interfaces,” Materials Research Society, Pittsburgh (1985), p. 143.

    Google Scholar 

  30. D. A. Rudman and M. R. Beasley, Oxidized amorphous-silicon superconductung tunnel junction barriers, Appl. Phys. Lett. 36(12):1010–1013 (1980).

    Article  Google Scholar 

  31. H. Asano, K. Tanabe, O. Michikami, M. Igarashi, and M. Beasley, Fluoride barriers in Nb/Pb tunnel junctions, Jap. J. Appl. Phys. 24:289 (1985).

    Article  Google Scholar 

  32. R. F. C. Farrow, P. W. Sullivan, G. M. Williams, G. R. Jones, and D. C. Cameron, MBE-grown fluoride films: A new class of epitaxial dielectrics, J. Vac. Sci. Technol. 19(3):415 (1981).

    Article  Google Scholar 

  33. R. D. Blaugher, A. Taylor, and J. K. Hulm, The superconductivity of some intermetallic compounds, IBM J. of Res. and Dev. 6(1):116 (1962).

    Article  Google Scholar 

  34. J. R. Gavaler, M. A. Janocko, and C. K. Jones, A15 Structure Mo-Re superconductor, App1. Phys. Lett. 21(4):179 (1972).

    Article  Google Scholar 

  35. F. J. Morin and J. P. Maita, Specific heats of transition metal superconductors, Phvs. Rev. 129(3):1115 (1963).

    Article  Google Scholar 

  36. A. Echarri, M. J. Witcomb, D. Dew-Hughes, and A. V. Narlikar, Dependence of the lower critical field on normal state resistivity in superconducting alloys, Philos. Mag. 18:1089 (1968).

    Article  Google Scholar 

  37. V. S. Postnikov, V. V. Postnikov, and V. S. Zheleznyi, Superconductivity in Mo-Re system alloy films produced by electron beam evaporation in high vacuum, Phys. Status Solidi A 39:K21 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Talvacchio, J., Janocko, M.A., Gavaler, J.R., Braginski, A.I. (1986). UHV Deposition and In-Situ Analysis of Thin-Film Superconductors. In: Reed, R.P., Clark, A.F. (eds) Advances in Cryogenic Engineering Materials . Advances in Cryogenic Engineering Materials , vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9871-4_63

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9871-4_63

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9873-8

  • Online ISBN: 978-1-4613-9871-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics