Skip to main content

Membrane Proteins

Structure, Arrangement, and Disposition in the Membrane

  • Chapter
Book cover Membrane Physiology

Abstract

The membranes of a cell have the principal function of setting the boundaries between the cell and the environment and between compartments within the cell. These boundaries prevent the movement of all polar solutes from one compartment to another, unless such movement is required for biological activity; under these circumstances, special transport systems are required. Thus, membranes can be considered as structures which are selectively permeable. The barrier to movement of polar solutes across the membrane is provided by one of the two major components of the membrane: the lipids. The other major component of the membrane, the proteins, provides the permeability function. Membrane proteins also determine most of the other properties of a membrane: They carry the determinants of specificity which distinguish one cell from another and allow for recognition between cells; they determine the shape and architecture of the membrane; they are the receptors for information about the environment and relay that information to other parts of the cell; and they are enzymes with a precise compartmental localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guidotti, G. 1972. Membrane proteins. Annu. Rev. Biochem. 41:731–752.

    Article  PubMed  CAS  Google Scholar 

  2. Singer, S. J. 1974. The molecular organization of membranes. Annu. Rev. Biochem. 43:805–833.

    Article  PubMed  CAS  Google Scholar 

  3. Clarke, S. 1975. The size and detergent binding of membrane proteins. J. Biol. Chem. 250:5459–5469.

    PubMed  CAS  Google Scholar 

  4. Steck, T. L. 1974. The organization of proteins in the human red blood cell membrane. J. Cell Biol. 62:1–19.

    Article  PubMed  CAS  Google Scholar 

  5. Marchesi, V. T., H. Furthmayr, and M. Tomita. 1976. The red cell membrane. Annu. Rev. Biochem. 45:667–698.

    Article  PubMed  CAS  Google Scholar 

  6. Bretscher, M.S., and M. C. Raff. 1975. Mammalian plasma membranes. Nature (London) 258:43–49.

    Article  CAS  Google Scholar 

  7. Rothman, J. E., and J. Lenard. 1977. Membrane asymmetry: The nature of membrane asymmetry provides clues to the puzzle of how membranes are assembled. Science 195:743–753.

    Article  PubMed  CAS  Google Scholar 

  8. Murthy, S. N. P., T. Lin, R. K. Kaul, H. Kohler, and L. Steck. 1981. The aldolase-binding site of the human erythrocyte membrane is at the NH2 terminus of band 3. J. Biol. Chem. 256:11203–11208.

    PubMed  CAS  Google Scholar 

  9. Branton, D., C. M. Cohen, and J. Tyler. 1981. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell 24:24–32.

    Article  PubMed  CAS  Google Scholar 

  10. Bennett, V. 1982. The molecular basis for membrane-cytoskeleton association in human erythrocytes. J. Cell Biochem. 18:49–66.

    Article  PubMed  CAS  Google Scholar 

  11. Goodman, S. R., J. Yu, C. F. Whitfield, E. N. Culp, and E. J. Posnak. 1982. Erythrocyte membrane skeletal protein bands 4.1a and b are sequence-related phosphoproteins. J. Biol. Chem. 257:4564–4569.

    PubMed  CAS  Google Scholar 

  12. Tyler, J. M., B. N. Reinhardt, and D. Branton. 1980. Associations of erythrocyte membrane proteins: Binding of purified bands 2.1 and 4.1 to spectrin. J. Biol. Chem. 255:7034–7039.

    PubMed  CAS  Google Scholar 

  13. Goodman, S. R., and K. Shiffer. 1983. The spectrin membrane skeleton of normal and abnormal human erythrocytes: A review. Am. J. Physiol. 244:C121-C141.

    PubMed  CAS  Google Scholar 

  14. Lazarides, E., and W. J. Nelson. 1982. Expression of spectrin in nonerythroid cells. Cell 31:505–508.

    Article  PubMed  CAS  Google Scholar 

  15. Nelson, W. J., and Lazarides, E. 1983. Switching of subunit composition of muscle spectrin during myogenesis in vitro. Nature (London) 304:364–368.

    Article  CAS  Google Scholar 

  16. Bennett, V. 1979. Immunoreactive forms of human erythrocyte ankyrin are present in diverse cells and tissues. Nature (London) 281:597–599.

    Article  CAS  Google Scholar 

  17. Cohen, C. M., S. F. Foley, and C. Korsgren. 1981. A protein immunologically related to erythrocyte band 4.1 is found on stress fibers of non-erythroid cells. Nature (London) 294:648–650.

    Article  Google Scholar 

  18. Rothman, J. E., and H. F. Lodish. 1977. Synchronized transmembrane insertion and glycosylation of a nascent membrane protein. Nature (London) 269:775–780.

    Article  CAS  Google Scholar 

  19. Wilson, I. A., J. J. Skehel, and C. Wiley, 1981. Structure of the haemagglutinin membrane glycoprotein in influenza virus at 3A resolution. Nature (London) 289:366–373.

    Article  CAS  Google Scholar 

  20. Nathenson, S. G., H. Uehara, and M. Ewenstein. 1981. Primary structural analysis of the transplantation antigens of the murine H-2 major histocompatibility complex. Annu. Rev. Biochem. 50:1025–1052.

    Article  PubMed  CAS  Google Scholar 

  21. Kaufman, J. F., and J. L. Strominger. 1979. Both chains of HLA- DR bind to the membrane with a penultimate hydorphobic region and the heavy chain is phosphorylated at its hydrophilic carboxy terminus. Proc. Natl. Acad. Sci. U.S.A. 76:6304–6308.

    Article  PubMed  CAS  Google Scholar 

  22. Hauri, H. P., H. Wacker, E. E. Rickli, B. Bigler-Meier, A. Quaroni, and G. Semenza. 1982. Biosynthesis of sucrase-iso- maltase: Purification and NH2-terminal amino acid sequence of the rat sucrase-isomaltase precursor (pro-sucrase-isomaltase) from fetal intestinal transplants. J. Biol. Chem. 257:4522–4528.

    PubMed  CAS  Google Scholar 

  23. Ward, C. W., T. C. Ellman, and A. A. Azad. 1982. Amino acid sequence of the Pronase-related heads of neuraminidase subtype N2 from the Asian strain A/Tokyo/3/67 of influenza virus. Biochem. J. 207:91–95.

    PubMed  CAS  Google Scholar 

  24. Enook, H. G., A. Catola, and P. Strittmatter. 1976. Mechanism of rat liver microsomal stearyl-C desaturase. J. Biol. Chem. 251: 5095–5103.

    Google Scholar 

  25. Takagaki, Y., R. Radhakrishnan, K. W. A. Wirtz, and H. G. Khorana. 1983. The membrane-embedded segment of cytochrome b5 as studied by cross-linking with photoactivatable phospholipids. J. Biol. Chem. 258:9136–9142.

    PubMed  CAS  Google Scholar 

  26. Cantley, L. C. 1981. Structure and mechanism of the (Na, K)- ATPase. Curr. Top. Bioenerg. 11:201–237.

    CAS  Google Scholar 

  27. Ikemoto, N. 1982. Structure and function of the calcium pump protein of sarcoplasmic reticulum. Annu. Rev. Physiol. 44:297–317.

    Article  PubMed  CAS  Google Scholar 

  28. Guidotti, G. 1980. The structure of the band 3 polypeptide. Alfred Benzoymp. 14:300–311.

    Google Scholar 

  29. Knauf, P. A. 1979. Erythrocyte anion exchange and the band 3 protein: Transport kinetics and molecular structure. Curr. Top. Memhr. Transp. 12:249–363.

    CAS  Google Scholar 

  30. Dratz, E. A., and P. A. Hargrave. 1983. The structure of rhodopsin and the rod outer segment disk membrane. Trends Biochem. Sci. 8:128–131.

    Article  CAS  Google Scholar 

  31. Stoeckenius, W., and A. Bogomolni. 1982. Bacteriorhodopsin. Annu. Rev. Biochem. 52:587–616.

    Article  Google Scholar 

  32. Conti-Tronconi, B. M., and M. A. Raftery. 1982. The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties. Annu. Rev. Biochem. 51:491–530.

    Article  PubMed  CAS  Google Scholar 

  33. Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, S. Kikyyotani, Y. Furutani, T. Hirose, H. Takashimo, S. Inayama, T. Miyata, and S. Numa. 1983. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302:528–532.

    Article  PubMed  CAS  Google Scholar 

  34. Devillers-Thiery, A., J. Giraudat, M. Bentaboulet, and J. P. Changeux. 1983. Complete NA coding sequence of the acetylcholine binding a-subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci. U.S.A. 80:2067–2071.

    Article  PubMed  CAS  Google Scholar 

  35. Kyte, J. 1975. Structural studies of sodium and potassium ion activated adenosine triphosphatase. J. Biol. Chem. 250:7443–7449.

    PubMed  CAS  Google Scholar 

  36. Bretscher, M. S. 1971. A major protein which spans the human erythrocyte membrane. J. Mol. Biol. 59:351–357.

    Article  PubMed  CAS  Google Scholar 

  37. Guidotti, G. 1979. Coupling of ion transport to enzyme activity. In: The Neurosciences: Fourth Study Program. F. O. Schmitt and F. G. Worden, eds. MIT Press, Cambridge, Mass. pp. 831–840.

    Google Scholar 

  38. Monod, J., J. Wyman, and J. P. Changeux. 1965. On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 12:88–118.

    Article  PubMed  CAS  Google Scholar 

  39. Palade, G. E. 1975. Intracellular aspects of the process of protein synthesis. Science 189:347–358.

    Article  PubMed  CAS  Google Scholar 

  40. Bretscher, M. S. 1973. Membrane structure: Some general principles. Science 181:622–629.

    Article  PubMed  CAS  Google Scholar 

  41. Kresheck, G. G., and I. M. Klotz. 1969. The thermodynamics of transfer of amides from an apolar to an aqueous solution. Biochemistry 8:8–12.

    Article  CAS  Google Scholar 

  42. Henderson, R., and P. N. T. Unwin. 1975. Three dimensional model of purple membrane obtained by electron microscopy. Nature (London) 257:28–32.

    Article  CAS  Google Scholar 

  43. Machlan, A. D., and M. Stewart. 1975. Tropomyosin coiled- coil interactions: Evidence for an unstaggered structure. J. Mol. Biol. 98:293–304.

    Article  Google Scholar 

  44. Clothia, C. 1976. The nature of accessible and buried surfaces in proteins. J. Mol. Biol. 105:1–14.

    Article  Google Scholar 

  45. Kreil, G. 1981. Transfer of proteins across membranes. Annu. Rev. Biochem. 50:317–348.

    Article  PubMed  CAS  Google Scholar 

  46. Ploegh, H. L., L. F. Cannon, and J. L. Strominger. 1979. Cell-free translation of the NA for the heavy and light chains of HLA-A and HLA-B antigens. Proc. Natl. Acad. Sci. U.S.A. 76:2273–2277.

    Article  PubMed  CAS  Google Scholar 

  47. Porter, A. G., C. Barber, N. H. Carey, R. A. Hallewell, G. Threlfall, and J. S. Emtage. 1979. Complete nucleotide sequence of influenza virus haemagglutinin gene from cloned DNA. Nature (London) 282:471–477.

    Article  CAS  Google Scholar 

  48. Walter, P., and G. Blobel. 1982. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature (London) 299:691–698.

    Article  CAS  Google Scholar 

  49. Meyer, D. I., E. Krause, and B. Dobberstein. 1982. Secretory protein translocation across membranes: The role of the docking protein. Nature (London) 297:647–650.

    Article  CAS  Google Scholar 

  50. Chin, G., and M. Forgac. 1983. Topological localization of proteolytic sites of sodium and potassium ion stimulated ade- nosinetriphosphatase. Biochemistry 22:3405–3410.

    Article  PubMed  CAS  Google Scholar 

  51. Reithmeier, R. A. F., and D. H. Maennan. 1981. The NH2- terminus of the (Ca + + + Mg + +)-adenosine triphosphatase is located on the cytoplasmic surface of the sacroplasmic reticulum membrane. J. Biol. Chem. 256:5957–5960.

    PubMed  CAS  Google Scholar 

  52. Reithmeier, R. A. F., S. deon, and D. H. Maennan. 1980. Assembly of the sarcoplasmic reticulum: Cell-free synthesis of the Ca + + + Mg+ + -adenosine triphosphatase and calsequestrin. J. Biol. Chem. 255:11839–11846.

    PubMed  CAS  Google Scholar 

  53. Chyn, T. L., A. N. Martonosi, T. Morimoto, and D. D. Sabatini. 1970. In vitro synthesis of the CA++ transport ATPase by ribosomes bound to sarcoplasmic reticulum membranes. Proc. Natl. Acad. Sci. U.S.A. 76:1241–1245.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Publishing Corporation

About this chapter

Cite this chapter

Guidotti, G. (1987). Membrane Proteins. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Membrane Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1943-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1943-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42697-1

  • Online ISBN: 978-1-4613-1943-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics