Skip to main content

Mechanisms of Resistance to Alkylating Agents

  • Chapter
Drug Resistance

Part of the book series: Cancer Treatment and Research ((CTAR,volume 87))

Abstract

A major problem in cancer chemotherapy is the frequently encountered rapid loss in responsiveness to therapeutic agents [1]. Drug resistance can be the result of the induction of a variety of protective mechanisms or the result of the selection of resistant clones. In some cases, neoplastic cells may also have a high intrinsic level of resistance [2]. Alkylating agents, particularly agents that alkylate preferentially at the O6 position of guanine, are highly mutagenic [3], and this greatly increases the genetic variability of the neoplasm and provides a heterogeneous population from which resistant mutants can be selected, in a manner akin to the in vitro treatment of cells with N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) to produce experimentally useful mutations. Moreover, since the therapeutic indices of most alkylating agents are low, sublethal drug exposure is frequently encountered, and this produces an ideal selection environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Woolley PV, Tew KD (1988) Mechanisms of Drug Resistance in Neoplastic Cells. San Diego, CA: Academic Press, pp 1–390.

    Google Scholar 

  2. Waxman DJ (1990) Glutathione S-transferases: Role in alkylating agent resistance and possible target for modulation chemotherapy—a review. Cancer Res 50:6449–6454.

    PubMed  CAS  Google Scholar 

  3. Loveless A (1969) Possible relevance of O–6 alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and nitrosamides. Nature 223:206–207.

    Article  PubMed  CAS  Google Scholar 

  4. Arrick BA, Nathan CF (1984) Glutathione metabolism as a determinant of therapeutic efficacy: A review. Cancer Res 44:4224–4232.

    PubMed  CAS  Google Scholar 

  5. LeBlanc GA, Waxman DJ (1989) Interaction of anticancer drugs with hepatic monooxygenase enzymes. Drug Metab Rev 20:395–439.

    Article  CAS  Google Scholar 

  6. Ford JM, Hait WN (1990) Pharmacology of drugs that alter multidrug resistance in cancer. Pharm Rev 42:155–199.

    PubMed  CAS  Google Scholar 

  7. Collins MKL, Lopez-Rivas A (1993) The control of apoptosis in mammaliam cells. Trends Biol Sci 18:307–309.

    Article  CAS  Google Scholar 

  8. Miller RL, Bukowski RM, Budd GT, et al. (1988) Clinical modulation of doxorubicin resistance by calmodulin-inhibitor trifluoperazine: A phase I/II trial. J Clin Oncol 6:880–888.

    PubMed  CAS  Google Scholar 

  9. Tew KD, Houghton JA, Houghton PJ (1993) Preclinical and Clinical Modulation of Anticancer Drugs. Boca Raton, FL: CRC Press.

    Google Scholar 

  10. Bidder JL, Riehm H (1970) Cellular resistance to actinomycin D in cross resistance, radioauto-graphic, and cytogenic studies. Cancer Res 30:1174–1184.

    Google Scholar 

  11. Giavazzi R, Kartner N, Hart IR (1984) Expression of cell surface P-glycoprotein by an Adriamycin-resistant murine fibrosarcoma. Cancer Chemother Pharmacol 13:145–147.

    Article  PubMed  CAS  Google Scholar 

  12. Bates SE, Zhan Z, Dickstein B, et al. (1994) Reversal of multidrug resistance. J Hematother 3:219–223.

    Article  PubMed  CAS  Google Scholar 

  13. Redwood WR, Colvin M (1980) Transport of melphalan by sensitive and resistant L1210 cells. Cancer Res 40:1144–1149.

    PubMed  CAS  Google Scholar 

  14. Goldenberg GJ, Vanstone CL, Israels LG, Ilse D, Bihler I (1970) Evidence for a transport carrier of nitrogen mustard in nitrogen mustard-sensitive and -resistant L5178Y lymphoblasts. Cancer Res 30:2285–2291.

    PubMed  CAS  Google Scholar 

  15. Gross RB, Waxman S, Scanlon KJ (1986) Amino acid membrane transport properties of L1210 cells resistant to cisplatinum. Chemotherapia 5:37–43.

    CAS  Google Scholar 

  16. Coles B (1984–1985) Effects of modifying structure on electrophilic reactions with biological nucleophiles. Drug Metab Rev 15:1307–1334.

    Article  PubMed  CAS  Google Scholar 

  17. Roberts JJ, Warwick GP (1957) Mode of action of alkylating agents: Formation of S-ethylcysteine from ethyl methanesulphonate in vivo. Nature 179:1181–1182.

    Article  PubMed  CAS  Google Scholar 

  18. Hirono I (1960) Non-protein sulfhydryl group in the original strain and sub-line of the ascites tumour resistant to alkylating reagents. Nature 186:1059–1060.

    Article  PubMed  CAS  Google Scholar 

  19. Meister A (1988) On the discovery of glutathione. Trends Biol Sci 13:185–188.

    Article  CAS  Google Scholar 

  20. Penketh PG, Kennedy WPK, Patton CL, Sartorelli AC (1987) Trypanosomatid hydrogen peroxide metabolism. FEBS Lett 221:427–431.

    Article  PubMed  CAS  Google Scholar 

  21. Mannervik B (1985) The isoenzymes of glutathione transferase. Adv Enzymol Relat Areas Mol Biol 57:357–417.

    PubMed  CAS  Google Scholar 

  22. Morgenstern R, Depierre JW (1988) Membrane-bound glutathione transferase. In H Sies, B Ketterer, eds. Glutathione Conjugation. New York: Academic Press, pp 157–174.

    Google Scholar 

  23. Fournier D, Bride JM, Poirie M, Berge J-B, Plapp FW (1992) Insect glutathione S-transferase. Biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides. J Biol Chem 267:1840–1845.

    PubMed  CAS  Google Scholar 

  24. Clark AG, Debnam P (1988) Inhibition of glutathione S-transferase from rat liver by S-nitroso-L-glutathione. Biochem Pharmacol 37:3199–3207.

    Article  PubMed  CAS  Google Scholar 

  25. Pickett CD, Lu AYH (1989) Glutathione S-transferases: Gene structure, regulation, and biological function. Annu Rev Biochem 58:743–764.

    Article  PubMed  CAS  Google Scholar 

  26. Taylor J, Pemble S, Harris J, Meyer D, Spencer S, Xia C-L, Ketterer B (1993) Evolution of GST genes. In KD Tew, CB Pickett, TJ Mantle, B Mannervik, JD Hayes, eds. Structure and Function of Glutathione Transferases. Boca Raton, FL: CRC Press, pp 163–173.

    Google Scholar 

  27. Zhong S, Hayes JD, Spurr NK, Wolf CR (1993) Molecular genetics of the human Mu class GST multigene family. In KD Tew, CB Pickett, TJ Mantle, B Mannervik, JD Hayes, eds. Structure and Function of Glutathione Transferases. Boca Raton, FL: CRC Press, pp 147–159.

    Google Scholar 

  28. Tew KD (1994) Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 54:4313–4320.

    PubMed  CAS  Google Scholar 

  29. Rushmore TH, Nguyen T, Pickett CB (1993) AM and XRE mediated induction of the glutathione S-transferase Ya subunit gene: Induction by planar aromatic compounds and phenolic antioxidants. In KD Tew, CB Pickett, TJ Mantle, B Mannervik, JD Hayes, eds. Structure and Function of Glutathione Transferases. Boca Raton, FL: CRC Press, pp 119–128.

    Google Scholar 

  30. Manoharan TH, Puchalski RB, Burgess JA, Pickett CB, Fahl WE (1987) Promoter-glutathione S-transferase Ya cDNA hybrid genes. J Biol Chem 262:3739–3745.

    PubMed  CAS  Google Scholar 

  31. Puchalski RB, Fahl WE (1990) Expression of recombinant glutathione S-transferase π, Ya, or Yb1 confers resistance to alkylating agents. Proc Natl Acad Sci USA 87:2443–2447.

    Article  PubMed  CAS  Google Scholar 

  32. Berhane K, Hao X-Y, Egyházi S, Hansson J, Ringborg U, Mannervik B (1993) Contribution of glutathione transferase M3–3 to 1,3-bis(2-chloroethyl)-1-nitrosourea resistance in a human non-small cell lung cancer cell line. Cancer Res 53:4257–4261.

    PubMed  CAS  Google Scholar 

  33. Smith MT, Evans CG, Doane-Setzer P, Castro VM, Tahir MK, Mannerik B (1989) Denitrosarion of 1,3-bis(2-chloroethyl)-1-nitrosourea by mu glutathione transferases and its role in cellular resistance in rat brain tumor cells. Cancer Res 53:4257–4261.

    Google Scholar 

  34. Kohn KW, Ewig RAG, Erickson LC, Zwelling LA (1981) Measurement of strand breaks and crosslinks by alkaline elution. In EC Friedberg, PC Hanawalt, eds. DNA Repair: A Laboratory Manual of Research Procedures. New York: Marcel Dekker, pp 379–401.

    Google Scholar 

  35. Hall AG, Matheson E, Hickson ID, Foster SA, Hogarth L (1994) Purification of an a class glutathione S-transferase from melphalan-resistant Chinese hamster ovary cells and demonstration of its ability to catalyze melphalan-glutathione adduct formation. Cancer Res:54:3369–3372.

    PubMed  CAS  Google Scholar 

  36. Godwin AK, Meister A, O’Dwyer PJ, Huang CS, Hamilton TC, Anderson ME (1992) High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci USA 89:3070–3074.

    Article  PubMed  CAS  Google Scholar 

  37. Mulcahy RT, Bailey HH, Gipp JJ (1994) Up-regulation of γ-glutamylcysteine synthetase activity in melphalan-resistant human multiple myeloma cells expressing increased glutathione levels. Cancer Chemother Pharmacol 34:67–71.

    Article  PubMed  CAS  Google Scholar 

  38. Habig WH, Jakoby WB (1981) Glutathione S-transferases (rat and human). Methods Enzymol 77:218–231.

    Article  PubMed  CAS  Google Scholar 

  39. Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951.

    Article  PubMed  CAS  Google Scholar 

  40. Bakka A, Endresen L, Johnsen ABS, Edminson PD, Rugstand HE (1981) Resistance against cis-dichlorodiammineplatinum in cultured cells with a high content of metallothionein. Toxicol Appl Pharmacol 61:215–226.

    Article  PubMed  CAS  Google Scholar 

  41. Kelley SL, Basu A, Teicher BA, Hacker MP, Hamer DH, Lazo JS (1988) Over-expression of metallothionein confers resistance to anticancer drugs. Science 241:1813–1815.

    Article  PubMed  CAS  Google Scholar 

  42. Kägi JH, Vallée BL (1960) Metallothionein: A cadmium- and zinc-containing protein from equine renal cortex. J Biol Chem 235:3460–3465.

    PubMed  Google Scholar 

  43. Teicher BA, Holden SA, Kelly MJ, Shea TC, Cucchi CA, Rosowsky A, Henner WD, Frei E III (1987) Characterization of a human squamous carcinoma cell line resistant to cis-diamminedichloroplatinum (II). Cancer Res 47:388–393.

    PubMed  CAS  Google Scholar 

  44. Andrews PA, Murphy MP, Howell SB (1987) Metallothionein mediated cisplatin resistance in human ovarian carcinoma cells. Cancer Chemother Pharmacol 19:149–154.

    Article  PubMed  CAS  Google Scholar 

  45. Tobey RA, Enger MD, Griffith JK, Hildebrand CE (1982) Zinc-induced resistance to alkylating agent toxicity. Cancer Res 42:2980–2984.

    PubMed  CAS  Google Scholar 

  46. Cox PJ, Phillip BJ, Thomas P (1975) The enzymatic basis of the selective action of cyclophosphamide. Cancer Res 35:3755–3761.

    PubMed  CAS  Google Scholar 

  47. Sladek NE (1987) Oxazaphosphorines. In G Powis, RA Prough, eds. Metabolism and Action of Anticancer Drugs. London: Taylor and Francis, pp 48–90.

    Google Scholar 

  48. Sladek NE, Landkamer GL (1985) Restoration of sensitivity to oxazaphosphorines by inhibitors of aldehyde dehydrogenase activity in cultured oxazaphosphorine-resistant L1210 and crosslinking agent-resistant P388 cell lines. Cancer Res 45:1549–1555.

    PubMed  CAS  Google Scholar 

  49. Hilton J (1984) Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Res 44:5156–5160.

    PubMed  CAS  Google Scholar 

  50. Weber GF, Waxman DJ (1993) Denitrosation of the anticancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea catalyzed by microsomal glutathione S-transferase and cytochrome P450 monooxygenases. Arch Biochem Biophys 307:369–378.

    Article  PubMed  CAS  Google Scholar 

  51. Lemoine A, Lucas C, Ings RMJ (1991) Metabolism of the chloroethylnitrosoureas. Xenobiotica 21:775–791.

    Article  PubMed  CAS  Google Scholar 

  52. Potter DW, Levin W, Ryan DE, Thomas PE, Reed DJ (1984) Stereoselective monooxygenation of carcinostatic 1-(2-chloroethyl)-3-(cyclohexyl)-1-nitrosourea and 1-(2-chloroethyl)-3-(trans-4-methylcyclohexyl)-1-nitrosourea by purified cytochrome P-450 isozymes. Biochem Pharmacol 33:609–613.

    Article  PubMed  CAS  Google Scholar 

  53. DeVita VT, Carbone PP, Owens AH Jr, Gold GL, Krant MJ, Edmonson J (1965) Clinical trials with 1,3-bis(2-chloroethyl)-1-nitrosourea, NSC-409962. Cancer Res 25:1876–1881.

    CAS  Google Scholar 

  54. Nissen NI, Pajak TF, Glidewell O, et al. (1979) Comparative study of a BCNU containing 4-drug program versus MOPP versus 3-drug combinations in advanced Hodgkin’s disease. Cancer 43:31–40.

    Article  PubMed  CAS  Google Scholar 

  55. Montgomery JA, James R, McCaleb GS, Johnston TP (1967) The modes of decomposition of 1,3-bis(2-chloroethyl)-1-nitrosourea and related compounds. J Med Chem 10:668–674.

    Article  PubMed  CAS  Google Scholar 

  56. Montgomery JA, James R, McCaleb GS, Kirk MC, Johnston TP (1975) Decomposition of N-(2-chloroethyl)-N-nitrosoureas in aqueous media. J Med Chem 18:568–571.

    Article  PubMed  CAS  Google Scholar 

  57. Weinkam RJ, Lin H-S (1979) Reactions of 1,3-bis(2-chloroethyl)-1-nitrosourea and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea in aqueous solution. J Med Chem 22:1193–1198.

    Article  PubMed  CAS  Google Scholar 

  58. Erickson LC, Laurent G, Sharkey NA, Kohn KW (1980) DNA cross-linking and monoadduct repair in nitrosourea-treated human tumor cells. Nature 288:727–729.

    Article  PubMed  CAS  Google Scholar 

  59. Lown JW, McLaughlin LW, Chang YM (1978) Mechanism of action of 2-haloethylnitrosoureas on DNA and its relation to their antileukemic properties. Bioorg Chem 7:97–110.

    Article  CAS  Google Scholar 

  60. Tong WP, Kirk MC, Ludlum DB (1982) Formation of the crosslink 1-[N3-deoxycytidyl],2-[N1-deoxyguanosinyl]ethane in DNA treated with N,N’-bis(2-chloroethyl)-N-nitrosourea. Cancer Res 42:3102–3105.

    PubMed  CAS  Google Scholar 

  61. Tong WP, Kirk MC, Ludlum DB (1983) Mechanism of action of the nitrosoureas. V. Formation of O6-(2-fluoroethyl)guanine and its probable role in the crosslinking of deoxyribonucleic acid. Biochem Pharmacol 32:2011–2015.

    Article  PubMed  CAS  Google Scholar 

  62. Pegg AE (1983) Alkylation and subsequent repair of DNA after exposure to dimethylnitrosamine and related carcinogens. Rev Biochem Toxicol 5:83–133.

    CAS  Google Scholar 

  63. Pegg AE, Scicchitano D, Dolan ME (1984) Comparison of the rates of repair of O6-alkylguanines in DNA by rat liver and bacterial O6-alkylguanine-DNA alkyltransferase. Cancer Res 44:3806–3811.

    PubMed  CAS  Google Scholar 

  64. Demple B, Karran P (1983) Death of an enzyme: Suicide repair of DNA. Trends Biol Sci 8:137–139.

    Article  CAS  Google Scholar 

  65. Yarosh DB (1985) The role of O6-methylguanine-DNA methyltransferase in cell survival, mutagenesis and carcinogenesis. Mutat Res 145:1–16.

    PubMed  CAS  Google Scholar 

  66. Lindhal T, Sedgwick B, Sekiguchi M, Nakabeppu Y (1988) Regulation and expression of the adaptive response to alkylating agents. Annu Rev Biochem 57:133–157.

    Article  Google Scholar 

  67. Demple B (1990) Self-methylation by suicide DNA repair enzymes. In WM Paik, S Kim, eds. Protein Methylation. Boca Raton, FL: CRC Press, pp 285–304.

    Google Scholar 

  68. Pegg AE, Boosalis M, Samson L, Moschel RC, Byers T, Swenn K, Dolan ME (1993) Mechanism of inactivation of human O6-alkylguanine-DNA alkyltransferase by O6-benzylguanine. Biochemistry 32:11998–12006.

    Article  PubMed  CAS  Google Scholar 

  69. Pegg AE, Byers TL (1992) Repair of DNA containing O6-alkylguanine. FASEB J 6:2302–2310.

    PubMed  CAS  Google Scholar 

  70. Arris CE, Bleasdale C, Calvert AH, et al. (1994) Probing the active site and mechanism of action of O6-methylguanine-DNA methyltransferase and substrate analogues (O6-substituted guanines). Anticancer Drug Des 9:401–408.

    PubMed  CAS  Google Scholar 

  71. Gonzaga PE, Harris L, Margison GP, Brent TP (1990) Evidence that covalent complex formation between BCNU-treated oligonucleotides and E. coli alkyltransferases requires the O6-alkylguanine function. Nucleic Acids Res 18:3961–3966.

    Article  PubMed  CAS  Google Scholar 

  72. Pegg AE (1990) Mammalian O6-alkylguanine-DNA alkyltransferase: Regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res 50:6119–6129.

    PubMed  CAS  Google Scholar 

  73. Day RS III, Ziolkowski CHJ, Scudiero DA, Meyer SA, Lubiniecki AS, Girardi AJ, Galloway SM, Bynum GD (1980) Defective repair of alkylated DNA by human tumor and SV-40-transformed human cell strains. Nature 288:724–727.

    Article  PubMed  CAS  Google Scholar 

  74. Yarosh DB, Foote RS, Mitra S, Day RS III (1983) Repair of O6-methylguanine in DNA by demethylation is lacking in Mer human tumor strains. Carcinogenesis 4:199–205.

    Article  PubMed  CAS  Google Scholar 

  75. Brent TP, Houghton PJ, Houghton JA (1985) O6-Alkylguanine-DNA alkyltransferase activity correlates with the therapeutic response to human rhabdomyosarcoma xenografts to 1-(2-chloroethyl)-3-(trans-4-methylcyclohexyl)-1-nitrosourea. Proc Natl Acad Sci USA 82:2985–2989.

    Article  PubMed  CAS  Google Scholar 

  76. Gibson NW, Hartley J, La France RJ, Vaughan K (1986) Differential cytotoxicity and DNA-damaging effects produced in human cells of the Mer+ and Mer- phenotypes by a series of alkyltriazenylimidazoles. Carcinogenesis 7:259–265.

    Article  PubMed  CAS  Google Scholar 

  77. Catapano CV, Broggini M, Erba E, Ponti M, Mariani L, Citti L, D’Incalci M (1987) In vitro and in vivo methazolastone-induced DNA damage and repair in L-1210 leukemia sensitive and resistant to chloroethylnitrosoureas. Cancer Res 47:4884–4889.

    PubMed  CAS  Google Scholar 

  78. Lunn JM, Harris AL (1988) Cytotoxicity of 5-(3-methyl-l-triazeno)imidazole-4-carboxamide (MTIC) on Mer+, Mer+Rem- and Mer- cell lines: Differential potentiation by 3-aceta-midobenzamide. Br J Cancer 57:54–58.

    Article  PubMed  CAS  Google Scholar 

  79. Wyllie AH (1980) Glucocorticoid induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556.

    Article  PubMed  CAS  Google Scholar 

  80. Savill J, Dransfield I, Hogg N, Haslett B (1990) Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343:170–173.

    Article  PubMed  CAS  Google Scholar 

  81. Raff MC (1993) Social controls on cell survival and cell death. Nature 356:397–400.

    Article  Google Scholar 

  82. Collins MKL, Marvel J, Malde P, Lopez-Rivas A (1992) Interleukin 3 protects murine bone marrow cells from apoptosis induced by DNA damaging agents. J Exp Med 176:1043–1051.

    Article  PubMed  CAS  Google Scholar 

  83. Vaux DL, Aguila HL, Weissman IL (1992) Bcl-2 prevents death of factor-deprived cells but fails to prevent apoptosis in targets of cell mediated killing. Int Immunol 4:821–824.

    Article  PubMed  CAS  Google Scholar 

  84. Lane DP (1993) A death in the life of p53. Nature 362:786–787.

    Article  PubMed  CAS  Google Scholar 

  85. Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254:7558–7560.

    PubMed  CAS  Google Scholar 

  86. Russo A, DeGraff W, Friedman N, Mitchell JB (1986) Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs. Cancer Res 46:2845–2848.

    PubMed  CAS  Google Scholar 

  87. Teicher BA, Crawford JM, Holden SA, Lin Y, Cathcart KNS, Luchette CA, Flatow J (1988) Glutathione monoethyl ester can selectively protect liver from high dose BCNU or cyclophosphamide. Cancer 62:1275–1281.

    Article  PubMed  CAS  Google Scholar 

  88. Tew KD, Bomber AM, Hoffman SJ (1988) Ethacrynic acid and piriprost as enhancers of cytotoxicity in drug resistant and sensitive cell lines. Cancer Res 48:3622–3625.

    PubMed  CAS  Google Scholar 

  89. Lacreta FP, Brennan JM, Nash SL, Comis RL, Tew KD, O’Dwyer PJ (1994) Pharmacokinetics and bioavailability study of ethacrynic acid as a modulator of drug resistance in patients with cancer. J Pharmacol Exp Ther 270:1186–1191.

    PubMed  CAS  Google Scholar 

  90. Lyttle MH, Hocker MD, Hui HC, Caldwell CG, Aaron DT, Ergqvist-Goldstein A, Flatgaard JE, Bauer K (1994) Isozyme-specific glutathione S-transferase inhibitors: Design and synthesis. J Med Chem 37:189–194.

    Article  PubMed  CAS  Google Scholar 

  91. Lawley P, Thatcher CJ (1970) Methylation of deoxyribonucleic acid in cultured mammalian cells by N-methyl-N’-nitro-N-nitrosoguanidine. Biochem J 116:693–707.

    PubMed  CAS  Google Scholar 

  92. Shyam K, Penketh PG, Divo AA, Loomis RH, Rose WC, Sartorelli AC (1993) Synthesis and evaluation of 1-acyl-1,2-bis(methylsulfonyl)-2-(2-chloroethyl)hydrazines as antineoplastic agents. J Med Chem 36:3496–3502.

    Article  PubMed  CAS  Google Scholar 

  93. Lyttle MH, Satyam A, Hocker MD, Bauer KE, Caldwell CG, Hui HC, Morgan AS, Mergia A, Kauvar LM (1984) Glutathione S-transferase activates novel alkylating agents. J Med Chem 37:1501–1507.

    Article  Google Scholar 

  94. Zlotogorski WJ, Erickson LC (1984) Pretreatment of human colon tumor cells with DNA methy-lating agents inhibits their ability to repair chloroethyl monoadducts. Carcinogenesis 5:83–87.

    Article  PubMed  CAS  Google Scholar 

  95. Gerson SL, Trey JE (1988) Modulation of nitrosourea resistance in myeloid leukemias. Blood 71:1487–1494.

    PubMed  CAS  Google Scholar 

  96. Dolan ME, Moschel RC, Pegg AE (1990) Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc Natl Acad Sci USA 87:5368–5372.

    Article  PubMed  CAS  Google Scholar 

  97. Chae M, Swenn K, Kanugula S, Dolan ME, Pegg AE, Moschel RC (1995) 8-Substituted O6-benzylguanine, substituted 6(4)-(benzyloxy)pyrimidine, and related derivatives as inactivators of human O6-alkylguanine-DNA alkyltransferase. J Med Chem 38:359–365.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Penketh, P.G., Shyam, K., Sartorelli, A.C. (1996). Mechanisms of Resistance to Alkylating Agents. In: Hait, W.N. (eds) Drug Resistance. Cancer Treatment and Research, vol 87. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1267-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1267-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8540-3

  • Online ISBN: 978-1-4613-1267-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics