Skip to main content

Enzymes Involved in the Metabolism of Plant Allelochemicals

  • Chapter
Molecular Aspects of Insect-Plant Associations

Abstract

Herbivorous insects have available to them two major mechanisms by which they avoid adverse effects of defensive plant allelochemicals. One is comprised of behavioral adaptations in host-seeking (Ahmad, 1983a) and feeding (Frazier, Chapter 1 and Tallamy, Chapter 8 in this text). The other is a complex of several enzymes which together spare few ingested plant chemicals from being transformed into one or more metabolites which may be utilized or eliminated. We shall, in this chapter, provide an account of these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Aal, Y. A. I. and D. M. Soderlund, 1980. Pyrethroid-hydrolyzing esterases in southern armyworm larvae: tissue distribution, kinetic properties, and selective inhibition, Pestic. Biochem. Physiol., 14:282–289.

    CAS  Google Scholar 

  • Abd-Elraof, T. K. and W. C. Dauterman, 1981. The effect of phenobarbital on mercapturic acid biosynthesis in the house fly, Musca domestica, Insect Biochem., 11:649–651.

    CAS  Google Scholar 

  • Adams, J. B. and M. E. Drew, 1965. A celluose-hydrolyzing factor in aphid saliva, Can. J. Zool., 43:489–496.

    PubMed  CAS  Google Scholar 

  • Adams, T. S. and G. G. Holt, 1986. Effect of pheromone components when applied to different models on male sexual behavior in the housefly, Musca domestica, J. Insect Physiol., in press.

    Google Scholar 

  • Afsharpour, F. and R. D. O’Brien, 1963. Column chromatography of insect esterases, J. Insect Physiol., 9:521–529.

    CAS  Google Scholar 

  • Ahmad, S., 1970. Studies on aliesterase, lipase and peptidase in susceptible and organophosphate-resistant strains of house fly (Musca domestica L.), Comp. Biochem. Physiol., 32:465–474.

    CAS  Google Scholar 

  • Ahmad, S., 1976. Larval and adult house fly carboxylesterase: isozymic composition and tissue pattern, Insect Biochem., 6:541–547.

    CAS  Google Scholar 

  • Ahmad, S., 1979. The functional roles of cytochrome P-450 mediated systems: present knowledge and future areas of investigations, Drug Metab. Rev., 10:1–14.

    PubMed  CAS  Google Scholar 

  • Ahmad, S., 1982. Roles of mixed-function oxidases in insect herbivores, in: “Proceedings of the 5th Symposium on Insect-Plant Relationships”, J. H. Visser and A. K. Minks, eds., pp. 41–47, PUDOC, Wageningen.

    Google Scholar 

  • Ahmad, S., Ed. 1983a, “Herbivorous Insects: host-seeking Behavior and Mechanisms:, Academic Press, New York.

    Google Scholar 

  • Ahmad, S., 1983b. Mixed-function oxidase activity in a generalist herbivore in relation to its biology, food plants, and feeding history, Ecology, 64:235–243.

    CAS  Google Scholar 

  • Ahmad, S., 1986. Enzymatic adaptations of herbivorous insects and mites to phytochemicals, J. Chem. Ecol., 12:533–559.

    CAS  Google Scholar 

  • Ahmad, S. and A. J. Forgash, 1973. NADPH oxidation by microsomal preparations of gypsy moth larval tissues, Insect Biochem., 3:263–273.

    CAS  Google Scholar 

  • Ahmad, S. and A. J. Forgash, 1976. Non-oxidative enzymes in the metabolism of insecticides, Drug. Metab. Rev., 5:141–164.

    CAS  Google Scholar 

  • Ahmad, S. and A. J. Forgash, 1978. Gypsy moth mixed-function oxidases: gut enzyme levels increased by rearing on a wheat germ diet, Ann. Entomol. Soc. Am., 71:449–452.

    CAS  Google Scholar 

  • Ahmad, S., A. J. Forgash and Y. T. Das, 1980. Penetration and metabolism of [14C] carbaryl in larva of the gypsy moth, Lymantria dispar (L.), Pestic. Biochem. Physiol., 14:236–248.

    CAS  Google Scholar 

  • Ahmad, S., K. E. Kirkland and G. J. Blomquist, 1987. Evidence for a sex pheromone-metabolizing cytochrome P-450 monooxygenase in the house fly, Musca domestica L., Arch. Insect Biochem. Physiol., in press.

    Google Scholar 

  • Ahmed, N. K., R. L. Felsted and N. R. Bachur, 1979. Comparison and characterization of mammalian xenobiotic ketone reductases, J. Pharmacol. Exp. Ther., 209:12–19.

    PubMed  CAS  Google Scholar 

  • Ajami, A. M. and L. M. Riddiford, 1973. Comparative metabolism of the cecropia juvenile hormone, J. Insect Physiol., 19:635–645.

    CAS  Google Scholar 

  • Aldridge, W. N., 1953. Serum esterases. 1. Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination, Biochem. J., 53:110–116.

    PubMed  CAS  Google Scholar 

  • Anderson, R. S., 1978. Aryl hydrocarbon hydroxylase in an insect, Spodoptera eridania, Comp. Biochem. Physiol., 59C:87–93.

    CAS  Google Scholar 

  • Arnault, C., 1979. Influence de substances de la plante-hote sur le developpement larvaire d’Acrolepiopsis assectella (Lepidoptera, Acrolepiidae) en alimentation artificielle, Entomol. Exp. Appl., 25:64–74.

    Google Scholar 

  • Augustinson, K. B., 1959. Electrophoretic studies on blood plasma esterases, Acta Chem. Scand., 13:571–592.

    Google Scholar 

  • Augustinson, K. B., 1961. Multiple forms of esterase in vertebrate blood plasma, Ann. N. Y. Acad. Sci., 94:944–870.

    Google Scholar 

  • Baars, A. J., 1979. Xenobiotic-metabolizing enzymes in the fruit fly Drosophila melanogaster and the albino rat, with emphasis on glutathione transferase, dissertation, State University of Leiden.

    Google Scholar 

  • Baars, A. J., 1980. Biotransformation of xenobiotics in Drosophila melanogaster and its relevance for mutagenicity testing, Drug. Metab. Rev., 11:191–221.

    PubMed  CAS  Google Scholar 

  • Bachur, -N. R., 1976. Cytoplasmic aldo-keto reductases: a class of drugmetabolizing enzymes, Science, 193:595–597.

    PubMed  CAS  Google Scholar 

  • Banerjee, R. K. and A. B. Roy, 1966. The sulfotransferases of guinea pig liver, Molec. Pharmacol., 2:56–66.

    CAS  Google Scholar 

  • Bashir, N. H. H. and L. A. Crowder, 1983. Mechanisms of permethrin tolerance in the common green lacewing, Chrysopa carnea (Neuroptera: Chrysopidae), J. Econ. Entomol., 76:407–409.

    CAS  Google Scholar 

  • Beeman, R. W. and B. A. Schmidt, 1982. Biochemical and genetic aspects of malathion-specific resistance in the Indian meal moth (Lepidoptera: Pyralidae), J. Econ. Entomol., 75:945–949.

    CAS  Google Scholar 

  • Beesley, S. G., S. G. Compton and D. A. Jones, 1985. Rhodanese in insects, J. Chem. Ecol., 11:45–50.

    CAS  Google Scholar 

  • Benke, G. M. and C. F. Wilkinson, 1971. In vitro microsomal epoxidase activity and susceptibility to carbaryl and carbaryl-piperonyl butoxide combinations in house crickets of different age and sex. J. Econ. Entomol., 64:1032–1034.

    PubMed  CAS  Google Scholar 

  • Benke, G. M., C. F. Wilkinson and J. N. Telford, 1972. Microsomal oxidases in a cockroach, Gromphadorhina portentosa, J. Econ. Entomol., 65:1221–1229.

    PubMed  CAS  Google Scholar 

  • Berenbaum, M. R., 1985. Brementown revisited: interactions among allelochemicals in plants. Rec. Adv. Phytochem., 19:139–169.

    CAS  Google Scholar 

  • Berenbaum, M. R. and J. J. Neal, 1985. Synergism between myristicin and xanthotoxin, a naturally co-occurring plant toxicant, J. Chem. Ecol., 11:1349–1358.

    CAS  Google Scholar 

  • Bernays, E. A., 1978. Tannins: an alternative viewpoint, Entomol. Exp. Appl., 24:44–53.

    Google Scholar 

  • Bernays, E. A. and S. Woodhead, 1982. Plant phenols utilized as nutrients by a phytophagous insect, Science, 216:201–203.

    PubMed  CAS  Google Scholar 

  • Berry, R. E., S. J. Yu and L. C. Terriere, 1980. Influence of host plant on insecticide metabolism and management of variegated cutworm, J. Econ. Entomol., 73:771–774.

    CAS  Google Scholar 

  • Bigley, W. S. and F. W. Plapp, 1978. Metabolism of cis-and trans-[14C] permethrin by the tobacco budworm and the bollworm, J. Agric. Food Chem., 26:1128–1134.

    CAS  Google Scholar 

  • Binning, A., F. J. Barby, M. P. Heenan and J. N. Smith, 1967. The conjugation of phenols with phosphate in grass grubs and flies, Biochem. J., 103:42–48.

    PubMed  CAS  Google Scholar 

  • Blau, P. A., P. Feeny and L. Contardo, 1978. Allylglucosinolate and herbivorous caterpillars: a contrast in toxicity and tolerance, Science, 200:1296–1298.

    PubMed  CAS  Google Scholar 

  • Blomquist, G. J., J. W. Dillwith and T. S. Adams, 1987. Biosynthesis and endocrine regulation of sex pheromone production in Diptera, in:“Pheromone biochemistry”, G. D. Prestwich and G. J. Blomquist, eds., Academic Press, Miami, in press.

    Google Scholar 

  • Bollenbacher, W. E., S. L. Smith, J. J. Wielgus and L. I. Gilbert, 1977. Evidence for an α-ecdysone cytochrome P-450 mixed-function oxidase in insect fatbody mitochondria, Nature, 268:660–663.

    CAS  Google Scholar 

  • Booth, J., A. Hewer, G. R. Keysell and P. M. Sims, 1975. Enzymatic reduction of aromatic hydrocarbon epoxides by the microsomal fraction of rat liver, Xenobiotica, 5:197–203.

    PubMed  CAS  Google Scholar 

  • Bosron, W. F. and T. K. Li, 1980. Alcohol dehydrogenase, in: “Enzymatic Basis of Detoxification”, W. B. Jakoby, ed., Vol. 1, pp. 231–248, Academic Press, New York.

    Google Scholar 

  • Brattsten, L. B., 1979a. Ecological significance of mixed-function oxidations, Drug. Metab. Rev., 10:35–58.

    PubMed  CAS  Google Scholar 

  • Brattsten, L. B., 1979b. Biochemical defense mechanisms in herbivores against plant allelochemicals, in: “Herbivores, Their Interaction with Secondary Plant Metabolites”, G. A. Rosenthal and D. H. Janzen, eds., pp. 199–270, Academic Press, New York.

    Google Scholar 

  • Brattsten, L. B., 1986a. Metabolic insecticide defenses in the boll weevil compared to those in a resistance-prone species, Pestic. Biochem. Physiol., in press.

    Google Scholar 

  • Brattsten, L. B., 1986b. Inducibility of metabolic defenses in the boll weevil and the tobacco budworm, Pestic. Biochem. Physiol., in press.

    Google Scholar 

  • Brattsten, L. B., 1986c. Potential role of plant allelochemicals in the development of insecticide resistance, in: “Indirect effects of plant allelochemicals”, P. Barbosa, ed., J. Wiley and Sons, New York, in press.

    Google Scholar 

  • Brattsten, L. B. and C. A. Gunderson, 1981. Isolation of insect microsomal oxidases by rapid centrifugation, Pestic. Biochem. Physiol., 16:187–198.

    CAS  Google Scholar 

  • Brattsten, L. B. and R. L. Metcalf, 1970. The synergistic ratio of carbaryl with piperonyl butoxide as an indicator of the distribution of multifunction oxidases in the Insecta, J. Econ. Entomol., 63:101–104.

    PubMed  CAS  Google Scholar 

  • Brattsten, L. B. and R. L. Metcalf, 1973. Synergism of carbaryl toxicity in natural insect populations, J. Econ. Entomol., 66:1347–1348.

    CAS  Google Scholar 

  • Brattsten, L. B., S. L. Price and C. A. Gunderson, 1980. Microsomal oxidases in midgut and fatbody tissues of a broadly herbivorous insect larva, Spodoptera eridania Cramer (Noctuidae). Comp. Biochem. Physiol., 66C:231–237.

    CAS  Google Scholar 

  • Brattsten, L. B., C. F. Wilkinson and M. M. Root, 1976. Microsomal hydroxylation of aniline in the southern armyworm (Spodoptera eridania), Insect Biochem., 6:615–620.

    CAS  Google Scholar 

  • Brattsten, L. B., C. K. Evans, S. Bonetti and L. H. Zalkow, 1984. Induction by carrot allelochemicals of insecticide-metabolizing enzymes in the southern armyworm (Spodoptera eridania), Comp. Biochem. Physiol., 77C:29–37.

    CAS  Google Scholar 

  • Brattsten, L. B., C. A. Gunderson, J. T. Fleming and K. N. Nikbahkt, 1986. Temperature and diet modulate cytochrome P-450 activities in southern armyworm, Spodoptera eridania Cramer, caterpillars, Pestic. Biochem. Physiol., 25:346–357.

    CAS  Google Scholar 

  • Breuer, M. and R. Knuppen, 1961. The formation and hydrolysis of 16 , 17 -epoxyoestratriene-3-ol by rat liver tissue, Biochem. Biophys. Acta, 49:620–621.

    CAS  Google Scholar 

  • Bridges, R. G., 1983. Insect phospholipids, in: “Metabolic Aspects of Lipid Nutrition in Insects”, T. E. Mittler and R. H. Dadd, eds., pp. 159–181, Westview Press, Boulder.

    Google Scholar 

  • Brooks, G. T., 1973. Insect epoxide hydrase inhibition by juvenile hormone analogues and metabolic inhibitors, Nature, 245:382–384.

    CAS  Google Scholar 

  • Brooks, G. T., A. Harrison, S. E. Lewis, 1970. Cyclodiene epoxide ring hydration by microsomes from mammalian liver and house flies, Biochem. Pharmacol., 19:255–273.

    PubMed  CAS  Google Scholar 

  • Brown, T. M. and G. H. S. Hooper, 1979. Metabolic detoxication as a mechanism of methoprene resistance in Culex pipiens pipiens, Pestic. Biochem. Physiol., 12:79–86.

    CAS  Google Scholar 

  • Bull, L. B., C. C. J. Culvenor and A. T. Dick, 1968. “The Pyrrolizidine alkaloids”, J. Wiley and Sons, New York.

    Google Scholar 

  • Burt, M. E., R. J. Kuhr and W. S. Bowers, 1978. Metabolism of precocene II in the cabbage looper and European corn borer, Pestic. Biochem. Physiol., 9:300–303.

    CAS  Google Scholar 

  • Caldwell, J., 1982. Conjugation reactions in foreign-compound metabolism: definition, consequences, and species variations, Drug Metab. Rev., 13:745–777.

    PubMed  CAS  Google Scholar 

  • Capdevila, J., N. Ahmad and M. Agosin, 1975. Soluble cytochrome P-450 from house fly microsomes. Partial purification and characterization of two hemo-protein forms, J. Biol. Chem., 250:1048–1060.

    Google Scholar 

  • Casabe, N. and E. Zerba, 1981. Esterases of Triatoma infestans and its relationship with the metabolism of organophosphorous insecticides, Comp. Biochem. Physiol., 68C:255–258.

    CAS  Google Scholar 

  • Casida, J. E., 1955. Comparative enzymology of certain insect acetylesterases in relation to poisoning by organophosphorous insecticides, Biochem. J., 60:487–496.

    PubMed  CAS  Google Scholar 

  • Casida, J. E., 1970. Mixed-function oxidase involvement in the biochemistry of insecticide synergists, J. Agric. Food Chem., 18:753–772.

    PubMed  CAS  Google Scholar 

  • Cassidy, J. D., E. Smith and E. Hodgson, 1969. An ultrastructural analysis of microsomal preparations from Musca domestica and Prodenia eridania, J. Insect Physiol., 13:1573–1578.

    Google Scholar 

  • Chance, B. and A. M. Pappenheimer, 1954. Kinetic and spectrophotometric studies of cytochrome b5 in midgut homogenates of Cecropia, J. Biol. Chem., 209:931–943.

    PubMed  CAS  Google Scholar 

  • Chang, C. K. and T. W. Jordan, 1983. Distribution of permethrinhydrolyzing esterases from Wiseana cervinata larvae, Pestic. Biochem. Physiol., 19:190–195.

    CAS  Google Scholar 

  • Chang, C. K., A. G. Clark, A. Fieldes and S. Pound, 1981. Some properties of a glutathione S-transferase from the larvae of Galleria mellonella, Insect Biochem., 11:179–186.

    CAS  Google Scholar 

  • Chang, K. M., C. F. Wilkinson, K. Hetnarski and M. Murray, 1983. Aryl hydrocarbon hydroxylase in larvae of the southern armyworm (Spodoptera eridania), Insect Biochem., 13:87–94.

    CAS  Google Scholar 

  • Chipoulet, J. M. and C. Chararas, 1985. Survey and electrophoretical separation of the glycosidases of Rhagium inquisitor (Coleoptera: Cerambycidae) larvae, Comp. Biochem. Physiol., 80B:241–246.

    CAS  Google Scholar 

  • Clark, A. G. and B. Drake, 1984. Purification and properties of glutathione S-transferases from larvae of Wiseana cervinata, Biochem. J., 217:41–50.

    PubMed  CAS  Google Scholar 

  • Clark, A. G. and N. A. Shaaman, 1984. Evidence that DDT-dehydrochlorinase from the house fly is a glutathione S-transferase, Pestic. Biochem. Physiol., 22:249–261.

    CAS  Google Scholar 

  • Clark, A. G., F. J. Darby and J. N. Smith, 1967. Species differences in the inhibition of glutatione S-aryl transferase by phthaleins and dicarboxylic acids, Biochem. J., 103:49–54.

    PubMed  CAS  Google Scholar 

  • Clark, A. G., N. A. Shaaman, W. C. Dauterman and T. Hayaoka, 1984. Characterization of multiple glutatione transferases frpm the house fly, Musca domestica (L.), Pestic. Biochem. Physiol., 22:51–59.

    CAS  Google Scholar 

  • Clark, A. G., G. L. Dick. S. M. Martindale and J. N. Smith, 1985. Glutathione S-transferases from the New Zealand grass grub, Costelytra zealandica. Their isolation and characterization and the effect on their activity of endogenous factors, Insect Biochem., 15:35–44.

    CAS  Google Scholar 

  • Clements, A. N., 1967. A study of soluble esterases in Pieris brassicae (Lepidoptera), J. Insect Physiol., 13:1021–1030.

    CAS  Google Scholar 

  • Cohen, A. J., J. N. Smith and H. Turbert, 1964. Comparative detoxification, 10. The enzymic conjugation of chlorocompounds with glutathione in locusts and other insects, Biochem. J., 90:457–464.

    PubMed  CAS  Google Scholar 

  • Cohen, E., 1981. Epoxide hydrase activity in the flour beetle, Tribolium castaneum (Coleoptera, Tenebrionidae), Comp. Biochem. Physiol., 69B:29–34.

    CAS  Google Scholar 

  • Cole, R. A., 1975. 1-cyanoepithioalkanes: major products of alkenyl glucosinolate hydrolysis in certain Cruciferae, Phytochemistry, 14:2293–2294.

    CAS  Google Scholar 

  • Collins, P. J., 1985. Induction of the polysubstrate monooxygenase system in the native budworm Heliothis punctiger (Wallengren) (Lepidoptera: Noctuidae), Insect Biochem., 15:551–555.

    CAS  Google Scholar 

  • Cook, B. J. and A. J. Forgash, 1965. The identification and distribution of the carboxylic esterases in the American cockroach, Periplaneta americana (L.), J. Insect Physiol., 11:237–250.

    PubMed  CAS  Google Scholar 

  • Cook, J. C. and E. Hodgson, 1983. Induction of cytochrome P-450 by methylene dioxyphenyl compounds: importance of the methylene carbon, Toxicol. Appl. Pharmacol., 68:131–139.

    PubMed  CAS  Google Scholar 

  • Crankshaw, D. L., K. Hetnarski and C. F. Wilkinson, 1981. Interspecies cross-reactivity of an antibody to southern armyworm (Spodoptera eridania) midgut NADPH-cytochrome c reductase, Insect Biochem., 11:593–597.

    CAS  Google Scholar 

  • Croft, B. A. and C. A. Mullin, 1984. Comparison of detoxification enzyme systems in Argyrotaenia citrana (Lepidoptera: Tortricidae) and the ectoparasite Oncophanes americanus (Hymenoptera: Braconidae), Environ. Entomol., 13:1330–1335.

    CAS  Google Scholar 

  • Das, M., D. R. Bickers and H. Mukhtar, 1984. Plant phenols as in vitro inhibitors of glutathione S-transferases, Biochem. Biophys. Res. Comm., 120:427–433.

    PubMed  CAS  Google Scholar 

  • Dauterman, W. C., 1976. Extra microsomal metabolism of insecticides, in: “Insecticide Biochemistry and Physiology”, C. F. Wilkinson, ed., pp. 149–176, Plenum Publ. Corp., New York.

    Google Scholar 

  • Dauterman, W. C., 1980. Metabolism of toxicants: phase II reactions, _in: “Introduction to Biochemical Toxicology”, E. Hodgson and F. E. Guthrie, eds., pp. 92–105, Elsevier, New York.

    Google Scholar 

  • Dauterman, W. C., 1985. Insect metabolism: extramicrosomal, in: “Comprehensive Insect Physiology, Biochemistry, and Pharmacology”, G. A. Kerkut and L. I. Gilbert, eds., Vol. 12, pp. 713–730. Pergamon Press, New York.

    Google Scholar 

  • Dauterman, W. C. and E. Hodgson, 1978. Detoxication mechanisms in insects, in; “Biochemistry of Insects”, M. Rockstein, ed., pp. 541–577, Academic Press, New York.

    Google Scholar 

  • Davidson, W. S., D. J. Walton and T. G. Flynn, 1978. A comparative study of the tissue and species distribution of NADPH-dependent aldehyde reductase, Comp. Biochem. Physiol., 60B:309–315.

    CAS  Google Scholar 

  • Davis, R. H. and A. Nahrstedt, 1979. Linamarin and lotaustralin as the source of cyanide in Zygaena filipendulae L. (Lepidoptera), Comp. Biochem. Physiol., 64B:395–397.

    CAS  Google Scholar 

  • Davis, R. H. and A. Nahrstedt, 1985. Cyanogenesis in insects, in: “Comprehensive Insect Physiology, Biochemistry, and Pharmacology”, G. A. Kerkut and L. I. Gilbert, eds., Vol. 11, pp. 635–657. Pergamon Press, New York.

    Google Scholar 

  • De Jersey, J., J. Nolan, P. A. Davey and P. W. Riddles, 1985. Separation and characterization of the pyrethroid-hydrolyzing esterases of the cattle tick, Boophilus microplus, Pestic. Biochem. Physiol., 23:349–357.

    Google Scholar 

  • Delden, V. van Evbia, 1982. The alcohol dehydrogenase polymporhism in Drosophila melanogaster: selection at an enzyme locus, Evolutionary Biol., 15:197–222.

    Google Scholar 

  • Denison, M. S., J. W. Hamilton and C. F. Wilkinson, 1985. Comparative studies of aryl hydrocarbon hydroxylase and the Ah receptor in non-mammalian species, Comp. Biochem. Physiol., 80C:319–324.

    CAS  Google Scholar 

  • Devonshire, A. L. and G. D. Moores, 1982. A carboxylesterase with broad substrate specificity causes organophosphorous, carbamate, and pyrethroid resistance in peach-potato aphids (Myzus persicae), Pestic. Biochem. Physiol., 18:235–246.

    CAS  Google Scholar 

  • Devonshire, A. L. and G. D. Moores, 1984. Immunoassay of carboxylesterase activity for identifying insecticide resistant Myzus persicae, Proc. Br. Crop Prot. Conf.: Pests, Pis., 2:515–520.

    Google Scholar 

  • Devonshire, A. L. and R. M. Sawicki, 1979. Insecticide-resistant Myzus persicae as an example of evolution by gene duplication, Nature, 280:140–141.

    Google Scholar 

  • Dickins, M., J. W. Bridges, C. R. Elcombe and K. J. Netter, 1978. A novel hemoprotein induced by isosafrole pre-treatment in the rat, Biochem. Biophys. Res. Commun., 80:89–96.

    PubMed  CAS  Google Scholar 

  • Dillwith, J. W. and G. J. Blomquist, 1982. Site of sex pheromone production in the housefly, Musca domestica L., Experientia, 38:471–473.

    CAS  Google Scholar 

  • Dorough, H. W., 1979. Metabolism of insecticides by conjugation mechanisms, Pharmac. Therap., 4:433–471.

    CAS  Google Scholar 

  • Doskotch, R. W. and F. S. El-Feraly, 1969. Isolation and characterization of (+)-sesamin and B-cyclopyrethrosin from pyrethrum flowers, Can. J. Chem., 47:1139–1142.

    CAS  Google Scholar 

  • Dowd, P. F., C. M. Smith and T. C. Sparks, 1983a. Influence of soybean leaf extracts on ester cleavage in cabbage and soybean loopers (Lepidoptera: Noctuidae), J. Econ. Entomol., 76:700–703.

    Google Scholar 

  • Dowd, P. F., C. M. Smith and T. C. Sparks, 1983b. Detoxification of plant toxins by insects, Insect Biochem., 13:453–468.

    CAS  Google Scholar 

  • Downer, R. G. H., 1978. Functional role of lipids in insects, in: “Biochemistry of Insects”, M. Rockstein, ed., pp. 57–92, Academic Press, New York.

    Google Scholar 

  • Duffey, S. S., 1981. Cyanide and arthropods, in: “Cyanide in Biology”, B. Vennerland, E. E. Conn, C. J. Knowles, J. Westley and F. Wissing, eds., pp. 385–414, Academic Press, New York.

    Google Scholar 

  • Dutton, G. J., 1962. The mechanism of o-aminophenyl glucoside formation in Periplaneta americana, Comp. Biochem. Physiol., 7:39–46.

    CAS  Google Scholar 

  • Dykstra, W. G. and W. C. Dauterman, 1978. Excretion, distribution and metabolism of S-(2,4-dinitrophenyl) glutatione in the American cockroach, Insect Biochem., 8:263–265.

    CAS  Google Scholar 

  • Dyte, C. E. and D. G. Rowlands, 1968. The metabolism and synergism of malathion in resistant and susceptible strains of Tribolium castaneum (Herbst) (Coleoptera, Tenebrionidae), J. Stored Prod. Res., 4:157–173.

    CAS  Google Scholar 

  • Eagleson, C., 1940, U. S. Patent No. 2,202,145.

    Google Scholar 

  • Ehrlich, P. R. and P. H. Raven, 1964. Butterflies and plants: a study in coevolution, Evolution, 18:586–608.

    Google Scholar 

  • Elliott, M., N. F. James, E. C. Kimmel and J. E. Casida, 1972. Metabolic fate of pyrethrin I, pyrethrin II and allethrin administered orally to rats, J. Agr. Food Chem., 20:300–313.

    CAS  Google Scholar 

  • Ellis-Pratt, G., 1983. The mode of action of pro-allatocidins, in: “Natural Products for Innovative Pest Management”, D. L. Whitehead and W. S. Bowers, eds., pp. 323–355, Pergamon Press, New York.

    Google Scholar 

  • Esaac, E. G. and J. E. Casida, 1968. Piperonylic acid conjugates with alanine, glutamate, glutamine, and serine in living house flies, J. Insect Physiol., 14:913–925.

    PubMed  CAS  Google Scholar 

  • Ettlinger, M. G., G. P. Dateo, Jr., B. W. Harrison, T. J. Mabry and C. P. Thompson, 1961. Vitamin C as a coenzyme: the hydrolysis of mustard oil glucosides, Proc. Nat. Acad. Sci. USA, 47:1875–1880.

    PubMed  CAS  Google Scholar 

  • Evans, P. H., D. M. Soderlund and J. R. Aldrich, 1980. In vitro Nacetylation of biogenic amines by tissues of the European corn borer, Ostrinia nubilalis Hubner, Insect Biochem., 10:375–380.

    CAS  Google Scholar 

  • Felsted, R. L. and N. R. Bachur, 1980. Ketone reductases, in: “Enzymatic Basis of Detoxication”, W. B. Jakoby, ed., Vol. 1, pp. 281–293. Academic Press, New York.

    Google Scholar 

  • Ferkovich, S. M., J. E. Oliver and C. Dillard, 1982. Pheromone hydrolysis by cuticular and interior esterases of the antennae, legs, and wings of the cabbage looper moth, Trichoplusia ni (Hubner), J. Chem. Ecol., 8:859–866.

    CAS  Google Scholar 

  • Feyereisen, R. and F. Durst, 1980. Control of cytochrome P-450 monooxygenases in an insect by the steroid moulting hormone, in: “Microsomes, Drug Oxidations, and Chemical Carcinogens”, M. J. Coon, A. H. Conney, R. W. Estabrook, H. V. Gelboin, J. R. Gillette, and P. J. O’Brien, eds., pp. 595–598, Academic Press, New York.

    Google Scholar 

  • Feyereisen, R. and D. E. Farnsworth, 1985. Developmental changes of microsomal cytochrome P-450 monooxygenases in larval and adult Diploptera punctata, Insect Biochem., 6:755–761.

    Google Scholar 

  • Feyereisen, R., G. E. Pratt and A. F. Hamnett, 1981. Enzymic synthesis of juvenile hormone in locust corpora allata: evidence for a microsomal cytochrome P-450 linked methylfarnesoate epoxidase, Eur. J. Biochem., 118:231–238.

    PubMed  CAS  Google Scholar 

  • Fisher, C. W., and R. T. Mayer, 1984. Partial purification and characterization of phenobarbital-induced house fly cytochrome P-450, Arch. Insect Biochem. Physiol., 1:127–138.

    CAS  Google Scholar 

  • Folsom, M. D. and E. Hodgson, 1970. Biochemical characteristics of insect microsomes: NADPH oxidation by intact microsomes from the house fly, Musca domestica, Comp. Biochem. Physiol., 37:301–310.

    PubMed  CAS  Google Scholar 

  • Fontan, A. and E. Zerba, 1984. Integumental esteratic activity in Triatoma infestans and its contribution to the degradation of organophosphorous insecticides, Comp. Biochem. Physiol., 79C:183–188.

    CAS  Google Scholar 

  • Fox, L. R. and P. A. Morrow, 1981. Specialization: species property or local phenomenon, Science, 211:887–893.

    PubMed  CAS  Google Scholar 

  • Fox, P. M. and J. S. Massare, 1976. Aspects of juvenile hormone metabolism in Periplaneta americana (L.), Comp. Biochem. Physiol., 53B:195–200.

    Google Scholar 

  • Friedlander, A. and S. Navarro, 1984. The glutathione status of Ephestia cautella (Walker) pupae exposed to carbon dioxide. Comp. Biochem. Physiol., 79C:217–218.

    CAS  Google Scholar 

  • Fujimoto, Y., M. Morisaki and N. Ikekawa, 1985. Enzymatic dealkylation of phytosterols in insects, Meth. Entymol., 111:346–352.

    CAS  Google Scholar 

  • Garfinkel, D., 1958. Studies on pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions, Arch. Biochem. Biophys., 77:493–509.

    PubMed  CAS  Google Scholar 

  • Gatehouse, A. M. R., K. A. Fenton and J. H. Anstee, 1985. Carbohydrase and esterase activity in the gut of larval Callosobruchus maculatus, Experientia, 41:1202–1205.

    CAS  Google Scholar 

  • Georghiou, G. P. and N. Pasteur, 1978. Electrophoretic esterase patterns in insecticide-resistant and susceptible mosquitoes, J. Econ. Entomol., 71:201–205.

    PubMed  CAS  Google Scholar 

  • Gessner, T. and M. Acara, 1968. Metabolism of thiols: S-glucosylation, J. Biol. Chem., 243:3142–3147.

    PubMed  CAS  Google Scholar 

  • Gil, D. L. and C. F. Wilkinson, 1977. Structure-activity relationships of 1,2,3-benzothiadiazole insecticide synergists as inhibitors of microsomal oxidation, Pestic. Biochem. Physiol., 7:183–193.

    CAS  Google Scholar 

  • Gil, D. L., H. A. Rose, R. S. H. Yang, R. G. Young and C. F. Wilkinson, 1974. Enzyme induction by phenobarbital in the Madagascar cockroach, Gromphadorhina portentosa, Comp. Biochem. Physiol., 47B:657–662.

    Google Scholar 

  • Gillette, J. R., A. H. Conney, G. J. Cosmides, R. W. Estabrook, J. R. Fouts and G. J. Mannering, eds., 1969. “Microsomes and drug oxidations”, Academic Press, New York.

    Google Scholar 

  • Glass, E. H. and P. J. Chapman, 1952. The redbanded leaf roller and its control, N. Y. State Agric. Exp. Sta. Bull. No. 755.

    Google Scholar 

  • Goldman, P., 1982. Role of the intestinal microflora, in: “Metabolic Basis of Detoxication”, W. B. Jakoby, J. R. Bend and J. Caldwell, eds., pp. 323–338, Academic Press, New York.

    Google Scholar 

  • Gordon, H. T., 1961. Nutritional factors in insect resistance to chemicals, Annu. Rev. Entomol., 6:27–54.

    CAS  Google Scholar 

  • Gorrod, J. W., 1973. Differentiation of various types of biological oxidation of nitrogen in organic compounds, Chem. Biol. Interact., 7:289–303.

    CAS  Google Scholar 

  • Gould, F., 1984. Mixed-function oxidases and herbivore polyphagy: the devil’s advocate position, Ecol. Entomol., 9:29–34.

    Google Scholar 

  • Gould, F. and E. Hodgson, 1980. Mixed function oxidase and glutathione transferase activity in last instar Heliothis virescens larvae, Pestic. Biochem. Physiol., 13:34–40.

    CAS  Google Scholar 

  • Greenwood, D. R. and H. H. Rees, 1984. Ecdysone 20-monooxygenase in the desert locust, Schistocerca gregaria, Biochem. J., 223:837–847.

    PubMed  CAS  Google Scholar 

  • Gunderson, C. A., L. B. Brattsten and J. T. Fleming, 1986. Microsomal oxidase and glutathione transferase as factors influencing the effects of pulegone in southern and fall armyworm larvae, Pestic. Biochem. Physiol., 26:238–249.

    CAS  Google Scholar 

  • Haller, H. L., E. R. McGovran, L. D. Goodhue, and W. N. Sullivan, 1942. The synergistic action of sesamin with pyrethrum insecticides, J. Org. Chem., 7:183–185.

    CAS  Google Scholar 

  • Halpin, R. A., K. P. Vyas, S. B. El-Naggar and D. M. Jerina, 1984. Metabolism and hepatotoxicity of the naturally occurring benzo(b)pyran precocene I, Chem. Biol. Interact., 48:297–315.

    PubMed  CAS  Google Scholar 

  • Hammock, B. D. and L. S. Hasagawa, 1983. Differential substrate selectivity of murine hepatic cytosolic and microsomal epoxide hydrolases, Biochem. Pharmacol., 32:1155–1164.

    PubMed  CAS  Google Scholar 

  • Hammock, B. D. and G. B. Quistad, 1976. The degradative metabolism of juvenoids by insects, in: “The Juvenile Hormones”, L. I. Gilbert, ed., pp. 374–393, Plenum Publ. Corp., New York.

    Google Scholar 

  • Hammock, B. D. and G. B. Quistad, 1981. Metabolism and mode of action of juvenile hormones, juvenoids, and other insect growth regulators, in: “Progress in Pesticide Biochemistry”, D. H. Hutson and T. R. Roberts, eds, Vol. 1, pp. 1–83, John Wiley and Sons, New York.

    Google Scholar 

  • Hammock, B. D., T. C. Sparks and S. M. Mumby, 1977. Selective inhibition of JH esterase from cockroach hemolymph, Pestic. Biochem. Physiol., 7:517–530.

    CAS  Google Scholar 

  • Hammock, B. D., S. S. Gill, S. M. Mumby and K. Ota, 1980. Comparison of epoxide hydrolases in the soluble and microsomal fractions of mammalian liver, in: “Molecular Basis of Environmental Toxicity”, R. S. Bhatnagar, ed., pp. 229–272, Ann Arbor Science Publ., Ann Arbor.

    Google Scholar 

  • Hansen, L. G. and E. Hodgson, 1971. Biochemical characteristics of insect microsomes; N-and O-demethylation, Biochem. Pharmacol., 20:1569–1578.

    CAS  Google Scholar 

  • Hayaoka, T. and W. C. Dauterman, 1983. The effect of phenobarbital induction on glutathione conjugation of diazinon in susceptible and resistant houseflies, Pestic. Biochem. Physiol., 19:344–349.

    CAS  Google Scholar 

  • Heirweigh, K. P. M., J. A. T. P. Meuwissen and J. Fevery, 1971. Enzymic formation of ß-D-monoglucuronide, ß-D-monoglucoside and mixtures of 3-D-monoxyloside and B-D-dixyloside of bilirubin by microsomal preparations from rat liver, Biochem. J., 125:28–29.

    Google Scholar 

  • Hemingway, J., 1985. Malathion carboxylesterase enzymes in Anopheles arabiensis from Sudan, Pestic. Biochem. Physiol., 23:309–313.

    CAS  Google Scholar 

  • Heymann, E., 1980. Carboxylesterases and amidases, in: “Enzymatic Basis of Detoxication”, W. B. Jakoby, ed., Vol. 2, pp. 291–323, Academic Press, New York.

    Google Scholar 

  • Hiltz, H. and F. Lipmann, 1955. The enzymatic activation of sulfate, Proc. Nat. Acad. Sci., USA, 41:880–890.

    Google Scholar 

  • Himwich, W. A. and J. P. Saunders, 1948. Enzymatic conversion of cyanide to thiocyanate, Am. J. Physiol., 153:348–354.

    PubMed  CAS  Google Scholar 

  • Hipps, P. P. and D. R. Nelson, 1974. Esterases from the midgut and gastric cecum of the American cockroach, Periplaneta americana. Isolation and characterization, Biochem. Biophys. Acta., 341:421–436.

    PubMed  CAS  Google Scholar 

  • Hodgson, E., 1979. Comparative aspects of the distribution of cytochrome P-450-dependent monooxygenase systems; an overview, Drug Metab. Rev., 10:15–33.

    PubMed  CAS  Google Scholar 

  • Hodgson, E., 1983. Production of pesticide metabolites by oxidative reactions, J. Toxicol. Clin. Toxicol., 19:609–621.

    Google Scholar 

  • Hodgson, E., 1985. Microsomal monooxygenases, in: “Comprehensive Insect Physiology, Biochemistry, and Pharmacology”, G. A. Kerkut and L. I. Gilbert, Eds., Vol 11, pp. 206–321, Pergamon Press, New York.

    Google Scholar 

  • Hodgson, E. and J. E. Casida, 1961. Metabolism of N, N-dialkylcarbamates and related compounds by rat liver, Biochem. Pharmacol., 8:179–191.

    PubMed  CAS  Google Scholar 

  • Hodgson, E. and A. P. Kulkarni, 1979. Characterization of cytochrome P 450 in studies of insecticide resistance, in: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 207–228, Plenum Publ. Corp., New York.

    Google Scholar 

  • Hollingworth, R. M., 1976. The biochemical and physiological basis of selective toxicity, in: “Insecticide Biochemistry and Physiology”, C. F. Wilkinson, ed., pp. 431–506. Plenum Publ. Corp., New York.

    Google Scholar 

  • Hopf, H. S., 1954. Studies in the mode of action of insecticides. II. Inhibition of the acetylesterases of the locust nerve cord by some organic phosphoric esters, Ann. Appl. Biol., 41:248–260.

    CAS  Google Scholar 

  • Hosel, W. and E. E. Conn, 1982. The aglycone specificity of plant ß-glycosidases, Trends Biochem. Sci., 7:219–221.

    Google Scholar 

  • Hughes, B. P. and D. A. Raftos, 1985. Genetics of an esterase associated with resistance to organophosphorous insecticides in the sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae), Bull. Entomol. Res., 75:535–545.

    CAS  Google Scholar 

  • Hwang-Hsu, K., G. Reddy, A. K. Kumaran, W. E. Bollenbacher and L. I. Gilbert, 1979. Correlations between juvenile hormone esterase activity, ecdysone titre, and cellular reprogramming in Galleria mellonella, J. Insect Physiol., 25:105–111.

    CAS  Google Scholar 

  • International Union of Biochemistry (IUB), 1984. “Enzyme Nomenclature”, Academic Press, New York.

    Google Scholar 

  • Isaac, R. E., K. K. Phua and H. H. Rees, 1982. 3’-Phosphoadenosine-5’-phosphosulfate synthesis and involvement of sulphotransferase reactions in the insect, Spodoptera littoralis, Biochem. J., 204:127–133.

    PubMed  CAS  Google Scholar 

  • Ishaaya, I. and J. E. Casida, 1980. Properties and toxicological significance of esterases hydrolyzing permethrin and cypermethrin in Trichoplusia ni larval gut and integument, Pestic. Biochem. Physiol., 14:178–184.

    CAS  Google Scholar 

  • Jakoby, W. B., ed., 1980. “Enzymatic Basis of Detoxication”, Vol. 2, Academic Press, New York.

    Google Scholar 

  • Jakoby, W. B. and W. H. Habig, 1980. Glutathione transferases, in: “Enzymatic Basis of Detoxication”, W. B. Jakoby, ed., Vol. 2, pp. 63–94, Academic Press, New York.

    Google Scholar 

  • Jakoby, W. B., J. R. Bend and J. Caldwell, eds., 1982. “Metabolic Basis of Detoxication, Metabolism of Functional Groups”, Academic Press, New York.

    Google Scholar 

  • Jameson, G. W., J. R. MacFarlane and T. W. Hogan, 1976. Esterases in relation to embryonic development in the field cricket Teleogryllus commodus, Insect Biochem., 6:59–63.

    CAS  Google Scholar 

  • Jansen, M., A. J. Baars and D. D. Breimer, 1984. Cytosolic glutathione S-transferases in Drosophila melanogaster, Biochem. Pharmacol., 33:3655–3659.

    PubMed  CAS  Google Scholar 

  • Jao, L. T. and J. E. Casida, 1974. Insect pyrethroid-hydrolyzing esterases, Pestic. Biochem. Physiol., 4:465–472.

    CAS  Google Scholar 

  • Jones, D., J. Parsons and M. Rothschild, 1962. Release of hydrocyanic acid from crushed tissues of all stages in the life-cylce of species of the Zygaenidae (Lepidoptera), Nature, 193:52–53.

    PubMed  CAS  Google Scholar 

  • Junge, W., 1984. Carboxylesterase, in: “Methods in Enzymatic Analysis” H. U. Bergmeyer, ed.,3rd edition, Vol. 4, pp. 2–8, Verlag Chemie, Miami.

    Google Scholar 

  • Junge, W. and H. Klees, 1984. Arylesterase, in: ibid., pp. 8–14.

    Google Scholar 

  • Kalyanaraman, B., 1982. Detection of toxic free radicals in biology and medicine, Rev. Biochem. Toxicol., 4:74–139.

    Google Scholar 

  • Kaneko, A., Y. Yoshida, K. Enomoto, T. Kaku, K. Hirata and T. Onoe, 1979. Induction of a microsomal butyrylesterase in rat liver by phenobarbital treatment, Biochem. Biophys. Acta, 582:185–195.

    PubMed  CAS  Google Scholar 

  • Kao, L. R., N. Motoyama and W. C. Dauterman, 1985. The purification and characterization of esterases from insecticide-resistant and susceptible house flies, Pestic. Biochem. Physiol., 23:228–239.

    CAS  Google Scholar 

  • Kapin, M. A. and S. Ahmad, 1980. Esterases in larval tissues of gypsy moth, Lymantria dispar (L.): optimum assay conditions, quantification and characterization. Insect Biochem., 10:331–337.

    CAS  Google Scholar 

  • Karlson, P. and H. Ammon, 1963. Biogenesis and fate of the acetyl group of N-acetyl dopamine, Z. Physiol. Chem., 330:161–168.

    CAS  Google Scholar 

  • Kato, R., K. Iwasaki and H. Noguchi, 1978. Reduction of tertiary amine N-oxides by cytochrome P-450, Mol. Pharmacol., 14:654–664.

    PubMed  CAS  Google Scholar 

  • Keevil, T. and H. S. Mason, 1978. Molecular oxygen in biological oxidations, an overview, Meth. Enzymol., 52:3–40.

    PubMed  CAS  Google Scholar 

  • Kent, P. W. and P. C. J. Brunet, 1959. The occurrence of protocathechuic acid and its 4-0-$ -D-glucoside in Blatta and Periplaneta, Tetrahedron, 7:252–256.

    CAS  Google Scholar 

  • Klages, G. and H. Emmerich, 1979. Juvenile hormone metabolism and juvenile hormone esterase titer in hemolymph and peripheral tissues of Drosophila hydrei, J. Comp. Physiol., 132:319–325.

    CAS  Google Scholar 

  • Klingenberg, M., 1958. Pigments of rat liver microsomes, Arch. Biochem. Biophys., 75:376–386.

    PubMed  CAS  Google Scholar 

  • Koren, B., A. Yawetz and A. S. Perry, 1984. Biochemical properties characterizing the development of tolerance to malathion in Ceratitis capitata Wiedemann (Diptera: Tephritidae), J. Econ. Entomol., 77:864–867.

    CAS  Google Scholar 

  • Kramer, S. J., M. Wieten and C. A. D. deKort, 1977. Metabolism of juvenile hormone in Colorado potato beetle, Leptinotarsa decemlineata, Insect Biochem., 7:231–236.

    CAS  Google Scholar 

  • Krieger, R. I. and C. F. Wilkinson, 1969. Microsomal mixed-function oxidases in insects. 1. Localization and properties of an enzyme system effecting aldrin epoxidation in larvae of the southern armyworm (Prodenia eridania), Biochem. Pharmacol., 18:1403–1415.

    PubMed  CAS  Google Scholar 

  • Krieger, R. I. and C. F. Wilkinson, 1970. An endogenous inhibitor of microsomal mixed-function oxidases in homogenates of the southern armyworm (Prodenia eridania), Biochem. J., 116:781–789.

    PubMed  CAS  Google Scholar 

  • Krieger, R. I. and C. F. Wilkinson, 1971. The metabolism of 6,7-dihydroisodrin by microsomes and southern armyworm larvae, Pestic. Biochem. Physiol., 1:92–100.

    CAS  Google Scholar 

  • Krieger, R. I., P. P. Feeny and C. F. Wilkinson, 1971. Detoxification enzymes in the guts of caterpillars: an evolutionary answer to plant defenses, Science, 172:579–581.

    PubMed  CAS  Google Scholar 

  • Kuhr, R. J., 1970. Metabolism of carbamate insecticide chemicals in plants and insects, J. Agric. Food Chem., 18:1023–1030.

    CAS  Google Scholar 

  • Kupfer, D. and L. L. Bruggeman, 1966. Determination of enzymic demethylation of p-chloro N-methylaniline. Assay of aniline and p-chloroaniline, Anal. Biochem., 17:502–512.

    PubMed  CAS  Google Scholar 

  • Levine, W. G., 1982. Glutathione, lipid peroxidation and regulation of cytochrome P-450 activity, Life Sci., 31:779–784.

    PubMed  CAS  Google Scholar 

  • Lewis, S. E., C. F. Wilkinson and J. W. Ray, 1967. The relationship between microsomal epoxidation and lipid peroxidation in house flies and pig liver and the inhibitory effect of derivatives of 1,3-benzodioxole (methylenedioxyphenyl), Biochem. Pharmacol., 16:1195–1210.

    PubMed  CAS  Google Scholar 

  • Lichtenstein, E. P. and J. E. Casida, 1963. Myristicin, an insecticide and synergist occurring naturally in the edible parts of parsnip. J. Agric. Food Chem., 11:410–415.

    CAS  Google Scholar 

  • Long, K. Y. and L. B. Brattsten, 1982. Is rhodanese important in the detoxification of cyanide in southern armyworm (Spodoptera eridania Cramer) larvae? Insect Biochem., 12:367–375.

    CAS  Google Scholar 

  • Lord, K. A. and C. Potter, 1951. Studies on the mechanism of insecticidal action of organophosphorous compounds with particular reference to their anti-esterase activity, Ann. Appl. Biol., 38:495–507.

    CAS  Google Scholar 

  • Lu, A. Y. H. and S. B. West, 1978. Reconstituted mammalian mixed function oxidases: requirements, specificities, and other properties, Pharmac. Ther., A2:337–358.

    Google Scholar 

  • Lu, A. Y. H., W. Levin, M. Vore, A. H. Conney, D. R. Thakker, G. Holder and D. M. Jerina, 1976. Metabolism of benzo(a)pyrene by purified liver microsomal cytochrome P-448 and epoxide hydrase, in: “Carcinogenesis”, R. I. Freudenthal and P. W. Jones, eds., Vol. 1, pp. 115–126, Raven Press, New York.

    Google Scholar 

  • Maa, W. C. J. and L. C. Terriere, 1983. Age-dependent variation in enzymatic and electrophoretic properties of flesh fly (Sarcophaga bullata) and blow fly (Phormia regina) carboxylesterases, Comp. Biochem. Physiol., 74C:451–460.

    CAS  Google Scholar 

  • MacGibbon, D. B. and R. M. Allison, 1971. An electrophoretic separation of cabbage aphid and plant glucosinolases, N. Z. J. Sci., 14:134–140..

    CAS  Google Scholar 

  • Mackness, M. I., C. H. Walker, D. G. Rowlands and N. R. Price, 1983. Esterase activity in homogenates of three strains of the rust red flour beetle Tribolium castaneum (Herbst), Comp. Biochem. Physiol., 74C:65–68.

    CAS  Google Scholar 

  • Marangos, A. and R. Hill, 1974. The hydrolysis and absorption of thioglucosides of rapeseed meal, Proc. Nutr. Soc., 33:90A.

    PubMed  CAS  Google Scholar 

  • Martin, M. M., 1983. Cellulose digestion in insects, Comp. Biochem. Physiol., 75A:313–324.

    CAS  Google Scholar 

  • Martin, W. R. and J. W. Foster, 1955. Production of trans-L-epoxysuccinic acid by fungi and its microbial conversion to meso-tartaric acid, J. Bacteriol., 70:405–414.

    PubMed  CAS  Google Scholar 

  • Marty, M. A. and R. I. Krieger, 1984. Metabolism of uscharidin, a milkweed cardenolide, by tissue homogenates of monarch butterfly larvae, Danaus plexippus, L., J. Chem. Ecol., 10:945–956.

    CAS  Google Scholar 

  • Marty, M. A., S. J. Gee and R. I. Krieger, 1982. Monooxygenase activities of fatbody and gut homogenates of monarch butterfly larvae, Danaus plexippus, fed four cardenolide-containing milkweeds, Asclepias spp., J. Chem. Ecol., 8:797–805.

    CAS  Google Scholar 

  • Matsumura, F. and A. W. A. Brown, 1963. Studies on carboxyesterase in malathion-resistant Culex tarsalis, J. Econ. Entomol., 56:381–388.

    CAS  Google Scholar 

  • Matsumura, F. and K. Sakai, 1968. Degradation of insecticides by esterases of the American cockroach, J. Econ. Entomol., 61:598–605.

    CAS  Google Scholar 

  • Mayer, R. T., A. C. Chen and J. R. DeLoach, 1983. Characterization of mannosyl transferases during the pupal instars of Stomoxys calcitrans (L), Arch. Insect Biochem. Physiol., 3:1–15.

    Google Scholar 

  • Mayer, R. T., J. A. Svoboda, and G. F. Weirich, 1978. Ecdysone 20-hydroxylase in midgut mitochondria of Manduca sexta (L.), Hoppe Seyler’s Z. Physiol. Chem., 359:1247–1257.

    CAS  Google Scholar 

  • Mayer, R. T., J. W. Jermyn, M. D. Burke and R. A. Prough, 1977. Methoxyresorufin as a substrate for the fluorometric assay of insect microsomal, O-dealkylases, Pestic. Biochem. Physiol., 7:349–354.

    CAS  Google Scholar 

  • Mehendale, H. M. and H. W. Dorough, 1972. Ln vitro glucosylation of 1-naphthol by insects, J. Insect Physiol., 18:981–987.

    CAS  Google Scholar 

  • Menguelle, J., S. Fuzeau-Braesch and C. Papin, 1985. The influence of glutathione on the resistance to lindane of the migratory locust, Locusta migratoria cinerascens, Comp. Biochem. Physiol., 80C:401–405.

    CAS  Google Scholar 

  • Menzie, C. M., 1969. Metabolism of pesticides, United States Department of the Interior, Bureau of Sport fisheries and Wildlife, Special Scientific report: Wildlife No. 127, Washington.

    Google Scholar 

  • Mercot, H., 1985. A molecular approach to the role of historicity in evolution. 1. Experimental design with enzyme polymorphism in Drosophila melanogaster, Evolution, 39:819–830.

    Google Scholar 

  • Metcalf, R. L., 1967. Mode of action of insecticide synergists, Annu. Rev. Entomol., 12:229–256.

    PubMed  CAS  Google Scholar 

  • Metcalf, R. L., R. B. March and M. G. Maxon, 1955. Substrate preferences of insect cholinesterases, Ann. Entomol. Soc. Am., 48:222–228.

    CAS  Google Scholar 

  • Metcalf, R. L., M. F. Osman and T. R. Fukuto, 1967. Metabolism of C14-labeled carbamate insecticides to C14O2 in the house fly, J. Econ. Entomol., 60:445–450.

    PubMed  CAS  Google Scholar 

  • Metcalf, R. L., M. G. Maxon, T. R. Fukuto and R. B. March, 1956. Aromatic esterase in insects, Ann. Entomol. Soc. Am., 49:274–279.

    CAS  Google Scholar 

  • Miranda, C. L., P. R. Cheeke and D. R. Buhler, 1980. Effects of pyrrolizidine alkaloids from tansy ragwort (Senecio jacobaea) on hepatic drug-metabolizing enzymes in male rats, Biochem. Pharmacol., 29:2645–2649.

    PubMed  CAS  Google Scholar 

  • Miyakado, M., I. Nakayama, N. Ohno and H. Yoshioka, 1983. Structure,chemistry and actions of the Piperaceae amides: new insecticidal constituents isolated from the pepper plant, in: “Natural Products for Innovative Pest Management”, D. L. Whitehead and W. S. Bowers, eds, pp. 369–382, Pergamon Press, New York.

    Google Scholar 

  • Miyata, T., 1983. Detection and monitoring methods for resistance in arthropods based on biochemical characteristics, rn: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 99–116, Plenum Publ. Corp., New York.

    Google Scholar 

  • Moldenke, A. F., D. R. Vincent, D. E. Farnsworth and L. C. Terriere, 1984. Cytochrome P-450 in insects: 4. Reconsitution of cytochrome P-450 dependent monooxygenase activity in the house fly, Pestic. Biochem. Physiol., 21:358–367.

    CAS  Google Scholar 

  • Morgenstern, R., J. W. DePierre and H. Jornvall, 1985. Microsomal glutathione transferase; primary structure, J. Biol. Chem., 260:13976–13983.

    PubMed  CAS  Google Scholar 

  • Morris, C. E., 1983. Uptake and metabolism of nicotine by the CNS of a nicotine-resistant insect, the tobacco hornworm (Manduca sexta), J. Insect Physiol., 29:807–817.

    CAS  Google Scholar 

  • Morton, R. A. and B. C. Holwerda, 1985. The oxidative metabolism of malathion and malaoxon in resistant and susceptible strains of Drosophila melanogaster, Pestic. Biochem. Physiol., 24:19–31.

    CAS  Google Scholar 

  • Motoyama, N., and W. C. Dauterman, 1980. Glutathion S-transferases: their role in the metabolism of organophosphorous insecticides, Rev. Biochem. Toxicol., 2:49–69.

    CAS  Google Scholar 

  • Motoyama, N., T. Hayaoka, K. Nomura and W. C. Dauterman, 1980. Multiple factors for organophosphorus resistance in housefly, Musca domestica L., J. Pestic. Sci., 5:393–402.

    CAS  Google Scholar 

  • Motoyama, N., L. R. Kao, P. T. Lin and W. C. Dauterman, 1984. Dual role of esterases in insecticide resistance in the green rice leafhopper, Pestic. Biochem. Physiol., 21:139–147.

    CAS  Google Scholar 

  • Moxon, L. N., R. S. Holmes and P. A. Parsons, 1982. Comparative studies of aldehyde oxidase, alcohol dehydrogenase and aldehyde resource utilization among Australian Drosophila species, Comp. Biochem. Physiol., 71:387–395.

    Google Scholar 

  • Mullin, C. A., 1985. Detoxification enzyme relationships in arthropods of differing feeding strategies, in: “Bioregulators for Pest Control”, P. A. Hedin, ed., pp. 267–278, Symp. Ser. No. 276, Amer. Chem. Soc., Washington.

    Google Scholar 

  • Mullin, C. A. and B. A. Croft, 1984. Trans-epoxide hydrolase: a key indicator enzyme for herbivory in arthropods, Experientia, 40:176–178.

    CAS  Google Scholar 

  • Mullin, C. A. and B. A. Croft, 1985. An update on development of selective pesticides favoring arthropod natural enemies, in: “Biological Control in Agricultural Integrated Pest Management Systems”, M. A. Hoy and D. C. Herzog, eds., pp. 123–150, Academic Press, New York.

    Google Scholar 

  • Mullin, C. A. and B. D. Hammock, 1982. Chalcone oxides; potent selective inhibitors of cytosolic epoxide hydrolase, Arch. Biochem. Biophys., 216:423–439.

    PubMed  CAS  Google Scholar 

  • Mullin, C. A. and C. F. Wilkinson, 1980. Insect epoxide hydrolases: properties of a purified enzyme from the southern armyworm (Spodoptera eridania), Pestic. Biochem. Physiol., 14:192–207.

    CAS  Google Scholar 

  • Mullin, C. A., F. Matsumura and B. A. Croft, 1984. Epoxide forming and degrading enzymes in the spider mite Tetranychus urticae, Comp. Biochem. Physiol., 79C:85–92.

    CAS  Google Scholar 

  • Mullin, C. A., B. A. Croft, K. Strickler, F. Matsumura and J. R. Miller, 1982. Detoxification enzyme differences between a herbivorous and predatory mite, Science, 217:1270–1272.

    PubMed  CAS  Google Scholar 

  • Mumby, S. M. and B. D. Hammock, 1979. Substrate selectivity and stereochemistry of enzymatic epoxide hydration in the soluble portion of the mouse liver, Pestic. Biochem. Physiol., 11:275–284.

    CAS  Google Scholar 

  • Nakatsugawa, T. and P. A. Dahm, 1962. Activation of guthion by tissue preparations from the American cockroach, J. Econ. Entomol., 55:594–599.

    CAS  Google Scholar 

  • Nakatsugawa, T. and P. A. Dahm, 1967. Microsomal metabolism of parathion, Biochem. Pharmacol., 16:25–38.

    CAS  Google Scholar 

  • Nakatsugawa, T. and M. A. Morelli, 1976. Microsomal oxidation and insecticide metabolism, rn: “Insecticide Biochemistry and Physiology”, C. F. Wilkinson, ed., pp. 61–114, Plenum Publ. Corp., New York.

    Google Scholar 

  • Nebert, D. W. and N. M. Jensen, 1979. The Ah locus: genetic regulation of the metabolism of carcinogens, drugs and other environmental chemicals by cytochrome P-450-mediated monooxygenases. Crit. Rev. Biochem., 6:401–437.

    CAS  Google Scholar 

  • Nelson, J. D. and F. Matsumura, 1973. Dieldrin (HEOD) metabolism in cockroaches and house flies, Arch. Environ. Contam. Toxicol., 1:224–244.

    PubMed  CAS  Google Scholar 

  • Newman, A. A., 1962. The occurrence, genesis and chemistry of the phenolic methylenedioxy ring in nature, Chem. Prod., 25:161–166.

    CAS  Google Scholar 

  • Ngah, W. Z. U. and J. N. Smith, 1983. Acidic conjugate of phenols in insects: glucoside phosphate and glucoside sulphate derivatives, Xenobiotica, 13:383–389.

    PubMed  CAS  Google Scholar 

  • Oginsky, E. L., A. E. Stein, and M. A. Greer, 1965. Myrosinase activity in bacteria as demonstrated by the conversion of progoitrin to goitrin, Proc. Soc. Exp. Biol. Med., 119:360–364.

    PubMed  CAS  Google Scholar 

  • Okey, A. B., G. P. Bondy, M. E. Mason, G. F. Kahl, H. J. Eisen, T. M. Guenther and D. W. Nebert, 1979. Regulatory gene product of the Ah locus; characterization of the cytosolic inducer-receptor complex and evidence for its nuclear translocation, J. Biol. Chem., 254:11636–11648.

    PubMed  CAS  Google Scholar 

  • Omura, T. and R. Sato, 1964. The carbon monoxide-binding pigment of liver microsomes. J. Biol. Chem., 239:2370–2378 and 2379–2385.

    PubMed  CAS  Google Scholar 

  • Oosterbaan, R. A. and H. S. Jansz, 1965. Cholinesterases, esterases and lipases, in: “Comprehensive Biochemistry”, M. Florkin and E. H. Stolz, eds., Vol. 16, pp. 1–54, Elsevier Publ. Co., New York.

    Google Scholar 

  • Oppenoorth, F. J. and K. van Asperen, 1960. Allelic genes in the house fly producing modified enzymes that cause organophosphate resistance, Science, 132:298–299.

    PubMed  CAS  Google Scholar 

  • Oppenoorth, F. J., H. R. Smissaert, W. Welling, L. T. J. van der Pas and K. T. Hitman, 1977. Insensitive acetylcholinesterase, high glutathione S-transferase, and hydrolytic activity as resistance factors in a tetrachlorvinphos-resistant strain of house fly, Pestic. Biochem. Physiol., 7:34–47.

    CAS  Google Scholar 

  • Orrenius, S., M. Berggren, P. Moldeus and R. I. Krieger, 1971. Mechanism of inhibition of microsomal mixed-function oxidation by the gut contents inhibitor of the southern armyworm (Prodenia eridania), Biochem. J., 124:427–430.

    PubMed  CAS  Google Scholar 

  • Ortiz de Montellano, P. R. and M. A. Correia, 1983. Suicidal destruction of cytochrome P-450 during oxidative drug metabolism, Annu. Rev. Pharmacol. Toxicol., 23:481–503.

    Google Scholar 

  • Ottea, J. A. and F. W. Plapp, Jr., 1981. Induction of glutathione S-aryl transferase by phenobarbital in the house fly, Pestic. Biochem. Physiol., 15:10–13.

    CAS  Google Scholar 

  • Ozaki, K. and H. Koike, 1965. Naphthyl acetate esterase in the green rice leafhopper, Nephotettix cincticeps Uhler, with special reference to the resistant colony to the organophosphorous insecticides, Jap. J. Appl. Ent. Zool., 9:53–59.

    Google Scholar 

  • Palade, G. E. and P. Siekevitz, 1956. Liver microsomes. An integrated morphological and biochemical study, J. Biophys. Biochem. Cytol., 2:171–200.

    PubMed  CAS  Google Scholar 

  • Pasteels, J. M., M. Rowell-Rahier, J. C. Braekman and A. Du Pont, 1983. Salicin from host plant as precursor of salicylaldehyde in defensive secretion of Chrysomeline larvae, Physiol. Entomol., 8:307–314.

    CAS  Google Scholar 

  • Pasteur, N., G. P. Georghiou and A. Iseki, 1984. Variation in organophosphate resistance and esterase activity in Culex quinquefasciatus Say from California, Genet. Sel. Evol., 16:271–284.

    CAS  Google Scholar 

  • Pasteur, N., A. Iseki and G. P. Georghiou, 1981. Genetic and biochemical studies of the highly active esterases A’ and B associated with organophosphate resistance in mosquitoes of the Cules pipiens complex, Biochem. Genet., 19:909–919.

    PubMed  CAS  Google Scholar 

  • Paulson, G. D., J. Caldwell, D. H. Hutson and J. J. Mann, eds, 1986. “Xenobiotic Conjugation Chemistry”, Symp. Ser. No. 299, American Chemical Society, Washington.

    Google Scholar 

  • Perry, A. S. and A. J. Buckner, 1970. Studies on microsomal cytochrome P-450 in resistant and susceptible house flies, Life Sci., 9:335–350.

    PubMed  CAS  Google Scholar 

  • Plapp, F. W., Jr., 1984. The genetic basis of insecticide resistance in the house fly: evidence that a single locus plays a major role in metabolic resistance to insecticides, Pestic. Biochem. Physiol., 22:194–201.

    CAS  Google Scholar 

  • Plapp, F. W., Jr. and D. L. Bull, 1978. Toxicity and selectivity of some insecticides to Chrysopa carnea, a predator of the tobacco budworm. Env. Entomol., 7:431–434.

    CAS  Google Scholar 

  • Plapp, F. W., Jr. and S. B. Vinson, 1977. Comparative toxicities of some insecticides to the tobacco budworm and its ichneumonid parasite, Campoletis sonorensis, Env. Entomol., 6:381–384.

    CAS  Google Scholar 

  • Poulsen, L. L., 1981. Organic sulfur substrates for the microsomal flavin-containing monooxygenase, Rev. Biochem. Toxicol., 3:33–49.

    CAS  Google Scholar 

  • Pratt, G. E., 1975. Inhibition of juvenile hormone carboxyesterase of locust haemolymph by organophosphates in vitro, Insect Biochem., 5:595–607.

    CAS  Google Scholar 

  • Prestwich, G. D., M. Angelastro, A. De Palma and M. A. Perino, 1985. Fucosterol epoxide lyase of insects: synthesis of labeled substrates and development of a partition assay, Anal. Biochem., 151:315–326.

    PubMed  CAS  Google Scholar 

  • Raffa, K. F. and T. M. Priester, 1985. Synergists as research tools and in agriculture, J. Agric. Entomol., 2:27–45.

    CAS  Google Scholar 

  • Raftell, M., K. Berzins and F. Blomberg, 1977. Immunochemical studies on a phenobarbital-inducible esterase in rat liver microsomes, Arch. Biochem. Biophys., 181:534–541.

    PubMed  CAS  Google Scholar 

  • Rafter, J. J., J. Bakke, G. Larsen, B. Gustafsson and J. A. Gustafsson, 1983. Role of the intestinal microflora in the formation of sulfurcontaining conjugates of xenobiotics, Rev. Biochem. Toxicol., 5:387–408.

    CAS  Google Scholar 

  • Respicio, N. C., 1975. Toxicological and biochemical transformation capabilities in the gypsy moth, Porthetria dispar (Linn.), larvae, Ph.D. thesis, Rutgers University, New Brunswick, New Jersey.

    Google Scholar 

  • Riskallah, M. R., 1983. Esterases and resistance to synthetic pyrethroids in the Egyptian cotton leafworm, Pestic. Biochem. Physiol., 19:184–189.

    CAS  Google Scholar 

  • Robbins, W. E., J. N. Kaplanis, J. A. Svoboda and M. J. Thompson, 1971. Steroid metabolism in insects, Annu. Rev. Entomol., 16:53–72.

    CAS  Google Scholar 

  • Robinson, D., 1956. The fluorometric determination of ß-glucosidase: its occurrence in the tissues of animals, including insects, Biochem. J., 63:39–44.

    PubMed  CAS  Google Scholar 

  • Roe, R. M., A. M. Hammond, Jr. and T. C. Sparks, 1983. Characterization of the plasma juvenile hormone esterase in synchronous last stadium female larvae of the sugar cane borer, Diatraea saccharalis (F.), Insect Biochem., 13:163–170.

    CAS  Google Scholar 

  • Rose, H. A., 1985. The relationship between feeding specialization and host plants to aldrin epoxidase activities of midgut homogenates in larval Lepidoptera, Ecol. Entomol., 10:455–467.

    Google Scholar 

  • Rose, H. A. and R. G. Young, 1973. Nitroreductases in the Madagascar cockroach, Gromphadorhina portentosa, Pestic. Biochem. Physiol., 3:243–252.

    CAS  Google Scholar 

  • Rosenthal, G. A. and D. H. Janzen, 1985. Ammonia utilization by the bruchid beetle, Caryedes brasiliensis (Bruchidae), J. Chem. Ecol., 11:539–544.

    CAS  Google Scholar 

  • Rosenthal, G. A., C. Hughes and D. H. Janzen, 1982. L-Canavanine, a dietary nitrogen source for the seed predator Caryedes brasilienis (Bruchidae), Science, 217:353–355.

    PubMed  CAS  Google Scholar 

  • Rosenthal, G. A., D. H. Janzen and D. L. Dahlman, 1976. Degradation and detoxification of canavanine by a specialized seed predator, Science, 196:658–660.

    Google Scholar 

  • Rowland, I. R., 1986. Reduction by the gut microflora of animals and man, Biochem. Pharmacol., 35:27–32.

    PubMed  CAS  Google Scholar 

  • Ryan, D., A. Y. H. Lu, S. West and W. Levin, 1975. Multiple forms of cytochrome P-450 in phenobarbital and 3-methylcholanthrene-treated rats. Separation and spectral properties. J. Biol. Chem., 250:2157–2163.

    PubMed  CAS  Google Scholar 

  • Ryan, D. E., P. E. Thomas, L. M. Reik and W. Levin, 1982. Purification, characterization and regulation of five rat hepatic microsomal cytochrome P-450 isozymes, Xenobiotica, 12:727–744.

    PubMed  CAS  Google Scholar 

  • Sanchez-Bernal, M. C., J. Martin-Barrientos and J. A. Cabezas, 1984. Effect of tobramycin and gentamicin on the activity of some glycosidases in rat serum and urine, Comp. Biochem. Physiol., 79C:401–405.

    CAS  Google Scholar 

  • Scheline, R. R., 1978.“Mammalian Metabolism of Plant Xenobiotics”, Academic Press, New York.

    Google Scholar 

  • Schenkman, J. B., H. Remmer and R. W. Estabrook, 1967. Spectral studies of drug interaction with hepatic microsomal cytochrome, Molec. Pharmacol., 3:113–123.

    CAS  Google Scholar 

  • Shono, T., K. Ohsawa and J. E. Casida, 1979. Metabolism of trans-and cis-permethrin, trans-and cis-cypermethrin, and decamethrin by microsomal enzymes, J. Agric. Food Chem., 27:316–325.

    PubMed  CAS  Google Scholar 

  • Shono, T., T. Unai and J. E. Casida, 1978. Metabolism of permethrin isomers in American cockroach adults, house fly adults, and cabbage looper larvae, Pestic. Biochem. Physiol., 9:96–106.

    CAS  Google Scholar 

  • Shyamala, M. B., 1964. Detoxication of benzoate by glycine conjugation in the silkworm, Bombyx mori L., J. Insect Physiol., 10:385–391.

    CAS  Google Scholar 

  • Slade, M. and C. F. Wilkinson, 1974. Degradation and conjugation of cecropia juvenile hormone by the southern armyworm (Prodenia eridania), Comp. Biochem. Physiol., 49B:99–103.

    Google Scholar 

  • Slade, M., H. K. Hetnarski and C. F. Wilksinson, 1976. Epoxide hydrolase activity and its relationship to development in the southern armyworm, Prodenia eridania, J. Insect Physiol., 22:619–622.

    PubMed  CAS  Google Scholar 

  • Slade, M., G. T. Brooks, H. K. Hetnarski and C. F. Wilkinson, 1975. Inhibition of the enzymatic hydration of the epoxide HEOM in insect, Pestic. Biochem. Physiol., 5:35–46.

    CAS  Google Scholar 

  • Sladek, N. E. and G. J. Mannering, 1966. Evidence for a new P-450 hemoprotein in hepatic microsomes from methylcholanthrene treated rats, Biochem. Biophys. Res. Commun., 24:668–674.

    CAS  Google Scholar 

  • Slama, K. and V. Jarolim, 1980. Fluorimetric method for the determination of juvenoid esterase activity in insects, Insect Biochem., 10:73–80.

    CAS  Google Scholar 

  • Smith, G. J. and G. Litwack, 1980. Roles of ligandin and the glutathione S-transferases in binding steroid metabolites, carcinogens and other compounds, Rev. Biochem. Toxicol., 2:1–48.

    Google Scholar 

  • Smith, J. N., 1964. Comparative biochemistry of detoxification, in:“Comparative Biochemistry”, M. Florkin and H. S. Mason, eds., Vol. 6, 403–448. Academic Press, New York.

    Google Scholar 

  • Smith, J. N., 1968. The comparative metabolism of xenobiotics, Adv. Comp. Physiol. Biochem., 3:173–232.

    PubMed  CAS  Google Scholar 

  • Smith, J. N. and H. B. Turbert, 1961. Enzymic glucoside synthesis in locusts, Nature, 189:600.

    CAS  Google Scholar 

  • Sparks, T. C. and B. D. Hammock, 1979. A comparison of the induced and naturally occurring juvenile hormone esterases from last instar Trichoplusia ni, Insect Biochem., 9:411–421.

    CAS  Google Scholar 

  • Sparks, T. C. and R. L. Rose, 1983. Inhibition and substrate specificity of the haemolymph juvenile hormone esterase of the cabbage looper, Trichoplusia ni (Hubner), Insect Biochem., 13:633–640.

    CAS  Google Scholar 

  • Tanada, Y., R. Hess and E. M. Omi, 1980. Localization of esterase activity in the larval midgut of the armyworm (Pseudaletia unipuncta), Insect Biochem., 10:125–128.

    Google Scholar 

  • Tate, L. B., S. S. Nakat and E. Hodgson, 1982. Comparison of detoxication activity in midgut and fatbody during fifth instar development of the tobacco hornworm, Manduca sexta, Comp. Biochem. Physiol., 72C:75–81.

    CAS  Google Scholar 

  • Teas, H. J., 1967. Cycasin synthesis in Seirarctia echo (Lepidoptera) larvae fed methylazoxymethanol, Biochem. Biophys. Res. Comm., 26:686–690.

    PubMed  CAS  Google Scholar 

  • Terriere, L. C. and S. J. Yu, 1973. Insect juvenile hormone: induction of detoxifying enzymes in the house fly and detoxication by house fly enzymes, Pestic. Biochem. Physiol., 3:96–107.

    CAS  Google Scholar 

  • Terriere, L. C. and S. J. Yu, 1974. The induction of detoxifying enzymes in insects, J. Agr. Food Chem., 22:366–373.

    CAS  Google Scholar 

  • Terriere, L. C. and S. J. Yu, 1976. Microsomal oxidases in the flesh fly (Sarcophaga bullata Parker) and the black blow fly [Phormia regina (Meigen)], Pestic. Biochem. Physiol., 6:223–228.

    CAS  Google Scholar 

  • Terriere, L. C. and S. J. Yu, 1977. Juvenile hormone analogs: in vitro metabolism in relation to biological activity in blow flies and flesh flies, Pestic. Biochem. Physiol., 7:161–168.

    CAS  Google Scholar 

  • Terriere, L. C., R. B. Boose and W. T. Roubal, 1961. The metabolism of naphthalene and 1-naphthol by house flies and rats, Biochem. J., 79:620–623.

    PubMed  CAS  Google Scholar 

  • Thongsinthusak, T., and R. I. Krieger, 1974. Inhibitory and inductive effects of piperonyl butoxide on dihydroisodrin hydroxylation in vivo and in vitro in black cutworm (Agrotis ypsilon) larvae, Life Sci., 14:2131–2141.

    PubMed  CAS  Google Scholar 

  • Townsend, M. G. and J. R. Busvine, 1969. The mechanism of malathionresistance in the blowfly Chrysomya putoria, Entomol. Exp. Appl., 12:243–267.

    CAS  Google Scholar 

  • Trammell, D. J., 1982. In vitro metabolism of (+)-pulegone and (-)-carvone by southern armyworm (Spodoptera eridania) microsomes, M. S. Thesis, Georgia Institute of Technology, Atlanta, Georgia.

    Google Scholar 

  • Trivelloni, J. C., 1964. Estudio sobre la formacion de B-glucosidos en la langosta (Schistocerca cancellata), Enzymologia, 26:329–339.

    PubMed  CAS  Google Scholar 

  • Tsukamoto, M. and J. E. Casida, 1967. Metabolism of methylcarbamate insecticides by the NADPH requiring enzyme system from house flies, Nature, 213:49–51.

    CAS  Google Scholar 

  • Turunen, S. and G. M. Chippendale, 1977. Ventricular esterases: comparison of their distribution within the larval midgut of four species of lepidoptera, Ann. Entomol. Soc. Am., 70:146–149.

    Google Scholar 

  • Tynes, R. E. and E. Hodgson, 1985. Magnitude of involvement of the mammalian flavin-containing monooxygenase in the microsomal oxidation of pesticides, J. Agr. Food Chem., 33:471–479.

    CAS  Google Scholar 

  • Ullrich, V., 1977. The mechanism of cytochrome P-450-catalyzed drug oxidations, in:“Drug Action at the Molecular Level”, G. C. Roberts, ed., pp. 201–212, University Park Press, Baltimore.

    Google Scholar 

  • Usui, K., J. I. Fukami and T. Shishido, 1977. Insect glutathione S-transferase: separation of transferases from fatbodies of American cockroaches active on organophosphorous triesters, Pestic. Biochem. Physiol., 7:249–260.

    CAS  Google Scholar 

  • van Asperen, K., 1962. A study of house fly esterases by means of a sensitive colorimetric method, J. Insect Physiol., 8:401–416.

    CAS  Google Scholar 

  • Vickery, M. L. and B. Vickery, 1981.“Secondary plant metabolism”, University Park Press, Baltimore.

    Google Scholar 

  • Villani, F., G. B. White, C. F. Curtis and S. J. Miles, 1983. Inheritance and activity of some esterases associated with organophosphate resistance in mosquitoes of the complex Culex pipiens L. (Diptera: Culicidae), Bull. Entomol. Res., 73:153–170.

    CAS  Google Scholar 

  • Vogt, R. G., L. M. Riddiford and G. D. Prestwich, 1985. Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphenols, Proc. Natl. Acad. Sci.: USA, 82:8827–8831.

    CAS  Google Scholar 

  • Volkova, R. I. and E. V. Titova, 1983. Multiple molecular forms of esterases from spring grain aphids: inhibitor identification and stereospecificity, Biokhimiya, 48:1634–1642.

    CAS  Google Scholar 

  • von Wartburg, J. P. and B. Wermuth, 1980. Aldehyde reductase, in:“Enzymatic Basis of Detoxication”, W. B. Jackoby, ed., Vol. 1, pp. 249–260, Academic Press, New York.

    Google Scholar 

  • Walker, C. H. and M. I. Mackness, 1983. Esterases: problems of identification of classification, Biochem. Pharmacol., 32:3265–3269.

    PubMed  CAS  Google Scholar 

  • Weirich, G. F., J. A. Svoboda and M. J. Thompson, 1985. Ecdysone 20-monooxygenase in mitochondria and microsomes of Manduca sexta (L.) midgut: is the dual localization real? Arch. Insect Biochem. Physiol., 2:385–396.

    CAS  Google Scholar 

  • Wells, D. S., G. C. Rock and W. C. Dauterman, 1983. Studies on the mechanisms responsible for variable toxicity of azinphosmethyl to various larval instars of the tufted apple budmoth, Platynota idaeusalis, Pestic. Biochem. Physiol., 20:238–245.

    CAS  Google Scholar 

  • Wermuth, B., 1981. Purification and properties of an NADPH-dependent carbonyl reductase from human brain, J. Biol. Chem., 256:1206–1213.

    PubMed  CAS  Google Scholar 

  • Westlake, D. W. S., 1963. Microbiological degradation of quercitrin, Can. Microbiol., 9:211–220.

    CAS  Google Scholar 

  • Westley, J., 1973. Rhodanese, Adv. Enzymol., 39:327–368.

    PubMed  CAS  Google Scholar 

  • Westley, J., 1981. Cyanide and sulfane sulfur, in: “Cyanide in Biology”, B. Vennesland, E. E. Conn, C. J. Knowles, J. Westley and F. Wissing, eds., pp. 61–76. Academic Press, New York.

    Google Scholar 

  • Whitmore, D., Jr., E. Whitmore and L. I. Gilbert, 1972. Juvenile hormone induction of esterases: a mechanism for the regulation of juvenile hormone titer, Proc. Nat. Acad. Sci., U.S.A., 69:1592–1595.

    CAS  Google Scholar 

  • Whitten, C. J. and D. L. Bull, 1978. Metabolism and absorption of methyl parathion by tobacco budworms resistant or susceptible to organophosphorous insecticides, Pestic. Biochem. Physiol., 9:196–202.

    CAS  Google Scholar 

  • Wickramasinghe, R. H., and C. A. Villee, 1975. Early role during chemical evolution for cytochrome P-450 in oxygen detoxification, Nature, 256:509–511.

    CAS  Google Scholar 

  • Wiggleworth, V. B., 1958. The distribution of esterase in the nervous system and other tissues of the insect Rhodnius prolixus, Quart. J. Micros. Sci., 99:441–450.

    Google Scholar 

  • Wilkinson, C. F., 1980. The metabolism of xenobiotics: a study in biochemical evolution, in_: “The Scientific Basis of Toxicity Assessment”, H. Witschi, ed., pp. 251–267, Elsevier, New York.

    Google Scholar 

  • Wilkinson, C. F., 1986. Xenobiotic conjugation in insects, in: “Xenobiotic Conjugation Chemistry”, G. D. Paulson, J. Caldwell, D. H. Hutson and J. J. Menn, eds., pp. 48–61, Symp. Ser. No. 299, Amer. Chem. Soc., Washington.

    Google Scholar 

  • Wilkinson, C. F. and L. B. Brattsten, 1972. Microsomal drug metabolizing enzymes in insects, Drug Metab. Rev., 1:153–227.

    CAS  Google Scholar 

  • Wilkinson, C. F. and L. J. Hicks, 1969. Microsomal metabolism of the 1,3-benzodioxole ring and its possible significance in synergistic action, J. Agric. Food Chem., 17:829–836.

    CAS  Google Scholar 

  • Wilkinson, C. F., K. Hetnarski and L. J. Hicks, 1974a. Substituted imidazoles as inhibitors of microsomal oxidation and insecticide synergists, Pestic. Biochem. Physiol., 4:299–312.

    CAS  Google Scholar 

  • Wilkinson, C. F., K. Hetnarski, G. P. Cantwell and F. J. Di Carlo, 1974b. Structure-activity relationships in the effects of 1-alkylimidazoles on microsomal oxidation in vitro and in vivo. Biochem. Pharmacol., 23:2377–2386.

    PubMed  CAS  Google Scholar 

  • Williams, R. T., 1974. Interspecies variation in the metabolism of xenobiotics, Biochem. Soc. Trans., 2:359–377.

    CAS  Google Scholar 

  • Williams, R. T. and P. Millburn, 1975. Detoxification mechanisms, the biochemistry of foreign compounds, in: “Physiological and Pharmacological Biochemistry”, H. K. F. Blaschko, ed., Ser. 1, Vol. 12, pp. 211–226, University Park Press, Baltimore.

    Google Scholar 

  • Wing, K. D., M. Rudnicka, G. Jones and B. D. Hammock, 1984. Juvenile hormone esterases of Lepdioptera II. Isoelectric points and binding affinities of hemolymph juvenile hormone esterase and binding protein activities, J. Comp. Physiol., 154B:213–223.

    Google Scholar 

  • Wislocki, P. G., G. T. Miwa and A. Y. H. Lu, 1980. Reactions catalyzed by the cytochrome P-450 system, in: “Enzymatic Basis of Detoxication”, W. B. Jacoby, ed., Vol. 1, pp. 136–182, Academic Press, New York.

    Google Scholar 

  • Wongkrobat, A. and D. L. Dahlman, 1976. Larval Manduca sexta hemolymph carboxylesterase activity during chronic exposure to insecticidecontaining diets, J. Econ. Entomol., 69:237–240.

    Google Scholar 

  • Wray, V., R. H. Davis and A. Nahrstedt, 1983. Biosynthesis of cyanogenic glucosides in butterflies and moths: incorporation of valine and isoleucine into linamarin and lotaustralin by Zygaena and Heliconius species (Lepidoptera), Z. Naturforsch., 38C:583–588.

    CAS  Google Scholar 

  • Yang, R. H. S., 1976. Enzymatic conjugation and insecticide metabolism, in: “Insecticide Biochemistry and Physiology”, C. F. Wilkinson, ed., pp. 177–225, Plenum Publ. Corp., New York.

    Google Scholar 

  • Yang, R. S. H. and C. F. Wilkinson, 1973. Sulfotransferases and phosphotransferases in insects, Comp. Biochem. Physiol., 46B:717–726.

    Google Scholar 

  • Yang, R. S. H., J. G. Pellicia and C. F. Wilkinson, 1973. Age-dependent aryl-sulfatase and sulfotransferase activities in the southern armyworm: a possible insect endocrine regulatory mechanism? Biochem. J., 136:817–820.

    PubMed  CAS  Google Scholar 

  • Yasutomi, K., 1971. Studies on diazinon-resistance and esterase activity in Cules tritaeniorhynchus I., Jap. J. Sanit. Zool., 22:9–13.

    Google Scholar 

  • Yawetz, A. and B. Koren, 1984. Purification and properties of the Mediterranean fruit fly, Ceratitis capitata W. glutathione S-transferase, Insect Biochem., 14:663–670.

    CAS  Google Scholar 

  • Yu, S. J., 1982. Host plant induction of glutathione S-transferase in the fall armyworm, Pestic. Biochem. Physiol., 18:101–106.

    CAS  Google Scholar 

  • Yu, S. J., 1983. Age variation in insecticide suceptibility and detoxification capacity of fall armyworm (Lepidoptera: Noctuidae) larvae, J. Econ. Entomol., 76:219–222.

    CAS  Google Scholar 

  • Yu, S. J., 1984. Interactions of allelochemicals with detoxication enzymes of insecticide-susceptible and resistant fall armyworms, Pestic. Biochem. Physiol., 22:60–68.

    CAS  Google Scholar 

  • Yu, S. J., 1985. Microsomal sulfoxidation of phorate in the fall armyworm, Spodoptera frugiperda (J. E. Smith), Pestic. Biochem. Physiol., 23:273–281.

    CAS  Google Scholar 

  • Yu, S. J. and E. L. Hsu, 1985. Induction of hydrolases by allelochemicals and host plants in fall armyworm (Lepidoptera: Noctuidae) larvae, Environ. Entomol., 14:512–515.

    CAS  Google Scholar 

  • Yu, S. J., and L. C. Terriere, 1971. Hormonal modification of microsomal oxidase activity in the house fly, Life Sci., 10:1173–1185.

    CAS  Google Scholar 

  • Yu, S. J. and L. C. Terriere, 1978. Juvenile hormone epoxide hydrase in house flies and blow flies, Insect Biochem., 8:349–352.

    CAS  Google Scholar 

  • Yu, S. J. and L. C. Terriere, 1979. Cytochrome P-450 in insects. 1. Differences in the forms present in insecticide resistant and susceptible house flies, Pestic. Biochem. Physiol., 12:239–248.

    CAS  Google Scholar 

  • Yu, S. J., F. A. Robinson and J. L. Nation, 1984. Detoxication capacity in the honey bee, Apis mellifera L., Pestic. Biochem. Physiol., 22:360–368.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Ahmad, S., Brattsten, L.B., Mullin, C.A., Yu, S.J. (1986). Enzymes Involved in the Metabolism of Plant Allelochemicals. In: Brattsten, L.B., Ahmad, S. (eds) Molecular Aspects of Insect-Plant Associations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1865-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1865-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9040-7

  • Online ISBN: 978-1-4613-1865-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics