Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 80))

Abstract

Cytokines are actively involved in the host-defense system to coordinate the functional activity and the generation of effector cells. Some of these molecules function as inflammatory mediators and hematopoietic growth factors at the same time such as IL-1, IL-6, IL-3, IL-5, and GM-CSF. While the former ubiquitously produced factors are involved in basic inflammatory reactions, the T-cell lymphokines help to recruit the non-specific effector system and to direct it to specific targets [1], Among these, IL-3 (or multi-CSF) is known as a pleiotropic cytokine with a broad spectrum of target cells and functions. This article summarizes relevant data about this molecule that has been the topic of several recent review articles [2–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arai K, Lee F, Miyajima A, Miyatake S, Arai N, Yokota T. Cytokines: Coordinators of immune and inflammatory responses. Annu Rev Biochem 59:783–836, 1990.

    PubMed  CAS  Google Scholar 

  2. Ihle JN. Interleukin-3 and hematopoiesis. Chem Immunol 51:65–106, 1992.

    PubMed  CAS  Google Scholar 

  3. Dy M, Schneider E. Interleukin-3 and granulocyte-macrophage colony-stimulating factor: Two cytokines increasing histamine synthesis by hematopoietic cells. Eur Cytokine Net 2:153–172, 1991.

    CAS  Google Scholar 

  4. Oster W, Schulz G. Interleukin 3: Biological and clinical effects. Int J Cell Cloning 9:5–23, 1991.

    PubMed  CAS  Google Scholar 

  5. Schrader JW, ed. Interleukin-3: The panspecific hemopoietin. Lymphokines, Vol 15. San Diego: Academic Press, 1988.

    Google Scholar 

  6. Lee JC and Ihle JN. Chronic immune stimulation is required for Moloney leikemia virus-induced lymphomas. Nature 289:407–409, 1981.

    PubMed  CAS  Google Scholar 

  7. Inle JN, Pepersack L, Rébar L. Regulation of T cell differentiation: In vitro induction of 20 alpha hydroxysteroid dehydrogenase in splenic lymphocytes from athymic mice by a unique lymphokine. J Immunol 126:2184–2189, 1981.

    Google Scholar 

  8. Weinstein Y. 20α-hydroxysteroid dehydrogenase: A T lymphocyte-associated enzyme. J Immunol 119:1223–1229, 1977.

    PubMed  CAS  Google Scholar 

  9. Inle JN, Keller J, Henderson L, Klein F, Palaszynski, EW. Procedures for the purification of interleukin 3 to homogeneity. J Imunol 129:2431, 1982.

    Google Scholar 

  10. Lee JC, Hapel AJ, Ihle JN. Establishment of continuous cultures of Thy 1,2 Ly 1,2 T cells using purified interleukin 3. Cell 25:179, 1982.

    CAS  Google Scholar 

  11. Warner NI, Moore MAS, Metcalf D. A transplantable myelomonocytic leukemia in BALB/c mice: Cytology, karyotype, and muramidase content. J Nat Cancer Inst 43:963–982, 1969.

    PubMed  CAS  Google Scholar 

  12. Metcalf D, Moore MAS, Warner NL. Colony formation in vitro by myelomonocytic leukemic cells. J Nat Cancer Inst 43:983–997, 1969.

    PubMed  CAS  Google Scholar 

  13. Burgess AW, Metcalf D. The nature and action of granulocyte-macrophage colony stimulating factors. Blood 56:947–958, 1980

    PubMed  CAS  Google Scholar 

  14. Iscove NN, Roitsch CA, Williams N, Guilbert LJ. Molecules stimulating early red cell, granulocyte, macrophage, and megakaryocyte precursors in culture: Similarity in size, hydrophobicity, and charge. J Cell Physiol Suppl 1:65–78, 1982.

    Google Scholar 

  15. Williams N, Eger RR, Moorse MAS, Mendelsohn N. Differentiation of mouse bone marrow precursor cells into neutrophil granulocyts by an activity separation from WEHI-3 cell-conditioned medium. Differentiation 11:59–63, 1978.

    PubMed  CAS  Google Scholar 

  16. Schrader JW, Battye F, Scolley R. Expression of Thy-1 antigen is not limited to T cells in cultures of mouse hemopoietic cells. Proc Natl Acad Sci USA 79:4161–4165, 1982.

    PubMed  CAS  Google Scholar 

  17. Greenberger JS, Gans PJ, Davisson PB, Moloney MC. In vitro induction of continuous acute promyelocytic cell lines in long-term bone marrow cultures by Friend or Abelson leukemia virus. Blood 53:987, 1979.

    PubMed  CAS  Google Scholar 

  18. Dexter TM, Garland J, Scott D, Scolnick E, Metcalf D. Growth of factor-dependent hemopoietic percursor cell lines. J Exp Med 152:1036, 1980.

    PubMed  CAS  Google Scholar 

  19. Nagao K, Yokoro K, Aaronson SA. Continuous lines of basophil/mast cells derived frow normal mouse bone marrow. Science 212:333, 1981.

    PubMed  CAS  Google Scholar 

  20. Yung YP, Eger R, Tertian G, Moore MAS. Long-term in vitro culture of murine mast cells: II. Purification of a mast cell growth factor and its dissociation form TCGF. J Immunol 127:94, 1981.

    Google Scholar 

  21. Nabel G, Galli SJ, Dvorak AM, Dvorak HF, Cantor H. Inducer T lymphocytes synthesize a factor that stimulates proliferation of cloned mast cells. Nature 291:332, 1981.

    PubMed  CAS  Google Scholar 

  22. Dy M, Lebel B, Kamoun P, Hamburger J. Histamine production during the anti-allograft response. Demonstration of a new lymphokine enhancing histamine synthesis. J Exp Med 153:293, 1981.

    PubMed  CAS  Google Scholar 

  23. Clark-Lewis I, Schrader JW. P cell stimulating factor; biochemical characterization of a new T cell-derived factor. J Immunol 127:1941, 1981.

    PubMed  CAS  Google Scholar 

  24. Ihle JN, Rebar L, Keller J, Lee JC, Hapel AJ. Interleukin 3: Possible roles in the regulation of lymphocyte differentiation and growth. Immunol Rev 63:5–32, 1982.

    PubMed  CAS  Google Scholar 

  25. Ihle JN, Keller J, Oroszlan ST, Henderson LE, Copeland TD, Fitch F, Prystowsky MB, Goldwasser E, Schrader JW, Palazynski E, Dy M, Lebel B. Biologic properties of homogeneous interleukin 3: I. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, P cell stimulating factor activity, colony-stimulating factor activity, and histamine-producing cell-stimulating factor activity. J Immunol 131:282–287, 1983.

    PubMed  CAS  Google Scholar 

  26. Clark-Lewis IS, Kent BH, Schrader JW. Purification to apparent homogeneity of a factor stimulating the growth of multiple lineages of hemopoietic cells. J Biol Chem 259:7488, 1984.

    PubMed  CAS  Google Scholar 

  27. Ziltener HJ, Clark-Lewis I, de Groth BF, Leroy EH, Kent SBH, Schrader JW. Antipeptide antibodies define the NH2-terminal structure of the pan-specific hemopoetin interleukin 3. American Assoc Immunol 138:1105–1108, 1987.

    CAS  Google Scholar 

  28. Fung MC, Hapel AJ, Ymer S, Cohen DR, Johnson RM, Campbell HD, Young IG. Molecular cloning of cDNA for murine interleukin 3. Nature 307:233–237, 1984.

    PubMed  CAS  Google Scholar 

  29. Yokota T, Lee F, Rennick D, Hall C, Arai N, Mosmann T, Nabel G, Cantor H, Arai KI. Isolation and characterization of a mouse cDNA clone that expresses mast-cell growth-factor activity in monkey cells. Proc Natl Acad Sci 81:1070–1074, 1984.

    PubMed  CAS  Google Scholar 

  30. Clark-Lewis I, Hood LE, Kent SBH. Role of disulfide bridges in determining the biological activity of interleukin 3. Proc Natl Acad Sci 85:7897–7901, 1988.

    PubMed  CAS  Google Scholar 

  31. Yang YCH, Ciarletta AB, Temple PA, Chung MR, Kovacic SH, Witek-Giannotti JS, Leary AC, Kriz R, Donahue RE, Wong GG, Clark S. Human IL-3 (Multi-CSF): Identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 47:3–10, 1986.

    PubMed  CAS  Google Scholar 

  32. Schrader JW, Ziltener HJ, Leslie KB. Structural homologies among the hemopoietins. Proc Natl Acad Sci USA 83:2458–2462, 1986.

    PubMed  CAS  Google Scholar 

  33. Kaushansky K, Brown CB, and O’Hara PJ. Molecular modeling of human granulocyte-macrophage colony stimulating factor. Int Cell Cloning 8:26–34, 1990.

    CAS  Google Scholar 

  34. Lokker NA, Zenke G, Strittmatter U, Fagg B, Movva NR. Structure-activity relationship study of human interleukin-3: Role of the C-terminal region for biological activity. Embo J 10:2125–2131, 1991.

    PubMed  CAS  Google Scholar 

  35. Lopez AF, Shannon MF, Barry S, Phillips JA, Cambaren B, Dottore M, Simmons P, Vadas MA. A human interleukin 3 analog with increased biological and binding activities. Proc Natl Acad Sci USA: 11842–11846, 1992.

    Google Scholar 

  36. Barry SC, Bagley CJ, Philips J, Dottore M, Bronwyn C, Moretti P, D’Andrea R, Goodall GJ, Shannon MF, Vadas MA, Lopez AF. Two contiguous residues in human interleukin-3, Asp21 and Glu22 selectively interact with the α- and β-chains of its receptor and participate in function. J Bio Chem 269:8488–8492, 1994.

    CAS  Google Scholar 

  37. Kaushansky K, Shoemaker SG, Broudy VC, Lind NL, Matous JV, Alderman EM Aghajanian JD, Szklut PJ, VanDyke RE, Pearce MK, Abrams JS. Structure-function relationships of interleukin-3. J Clin Invest 90:1879–1888, 1992.

    PubMed  CAS  Google Scholar 

  38. Smit V, van Veelen PA, Tjaden UR, van der Greef J, Haaijman JJ. Human interleukin-3 contains a discontinuous zinc binding domain. Biochem Biophys Res Commun 187: 859–866, 1992.

    PubMed  CAS  Google Scholar 

  39. Yang YCH, Clark SC. Molecular cloning of a primate cDNA and the human gene for interieukin 3. Lymphokines 15:375–391, 1988.

    CAS  Google Scholar 

  40. Stanley E, Metcalf D, Sobieszczuk P, Gough NM, Dunn AR. The structure and expression of the murine gene encoding granulocyte-macrophage colony stimulating factor: Evidence for utilisation of alternative promoters. Embo J 4:2569–2575, 1985.

    PubMed  CAS  Google Scholar 

  41. Gough MN, Metcalf D, Gough J, Grail D, Dunn AR. Structure and expression of the mRNA for murine granulocyte-macrophage colony stimulating factor. EMBO 4:645–653, 1985.

    CAS  Google Scholar 

  42. Yang YCH, Kovacic S, Kriz R, Wolf ST, Clark SC, Wellems TE, Nienhuis A, Epstein N. The human genes for GM-CSF and IL 3 are closely linked in tandem on chromosome 5. Blood 71:958–961, 1988.

    PubMed  CAS  Google Scholar 

  43. van Leeuwen BH, Martinson ME, Webb GC, Yound IG. Molecular organization of the cytokine gene cluster, involving the human IL-3, IL-4, IL-5, and GM-CSF genes, on human chromosome 5. Blood 73:1142–1148, 1989.

    PubMed  Google Scholar 

  44. Shannon MF, Gamble JR, Vadas MA. Nuclear proteins interacting with the promoter region of the human granulocyte/macrophage colony-stimulating factor gene. Proc Natl Acad Sci USA 85:674–678, 1988.

    PubMed  CAS  Google Scholar 

  45. Fraser JD, Irving BA, Crabtree GR, Weiss A. Regulation of interleukin-2 gene enhancer activity by the T cell accessory molecule CD28. Science 251:313, 1991.

    PubMed  CAS  Google Scholar 

  46. Shoemaker SG, Hromas R, Kaushansky K. Transcriptional regulation of interieukin 3 gene expression in T lymphocytes. Proc Natl Acad Sci USA 87:9650–9654, 1990.

    PubMed  CAS  Google Scholar 

  47. Shannon MF, Pell LM, Lenardo MJ, Kuczek ES, Occhiodoro FS, Dunn SM, Vadas MA. A novel tumor necrosis factor-responsive transcription factor which recognizes a regulators element in hemopoietic growth factor genes. Mol Cell Biol 10:2950, 1990.

    PubMed  CAS  Google Scholar 

  48. Ryan GR, Milton SE, Lopez AF, Bardy PG, Vadas MA, Shannon MF. Human interleukin-3 mRNA accumulation is controlled at both the transcriptional and posttranscriptional level. Blood 77:1195–1202, 1991.

    PubMed  CAS  Google Scholar 

  49. Ho IC, Vorhees P, Marin N, Oakley BK, Tsai SF, Orkin SH, Leiden JM. Human GATA-3: A lineage-restricted transcription factor that regulates the expression of the T cell receptor a gene. EMBO J 10:1187, 1991.

    PubMed  CAS  Google Scholar 

  50. Mathey-Prevot B, Andrews NC, Murphy HS, Kreissman SG, Nathan DG. Positive and negative elements regulate human interieukin 3 expression. Proc Natl Acad Sci 87: 5046–5050, 1990.

    PubMed  CAS  Google Scholar 

  51. Gottschalk LR, Giannola DM, Emerson SG. Molecular regulation of the human IL-3 gene: Inducible T cell-restricted expression requires intact AP-1 and elf-1 nuclear protein binding sites. J Exp Med 178:1681–1692, 1993.

    PubMed  CAS  Google Scholar 

  52. Masuda ES, Tokumitsu H, Tsuboi A, Shlomai J, Hung P, Ken-Ichi A, Naoko A. The granulocyte-macrophage colony-stimulating factor promoter cis-acting elemen CLEO mediates induction signals in T cells and is recognized by factors related to AP1 and NFA. Molecul Cell Biolog 13:7399–7407, 1993.

    CAS  Google Scholar 

  53. Davies K, TePas EC, Nathan DG, Mathey-Prevot B. Interleukin-3 expression by activated T cells involves an inducible T-cell-specific factor and an octmar binding protein. Blood 81:928–934, 1993.

    PubMed  CAS  Google Scholar 

  54. Cameron S, Taylor DS, TePas EC, Speck NA, Mathey-Prevot B. Identification of a critical regulatory site in the human interleukin-3 promoter by in vivo footprinting. Blood 83:2851–2859, 1994.

    PubMed  CAS  Google Scholar 

  55. Nimer S, Wolin M, Kwan K, Hong C, Kornuc M. Molecular cloning and characterization of an IL-3 promoter binding factor. Blood 80 (Suppl I):610, 1992.

    Google Scholar 

  56. Nomiyama H, Hieshima K, Hirokawa K, Hattori T, Takatsuki K, Miura R. Characterization of cytokine LD78 gene promoters: Positive and negative transcripß0tional factors bind to a negative regulatory element common to LD78, interleukin-3, and granulocyte-macrophage colony-stimultating factor gene promoters. Mol and Cell Biology 13:2787–2801, 1993.

    CAS  Google Scholar 

  57. Antoniou M, Grosveld F. β-Globulin dominant control rgion interacts differently with distal and proximal promoter elements. Genes Dev 4:1007, 1990.

    PubMed  CAS  Google Scholar 

  58. Cockerill, PN, Shannon, MF, Bert AG, Ryan GR, Vadas MA. The granulocyte-macrophage colony-stimulating factor/interleukin 3 locus is regulated by an inducible cyclosporin A-sensitive enhancer. Proc Natl Acad Sci USA 90:2466–2470, 1993.

    PubMed  CAS  Google Scholar 

  59. Caput D, Beutler B, Hartog K, Thayer R, Brown-Shimer S, Cerami A. Identification of a common nucleotide sequence int the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci USA 83:1670–1674, 1986.

    PubMed  CAS  Google Scholar 

  60. Shaw G, Kamen R. A conserved AU sequence from the 3’ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659, 1986.

    PubMed  CAS  Google Scholar 

  61. Kruys V, Marinx O, Shaw G, Deschamps J, Huez G. Translational blockade imposed by cytokin-derived UA-rich sequences. Science 245:852–855, 1989.

    PubMed  CAS  Google Scholar 

  62. Ymer S, Tucker WQ, Sanderson CJ, Hapel AJ, Campbell HD, Young JG. Constitutive synthesis of interleukin-3 by leukemia cell line WEHI-3B is due to retroviral insertion near the gene. Nature 317:255–258, 1985.

    PubMed  CAS  Google Scholar 

  63. Niemeyer CM, Sieff CA, Mathey-Prevot B, Wimperis JZ, Bierer BE, Clark SC, Nathan DG. Expression of human interleukin-3 (multi-CSF) is restricted to human lymphocytes and T-cell tumor lines. Blood 73:945–951, 1989.

    PubMed  CAS  Google Scholar 

  64. Wimperis JZ, Niemeyer CM, Sieff CA, Mathey-Prevot B, Nathan DG, Arceci RJ. Granulocyte-macrophage colony-stimulating factor and interleukin-3 mRNAs are produced by a small fraction of blood mononuclear cells. Blood 74:1525–1530, 1989.

    PubMed  CAS  Google Scholar 

  65. Durham SR, Ying S, Varney VA, Jacobson MR, Sudderick RM, Mackay IS, Kay AB, Hamid QA. Cytokine messenger RNA expression for IL-3, IL-4, IL-5, and granulocyte/ macrophage colony-stimulating factor in the nasal mucosa after local allergen provocation: Relationship to tissue eosinophilia. J Immunol 148:2390–2394, 1992.

    PubMed  CAS  Google Scholar 

  66. Kay AB, Ying S, Varney V, Gaga M, Durham SR, Mowbel R, Wardlaw AJ, Hamid Q. Messenger RNA expresion of the cytokine gene cluster, interleukin 3 (IL-3), IL-4, IL-5, and granulocyte/macrophage colony-stimulating factor, in allergen-induced late-phase cutaneous reactions in atopic subjects. J Exp Med 173:775–778, 1991..

    PubMed  CAS  Google Scholar 

  67. Hamilos DL, Leung DY, Wood R, Meyers A, Stephens JK, Barkans J, Meng Q, Cunningham L, Bean DK, Kay AB. Chronic hyperplastic sinusitis: Association of tissue eosinophilia with mRNA expression of granulocyte-macrophage colony-stimulating factor and interleukin-3. J Allergy & Clin Immunol 92:39–48, 1993.

    CAS  Google Scholar 

  68. Crapper RM, Clark-Lewis J, Schrader JW. The in vivo functions and properties of persisting cell-stimulating factor. Immunology 53:33–42, 1984.

    PubMed  CAS  Google Scholar 

  69. Svetic A, Madden KB, di Zhou X, Lu P, Katona IM, Finkelman FD, Urban JF, Jr Gause WC. A primary intestinal helminthic infection rapidly induces a gut-associated elevation of th2-associated cytokines and IL-3. J Immunol 150:3434–3441.

    Google Scholar 

  70. Dokter WHA, Esselink MT, Sierdsema SJ, Halie MR, Vellenga E. Transcriptional and posttranscriptional regulation of the interleukin-4 and interleukin-3 genes in human T cells. Blood 81:35–40, 1993.

    PubMed  CAS  Google Scholar 

  71. Dokter WHA, Sierdsema SJ, Esselink MT, Halie MR, Vellenga E. IL-7 enhances the expression of IL-3 and granulocyte-macrophage-CSF mRNA in activated human T cells by post-transcriptional mechanisms. J Immunol 150:2584–2590.

    Google Scholar 

  72. Razin E, Leslie KB, Schrader JW. Connective tissue mast cells in contact with fiberoblasts express IL-3 mRNA. Immunol 146:981–987, 1991.

    CAS  Google Scholar 

  73. Wodnar-Filipowicz, Heusser CH, Moroni C. Production of the haemopoietic growth factors GM-CSF and interleukin-3 by mast cells in response to IgE receptor-mediated activation. Nature 339:150–152, 1989.

    PubMed  CAS  Google Scholar 

  74. Guba SC, Sartor CI, Gottschalk LR, Ye-Hu Y, Mulligan T, Emerson SG. Bone marrow stromal fibroblasts secrete interleukin-6 and granulocyte-macrophage colony stimulating factor in the absence of inflammatory stimulation: Demonstration by serum-free bioassay, enzyme-linked immunosorbent assay, and reverse transcriptase polymerase chain reaction. Blood 80:1190–1198, 1992.

    PubMed  CAS  Google Scholar 

  75. Metcalf D. The multipotential colony-stimulating factor, multi-CSF (IL-3). Lymphokines 15:183–217, 1988.

    CAS  Google Scholar 

  76. Kittler ELW, McGrath H, Temeles D, Crittenden RB, Kister VK, Quesenberry PJ. Biologic significance of constitutive and subliminal growth factor production by bone marrow stroma. Blood 79:3168–3178, 1992.

    PubMed  CAS  Google Scholar 

  77. Gebicke-Haerter PJ, Appel K, Taylor GD, Schobert A, Rich IN, Northoff H, Berger M. Rat microglial interleukin-3. J Neuroimmunol 50:203–214, 1994.

    PubMed  CAS  Google Scholar 

  78. Ernst TJ, Ritchie AR, Stopak KS, Griffin JD. Human monocytes produce IL-3 in response to stimulation with calcium ionophore A23187. Blood 74 (Suppl 1):116a, 1989 (abstract).

    Google Scholar 

  79. Dalloul AH, Aroch M, Fourcade C, Hatzfeld A, Bertho JM, Debré P, Mossalayi MD. Human thymic epithelial cells produce interleukin-3. Blood 77:69–74, 1991.

    PubMed  CAS  Google Scholar 

  80. Dalloul AH, Arock M, Fourcade CH, Béanger JY, Jaffray P, Debré P, Mossalayi MD. Epidermal keratinocyte-derived basophil promoting activity. J Clin Invest 90:1242–1247, 1992.

    PubMed  CAS  Google Scholar 

  81. Kita H, Ohnishi T, Okubo Y, Weiler D, Abrams JS, Gleich GJ. Granulocytel/macrophage colony-stimulating factor and interleukin 3 release from human peripheral blood eosinophils and neutrophils. J Exp Med 174:745–748, 1991.

    PubMed  CAS  Google Scholar 

  82. Fujisawa T, Fukuda S, Atsuta J, Ichimi R, Kamiya H, Sakurai M. Interferon-gamma induces interleukin-3 release from peripheral blood eosinophils. Int Arch of Allergy & Immunol 104:41–43, 1994.

    CAS  Google Scholar 

  83. Park LS, Friend D, Price V, Anderson D, Singer J, Prickett KS, Urdal DL. Heterogeneity in human interleukin-3 receptors J Biolog Chem 264:5420–5427, 1989.

    CAS  Google Scholar 

  84. Lopez AF, Eglinton JM, Lyons AB, Tapley PM, To LB, Park LS, Clark SC, Vadas MA. Human interleukin-3 inhibits the binding of granulocyte-macrophage colony-stimulating factor and interleukin-5 to basophils and strongly enhances their functional activity. J Cell Physiology 145:69–77, 1990.

    CAS  Google Scholar 

  85. Lopez AF, Eglinton JM, Gillis D, Park LSD, Clark S, Vadas MA. Reciprocal inhibition of binding between interleukin 3 and granulocyte-macrophage colony-stimulating factor to human eosinophils. Proc Natl Acad Sci USA 86:7022–7026, 1989.

    PubMed  CAS  Google Scholar 

  86. Uckun FM, Gesner TG, Song CW, Myers DE, Mufson A. Leukemic B-cell precursors express functional receptors for human interleukin-3. Blood 73:533–542, 1989.

    PubMed  CAS  Google Scholar 

  87. Budel LM, Touw IP, Deiwel R, Clark SC, Löwenberg. Interleukin-3 and granulocyte-monocyte colony-stimulating factor receptors on human acute myelocytic leukemia cells and relationship to the proliferative response. Blood 74:565–571, 1989.

    PubMed  CAS  Google Scholar 

  88. Isfort RJ, Stevens D, May SW, Ihle JN. Interleukin 3 binds to a 140-kDa phosphotyrosine-containing cell surface protein. Proc Natl Acad Sci USA 85:7982–7986, 1988.

    PubMed  CAS  Google Scholar 

  89. Kuwaki T, Kitamura T, Tojo A, et al. Characterization of human interleukin-3 receptors on a multi-factor dependent cell line. Biochem Biophys Res Commun 161:16–22, 1989.

    PubMed  CAS  Google Scholar 

  90. Yonehara S, Ishi A, Yonehara M, Koyasu S, Miyajima A, Schreurs J, Arai K, Yahara I. Identification of a cell surface 105Kd protein (AIC-2 antigen) which binds interleukin-3. Int Immunol 2:143–150, 1990.

    PubMed  CAS  Google Scholar 

  91. Itoh N, Yonehara S, Schreurs J, Gorman DM, Maruyama K, Ishii A, Yahara I, Arai KI, Miyajima A. Cloning of an interleukin-3 receptor gene: A member of a distinct receptor gene family. Science 247:324–327, 1990.

    CAS  Google Scholar 

  92. Gorman DM, Itoh N, Kitamura T, Schreurs J, Yonehara S, Yahara I, Arai KI, Miyajima A. Cloning and expression of a gene encoding an interleukin 3 receptor-like protein: Identification of another member of the cytokine receptor gene family. Proc Natl Acad Sci USA 87:5459–5463, 1990.

    PubMed  CAS  Google Scholar 

  93. Kitamura T, Miyajima A. Functional reconstitution of the human interleukin-3 receptor. Blood 80:84–90, 1992.

    PubMed  CAS  Google Scholar 

  94. Hayashida K, Kitamura T, Gorman DM, Arai KI, Yokota T, Miyajima A. Molecular cloning of a second subunit of the receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF): Reconstitution of a high-affinity GM-CSF receptor Proc Natl Acad Sci USA 87:9655–9659, 1990.

    PubMed  CAS  Google Scholar 

  95. Gearing DP, King JA, Gough NM, Nicola NA. Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor. EMBO J 8:3667–3676, 1989.

    PubMed  CAS  Google Scholar 

  96. Bazan JF. Structural design and molecular evolution of a cytokine receptor family. Proc Natl Acad Sci USA 87:6934–6938, 1990.

    PubMed  CAS  Google Scholar 

  97. Patthy L. Homology of a domain of the growth hormone/prolactin receptor family with type III modules of fibronectin. Cell 61:13–14, 1990.

    PubMed  CAS  Google Scholar 

  98. Miyajima A, Kitamury T, Harada N, Yokota T, Arai K. Cytokine receptors and signal transduction. Annu Rev Immunol 10:295–331, 1992.

    PubMed  CAS  Google Scholar 

  99. Kitamura T, Sato N, Arai KI, Miyajima A. Expression cloning of the human IL-3 receptor cDNA reveals a shared β subunit for the human IL-3 and GM-CSF receptors. Cell 66:1165–1174, 1991.

    PubMed  CAS  Google Scholar 

  100. Elliott MJ, Vadas MA, Eglinton JM, Park LS, To LB, Cleland LG, Clark SC, Lopez AF. Recombinant human interleukin-3 and granulocyte-macrophage colony-stimulating facto show common biological effects and binding characteristics on human monocytes. Blood 74:2349–2359, 1989.

    PubMed  CAS  Google Scholar 

  101. Elliott MJ, Moss J, Dottore M, Park LS, Vadas A, Lopez AF. In vitro culture of common acute lymphoblastic leukemia blasts: Effects of interleukin-3, interleukin-7, and accessory cells. Blood 79:3274–3284, 1992.

    Google Scholar 

  102. Tavernier J, Devos R, Cornelius S, Tuypens T, Van DHJ, Fiers W, Plaetinck G. A human high affinity interleukin-5 receptor (IL5R) is composed of an IL-5 specific alpha chain and a beta chain shared with the receptor for GM-CSF. Cell 66:1175, 1991.

    PubMed  CAS  Google Scholar 

  103. Raines MA, Liu L, Quan SG, Joe V, DiPersio JF, Golde DW. Identification and molecular cloning of a soluble human granulocyte-macrophage colony-stimulating factor receptor. Proc Natl Acad Sci USA 88:8203, 1991.

    PubMed  CAS  Google Scholar 

  104. Hara T, Miyajima A. Two distinct functional high affinity receptors for mouse IL-3. EMBO J 10:1875, 1992.

    Google Scholar 

  105. Miyajima A, Mui ALF, Ogorochi T, and Sakamaki K. Receptors for granulocyte-macrophage colony-stimulating factor, Interleukin-3, and Interleukin-5. Blood 82:1960–1974, 1993.

    PubMed  CAS  Google Scholar 

  106. D’Andrea R, Rayner JH, Horetti P, Lopez A, Goodall GJ, Gonda GT, Vadas MA. A mutation of the common receptor subunit for interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor, and IL-5 that leads to ligand independence and tumorigenicity. Blood 83:2802–2808, 1994.

    PubMed  Google Scholar 

  107. Sato N, Caux C, Kitamura T, Watanabe Y, Arai K, Banchereau J, Miyajima A. Expression and factor-dependent modulation of the interleukin-3 receptor subunits on human hematopoietic cells. Blood 82:752, 1993.

    PubMed  CAS  Google Scholar 

  108. Liboi E, Jubinsky P, Andrews NC, Nathan DG, and Mathey-Prevot B. Enhanced expression of Interleukin-3 and granulocyte macrophage colony-stimulating factor receptor subunits in murine hematopoietic cells stimulated with hematopoietic growth factors. Blood 80:1183–1189, 1992.

    PubMed  CAS  Google Scholar 

  109. Watanabe Y, Kitamura R, Hayashida K, and Miyajima A. Monoclonal antibody against the common β subunit (βc) of the human interleukin-3 (IL-3), IL-5, and granulocyte-macrophage colony-stimulating factor receptors shows upregulation of βc by IL-1 and tumor necrosis factor-a. Blood 80:2215–2220, 1992.

    PubMed  CAS  Google Scholar 

  110. Caux C, Durand I, Moreau I, Duvert V, Saeland S, Banchereau J. Tumor necrosis factor a cooperates with interleukin 3 in the recruitment of a primitive subset of human CD34+ progenitors. J Exp Med 177:1815–1820, 1993.

    PubMed  CAS  Google Scholar 

  111. Elbaz O, Budel LM, Hoogerbrugge H, Touw IP, Ruud D, Mahmoud LA, Löwenberg B. Tumor necrosis factor regulates the expression of granulocyte-macrophage colony-stimulating factor and interleukin-3 receptors on human acute myeloid leukemia cells. Blood 77:989–995, 1990.

    Google Scholar 

  112. Mc Clanahan T, Dairymple S, Barkett M, Lee F. Hematopoietic growth factor receptor genes as markers of lineage commitment during in vitro development of hematopoietic cells. Blood 81:2903, 1993.

    Google Scholar 

  113. Gorman DM, Itoh N, Jenkins NA, Gilbert DI, Dopeland NG, Miyajima A. Chromosomal localization and organization of the murine genes encoding the β subunits (AIC2A and AIC2B) of the interleukin 3, granulocyte/macrophage colony-stimulating factor and interleukin 5 receptors. J Biol Chem 267:15842, 1992.

    PubMed  CAS  Google Scholar 

  114. Shen Y, Baker E, Callen DF, Sutherland GR, Willson TA, Raker S, Gough NM. Localization of the human GM-CSF receptor β chain gene (CSF2RB) to chromosome 22ql2.2→13.1. Cytogenet Cell Genet 61:175, 1992.

    PubMed  CAS  Google Scholar 

  115. Kremer E, Baker E, D’Andrea RJ, Slim R, Philips H, Moretti PAB, Lopez AF, Petit C, Vadas MA, Sutherland GR, Goodall GJH. A cytokine receptor gene cluster in the X-Y pseudoautosomal region? Blood 82:22, 1993.

    PubMed  CAS  Google Scholar 

  116. Moria AO, Schreurs J, Miyajima A, Wang JYJ. Hematopoietic growth factors activate the tyrosine phosphorylation of distinct sets of proteins in interleukin-3-dependent murine cell lines. Mol Cell Biol 8:2214–2218, 1988.

    Google Scholar 

  117. Isfort R, Abraham R, Huhn RD, Fackelton AR, Ihle JN. Stimulation of factor dependent myeloid cell lines with interleukin-3 induces tyrosine phosphorylation of several cellular substrates. J Biol Chem 263:19203–19209, 1988.

    PubMed  CAS  Google Scholar 

  118. Linnekin D, Farrar W. Signal transduction of human interleukin-3 and granulocyte-macrophage colony-stimulating factor through serine and tyrosine phosphorylation. Biochem J 271:317–324, 1990.

    PubMed  CAS  Google Scholar 

  119. Kanakura Y, Druker B, Cannistra SA, Furukawa Y, Torimoto Y, Griffin JD. Signal transduction of the human granulocyte-macrophage colony-stimulating factor and interleukin-3 receptors involves tyrosine phosphorylation of a common set of cytoplasmic proteins. Blood 76:706–715, 1990.

    PubMed  CAS  Google Scholar 

  120. Sakamaki K, Miyajima I, Kitamura T, Miyajima A. Critical cytoplasmic domains of the common β subunit of the human GM-CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBO J 11:3541–3549, 1992.

    PubMed  CAS  Google Scholar 

  121. Torigoe T, O’Connor R, Santoli D, Reed JC. Interleukin-3 regulates the activity of the LYN protein-tyrosine kinase in myeloid-committed leukemic cell lines. Blood 80:617–624, 1992.

    PubMed  CAS  Google Scholar 

  122. Kobayashi N, Kono T, Hatakeyama M, Minami Y, Miyazaki T, Perlumtter R, Taniguchi T. Functional coupling of the src-family protein tyrosine kinases p59fyn and p53/p561yn with the interleukin 2 receptor: Implications for redundancy and pleiotropism in cytokine signal transduction. Proc Natl Acad Sci USA 90:4201, 1993.

    PubMed  CAS  Google Scholar 

  123. Hanazono Y, Chiba S, Sasaki K, Mano H, Miyajima A, Arai K, Yazaki Y, Hirai H. C-fps/fes protein-tyrosine kinase is implicated in a signaling pathway triggered by granulocyte-macrophage colony-stimulating factor and interleukin-3. EMBO J 112: 1641–1646, 1993.

    Google Scholar 

  124. Silvennoinen O, Witthuhn BA, Quelle FW, Cleveland JL, Taolin Y, Ihle JN. Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc Natl Acad Sci USA 90:8429–8433, 1993.

    PubMed  CAS  Google Scholar 

  125. Rudd CE, Janssen O, Cai YC, da Silva AJ, Raab M, Prasad KVS. Two-step TCRy/CD3-CD4 and CD28 signaling in T cells: SH2/SH3 domains, protein-tyrosine and lipid kinases. Immunol Today 15:225–234, 1994.

    PubMed  CAS  Google Scholar 

  126. Matsuguchi T, Salgia R, Hallek M, Eder M, Druker B, Ernst TJ, Griffin JD. Shc phosphorylation in myeloid cells is regulated by granulocyte macrophage colony-stimulating factor, interleukin-3, and steel factor and is constitutively increased by p210BCR/ABL. J Biol Chemistry 18:1516–1521, 1994.

    Google Scholar 

  127. Mui A, Cutler R, Alai M, Bustelo X, Barbacid M, Krystal G. Steel factor and interleukin-3 stimulate the tyrosine phosphorylation of p95 vav in hematopoietic cell lines. Exp Hematol 20:752, 1992.

    Google Scholar 

  128. Puyana-Theall K, Eguinoa A, Bolen JV, Cantley L, Mollindeo F, Jackson TR, Hawkins PT, Stephens LR. GM-CSF and IL-3 activate PI 3-kinase via SRC-related tyrosine kinase(s) in human myeloid-derived cells. Blood 80 (Suppl I):592, 1992.

    Google Scholar 

  129. Matsuda T, Hirano T. Association of p72 tyrosine kinase with stat factors and its activation by interleukin-3, interleukin-6, and granulocyte colony-stimulating factor. Blood 83:3457–3461, 1994.

    PubMed  CAS  Google Scholar 

  130. Rozakis-Adcock M, Fernley R, Wade J, Pawson T, Bowtell D. The SH2 and SH3 domain of mammelian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 363: 83–85, 1993.

    PubMed  CAS  Google Scholar 

  131. Satoh T, Uehara Y, and Kaziro Y. Inhibition of interleukin 3 and granulocyte-macrophage colony-stimulating factor stimulated increase of active ras GTP by herbimycin A, a specific inhibitor pf tyrosine kinases. J Biolog Chem 267:2537–2541, 1992.

    CAS  Google Scholar 

  132. Gulhins E, Coggeshall K, Baier G, Katza S, Burn P, Altman A. Tyrosine kinase-stimulated guanine nucleotide exchange activity of vav in T cell activation. Science 260:822, 1993.

    Google Scholar 

  133. Duronio V, Clark LI, Federspiel B, Wieler JS, Schrader JW. Tyrosine phosphorylation of receptor beta subunits and common substrates in response to interleukin-3 and granulozyte-macrophage colony-stimulating factor. J Biol Chem 267:21856, 1992.

    PubMed  CAS  Google Scholar 

  134. Kanakura Y, Druker B, Wood KW, Mamon HJ, Okuda K, Roberts TM, Griffin JD. Granulocyte-macrophage colony-stimulating factor and interleukin-3 induce rapid phosporylation and activation of the proto-oncogene Raf-1 in a human factor-dependent myeloid cell line. Blood 77:243–248, 1991.

    PubMed  CAS  Google Scholar 

  135. Satoh T, Nakafuku M, Miyajima A, Kaziro Y. Involvement of ras p21 protein in signal-transduction pathways from interleukin 2, interleukin 3, and granulocyte/macrophage colony-stimulating factor, but not from interleukin 4. Proc Natl Acad Sci USA 88:3314, 1991.

    PubMed  CAS  Google Scholar 

  136. Okuda K, Sanghera JS, Pelech SL, Kakura Y, Hallek NM, Griffin JD, Druker BJ. Granulocyte-macrophage colony-stimulating factor, interleukin-3 and steel factor induce rapid typrosine phosphorylation of p42 and p44 MAP kinase. Blood 79:2880, 1992.

    PubMed  CAS  Google Scholar 

  137. Sato N, Sakamaki K, Terada N, Arai K, Miyajima A. Signal transduction by the high affinity GM-CSF receptor: Two distinct cytoplasmic regions of the common β subunit responsible for differentiation. EMBO J 12 (11):4181–4189, 1993.

    PubMed  CAS  Google Scholar 

  138. Prasad KVS, Janssen O, Kapeller R, Raab M, Cantley LC, Rudd CE. SRC-homology 3 domain of protain kinase p59 fyn mediates binding to phosphatidylinositol 3-kinase in T cells. Proc Natl Acad Sci USA 90:7366–7370, 1993.

    PubMed  CAS  Google Scholar 

  139. Prased KVS, Cai YC, RAAB M, et al. T cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr (P)-Met-Xaa-Met. Proc Natl Acad Sci USA 91:2834–2838, 1991.

    Google Scholar 

  140. Whetton AD, Monk PN, Consalvey SD, Downes CP. The haemopoietic growth factors interleukin-3 and colony stimulating factor-1 stimulate proliferation but do not induce inositol lipid breakdown in murine bone-marrow-derived macrophages. EMBO 5:3281–3286, 1986.

    CAS  Google Scholar 

  141. Robinson M, Chen T, Warne TR. IL-3 induced generation of alkylacylglycerol and diacylglycerol in an IL-3-dependent cell line. J Immunol 147:2624–2629, 1991.

    PubMed  CAS  Google Scholar 

  142. Rao P, Mufson RA. Human interleukin-3 stimulates a phosphatidylcholine specific phospholipase C and protein kinase C translocation. Cancer Res 777–783, 1994.

    Google Scholar 

  143. Farrar WL, Thomas TP, Anderson WB. Altered cytosol/membrane enzyme redistribution on interleukin-3 activation of protein kinase C. Nature 315:235–237, 1985.

    PubMed  CAS  Google Scholar 

  144. Fields AP, Pincus SM, Kraft AS, May WS. Interleukin-3 and bryostatin 1 mediate rapid nuclear envelope protein phosphorylation in growth factor-dependent FDC-P1 hematopoietic cells. J Biol Chem 264:21896–21901, 1989.

    PubMed  CAS  Google Scholar 

  145. Mufson RA, Szabo J, Eckert D. Human I1–3 induction of c-jun in normal monocytes is independent of tyrosine kinase and involves protein kinase C. J Immunol 148:1129–1135, 1992.

    PubMed  CAS  Google Scholar 

  146. Domen J, van der Lugt NMT, Laird PW, Saris CJM, Clarke AR, Hooper ML, Berns A. Impaired interleukin-3 response in Pirn-1-deficient bone marrow-derived mast cells. Blood 82:1445–1452, 1993.

    PubMed  CAS  Google Scholar 

  147. Mui A, Kay RJ, Humphries RK, Krystal G. Ligand-induced phosphorylation of the murine interleukin 3 receptor signals its cleavage. Proc Natl Acad Sci USA 89:10812–10816, 1992.

    PubMed  CAS  Google Scholar 

  148. Metcalf D, Nicola NA, Gearing DP, Gough NM. Low-affinity Placenta-derived receptors for human granulocyte-macrophage colony-stimulating factor can deliver a proliferative signal to murine hemopoietic cells. Proc Natl Acad Sci USA 87:4670–4674, 1990.

    PubMed  CAS  Google Scholar 

  149. Metcalf D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature 339:27–30, 1989.

    PubMed  CAS  Google Scholar 

  150. Metcalf D. Multi-CSF-dependent colony formation by cells of a murine hematopoietic cell line: Specificity and action of multi-CSF. Blood 65:357–362, 1985.

    PubMed  CAS  Google Scholar 

  151. Metcalf D. Clonal analysis of the proliferation and differentiation of paired daughter cells: Action of GM-CSF on granulocyte-macrophage precursors. Proc. Natl Acad Sci USA 77:5327–5330, 1980.

    PubMed  CAS  Google Scholar 

  152. Sieff CA, Niemeyer CM, Nathan DG, Ekern SC, Bieber FR, Yang Y, Wong G, Clark SC. Stimulation of human hematopoietic colony formation by recombinant gibbon multi-colony-stimulating factor or interleukin-3. Clin Invest 80:818–823, 1987.

    CAS  Google Scholar 

  153. Leary AG, Yang Y, Clark SC, GAsson JC, Golde DW, Ogawa M. Recombinant gibbon interleukin-3 supports formation of human multilineage colonies and blast cell colonies in culture: Comparison with recombinant human granulocyte-macrophage colony-stimulating factor. Blood 70:1343–1348, 1987.

    PubMed  CAS  Google Scholar 

  154. Tsunoda J-I, Okada S, Suda J, Nagayoshi K, Nakauchi H, Hatake K, Miura Y, Suda T. In vivo stem cell function of interleukin-3-induced blast cells. Blood 78: 318–322, 1991.

    PubMed  CAS  Google Scholar 

  155. Messner HA, Yamasaki K, Jamal N, Minden MM, Yang YC, Wong GG, Clark SC. Growth of human hemtopoietic colonies in response to recombinant IL-3: Comparison with human recombinant granulocyte-macrophage colony-stimulating factor. Proc Natl Acad Sci USA 84:6765–6769, 1987.

    PubMed  CAS  Google Scholar 

  156. Emerson SG, Yang Y, Clark SC, and Long MW. Human recombinant granulocyte-macrophage colony stimulating factor and interleukin-3 have overlapping but distinct hematopoietic activities. Clin Invest 82:1282–1287, 1988.

    CAS  Google Scholar 

  157. Lopez AF, Dyson PG, To LB, Elliott MJ, Milton SE, Russell JA, Juttner CA, Yang Y, Clark SC, Vadas MA. Recombinant human interleukin-3 stimulation of hematopoiesis in humans: Loss of responsiveness with differentiation in the neutrophilic myeloid series. Blood 72:1797–1804, 1988.

    PubMed  CAS  Google Scholar 

  158. Valent P, Schmidt G, Besemer J, Mayer P, Zenke G, Liehl E, Hinterberger W, Lechner K, Maurer D, Bettelheim P. Interleukin-3 is a differentiation factor for human basophils. Blood 73:1763–1769, 1989.

    PubMed  CAS  Google Scholar 

  159. Ema H, Suda T, Nagayoshi K, Miura Y, Civin CI, Nakauchi H. Target cells for granulocyte colony-stimulating factor, interleukin-3, and interleukin-5 in differentiation pathways of neutrophils and eosinophils. Blood 76:1956–1961, 1990.

    PubMed  CAS  Google Scholar 

  160. Cheung DL, Hamilton JA. Regulation of human monocyte DNA synthesis by colony-stimulating factors, cytokines, and cyclic adenosine monophosphate. Blood 79:1972–1981, 1992.

    PubMed  CAS  Google Scholar 

  161. Ickebuchi K, Clark SC, Ihle JN, Souza LM, Ogawa M. Granulocyte colony-stimulating factor enhances interleukin-3-dependent proliferation of multipotential hemopoietic progenitors. Proc Natl Acad Sci USA 85:3445–3449, 1988.

    Google Scholar 

  162. Bridell RA, Brandt JE, Leemhuis TB, Hoffman R. Role of cytokines in sustaining long-term human megakaryocytopoiesis in vitro. Blood 79:332–337, 1992.

    Google Scholar 

  163. Migliaccio G, Migliaccio AR, Visser JWM. Synergism between erythropoietin and interleukin-3 in the induction of hematopoietic stem cell proliferation and erythroid burst colony formation. Blood 72:944–951, 1988.

    PubMed  CAS  Google Scholar 

  164. Sillaber C, Geissler K, Scherrer R, Kaltenbrunner R, Bettelheim P, Lechner K, Valent P. Type β transforming growth factors promote interleukin-3 (IL-3)-dependent differentiation of human basophils but inhibit IL-3-dependent differentiation of human eosinophils. Blood 80:634–641, 1992.

    PubMed  CAS  Google Scholar 

  165. Kaushansky K, Lok S, Holly RD, Broudy VC, Lin N, Bailey MC, Forstrom JW, Buddie MMN, Oort PJ, Hagen FS, Roth GJ, Papayannopoulou T, Forster DC. Promotion of megakaryocyte progenitor expansion and differentiation by the c-mpl ligand thrombopoietin. Nature 369:568–571, 1994.

    PubMed  CAS  Google Scholar 

  166. Barton BE, Mayer R. IL-3 induces differentiation of bone marrow precursor cells to osteoclast-like cells. J Immunol 143:3211–3216, 1989.

    PubMed  CAS  Google Scholar 

  167. Hattersley G, Chambers TJ. Effects of interleukin-3 and of granulocyte-macrophage and macrophage colony stimulating factors on osteoclast differentiation from mouse hemopoetic tissue. J Cell Phys 142:201–219, 1990.

    CAS  Google Scholar 

  168. Povolny BT, Lee MY. The role of recombinant human M-CSF, IL-3, GM-CSF and calcitriol in clonal development of osteoclast precursors in primate bone marrow. Exp Hematol 21:532–537, 1993.

    PubMed  CAS  Google Scholar 

  169. Wörmann B, Gesner TG, Mufson RA, Leßien TW. Proliferative effect of interleukin-3 on normal and leukemic human B cell precursors. Leukemia 3:399–404, 1989.

    PubMed  Google Scholar 

  170. Xia X, Li L, Choi YS. Human recombinant IL-3 is a growth factor for normal B cells. J Immunol 148:491–497, 1992.

    PubMed  CAS  Google Scholar 

  171. Hirayama F, Clark SC, Ogawa M. Negative regulation of early B lymphopoiesis by interleukin 3 and interleukin la. Proc Natl Acad Sci USA 91:469–473, 1994.

    PubMed  CAS  Google Scholar 

  172. Soloff RS, Dempsey D, Jennings SR, Wolcott RM, Chervenak R. Characterization of the progeny of precursor-T (pre-T) cells maintained in vitro by interleukin-3 (IL-3). Development of T-cell function in vivo. Immunology 76:279–285, 1992.

    PubMed  CAS  Google Scholar 

  173. Londei M, Verhoef A, de Berardinis P, Kissonerghis M, Grubeck-Loebenstein B, Feldmann M. Definition of a population of CD4–8-T cells that express the αβ T-cell receptor and respond to interleukins 2, 3, and 4. Proc Natl Acad Sci USA 86:8502–8506, 1989.

    PubMed  CAS  Google Scholar 

  174. Kubota H, Hitoaki O, Onuma M, Kano S, Hattori M, Minato N. CD 3+ 4 – 8- αβ T-cell population with a biased T-cell receptor V gene usage. JH Immunol 149:1143–1150, 1992.

    CAS  Google Scholar 

  175. Kailand T. Physiology of natural killer cells: In vivo regulation of progenitors by interleukin 3. J Immunol 139:3671–3675, 1987.

    Google Scholar 

  176. Walker F, Nicola NA, Metcalf D, Burgess AW. Hierarchical down-modulation of hematopoietic growth factor receptors. Cell 43:269–276, 1985.

    PubMed  CAS  Google Scholar 

  177. Sonoda Y, Yand Y, Gordon G, Clark SC, Ogawa M. Analysis in serum-free culture of the targets of recombinant human hemopoietic growth factors: Interleukin 3 and granulocyte/ macrophage-colony-stimulating factor are specific for early developmental stages. Proc Natl Acad Sci 85:4360–4364, 1988.

    PubMed  CAS  Google Scholar 

  178. Leary AG, Zeng HQ, Clark SC, Ogawa M. Growth factor requirements for survival in G0 and entry into the cell cycle of primitive human hemopoietic progenitors. Proc Natl Acad Sci 89:4013–4017, 1992.

    PubMed  CAS  Google Scholar 

  179. Bernstein ID, Andrews RG, Zsebo KM. Recombinant human stem cell factor enhances the formation of colonies by CD34+ and CD34 lin- cells, and the generation of colony-forming cell progeny from CD34+ lin- cells cultured with interleukin-3, granulocyte colony-stimulating factor. Blood 77:2316–2321, 1991.

    PubMed  CAS  Google Scholar 

  180. Ogata H, Taniguchi S, Inaba M, Sugawara M, Ohta Y, Inaba K, Mori KJ, Ikehara S. Separation of hematopoietic stem cells into two populations and their characterization. Blood 80:91–95, 1992.

    PubMed  CAS  Google Scholar 

  181. Jacobsen SEW, Veiby OP, Smeland EB. Cytotoxic lymphocyte maturation factor (interleukin 12) is a synergistic growth factor for hematopoietic stem cells. J Exp Med 178:413–418, 1993.

    PubMed  CAS  Google Scholar 

  182. Caux C, Saeland S, Favre C, Duvert V, Mannoni P, Banchereau J. Tumor necrosis factor-alpha strongly potentiates interleukin-3 and granulocyte-macrophage colony-stimulating factor-induced proliferation of human CD34+ hematopoietic progenitor cells. Blood 75:2292–2298, 1990.

    PubMed  CAS  Google Scholar 

  183. Caux C, Durand I, Moreau I, Duvert V, Saeland S, Banchereau J. Tumor necrosis factor a cooperates with interleukin 3 in the recruitment of a primitive subset of human CD34+ progenitors. J Exp Med 177:1815–1820, 1993.

    PubMed  CAS  Google Scholar 

  184. Kobayashi M, Imamura M, Gotohda Y, Maeda S, Iwasaki H, Sakurada K, Kasai M, Hape AJ, Miyazaki T. Synergistic effects of interleukin-1β and interleukin-3 on the expansion of human hematopoietic progenitor cells in liquid cultures. Blood 78:1947–1953, 1991.

    PubMed  CAS  Google Scholar 

  185. Kawano Y, Takaue Y, Hirao A, Abe T, Saito S, Matsunaga K, Watanabe T, Hirose M, Ninomiya T, Kuroda Y, Yokobayashi A, Asano S. Synergistic effect of recombinant interferon-y and interleukin-3 on the growth of immature human hematopoietic progenitors. Blood 77:2118–2121, 1991.

    PubMed  CAS  Google Scholar 

  186. Caux C, Moreau I, Saeland S, Banchereau J. Interferon-y enhances factor-dependent myeloid proliferation of human CD34+ hematopoietic progenitor cells. Blood 79:2628, 1992.

    PubMed  CAS  Google Scholar 

  187. Brugger W, Möcklin W, Helmfeld S, Berenson RJ, Mertelsmann R, Kanz L. Ex vivo expansion of enriched peripheral blood CD34+ progenitor cells by stem cell factor, interleukin-1β (IL-1B), IL-6, IL-3, interferon-y, and erythropoietin. Blood 81:2579–2584, 1993.

    PubMed  CAS  Google Scholar 

  188. Metcalf D. Lineage commitment of hemopoetic progenitor cells in developing blast cell colonies: Influence of colony-stimulating factors. Proc Natl Acad Sci 88:11310–11314, 1991.

    CAS  Google Scholar 

  189. Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood 81: 2844–2853, 1993.

    PubMed  CAS  Google Scholar 

  190. Brandt JE, Bhalla K, Hoffman R. Effects of Interleukin-3 and c-kit ligánd on the survival of various classes of human hematopoietic progenitor cells. Blood 83:1507–1514, 1994.

    PubMed  CAS  Google Scholar 

  191. Verfaillie CM, Catanzarro PM, Li W. Macrophage inflammatory protein la, Interleukin 3 and diffusible marrow stromal factors maintain human hematopoietic stem cells for at least eight weeks in vitro. J Exp Med 179:643–649, 1994.

    PubMed  CAS  Google Scholar 

  192. Tai PC, Spry CJ. The effects of recombinant granulocyte-macrophage colony-stimulating factor and interleukin-3 on the secretory capacity of human blood eosinophils. Clin Exp Immunol 80:426–434, 1990.

    PubMed  CAS  Google Scholar 

  193. Lopez AF, To LB, Yang Y, Gamble JR, Shannon MFF, Burns GF, Dyson PG, Juttner CA, Clark S, Vadas MA. Stimulation of proliferation, differentiation, and function of human cells by primate interleukin-3. Proc Natl Acad Sci 84:2761–2765; 1987.

    PubMed  CAS  Google Scholar 

  194. Williams GT, Smith CA, Spooncer E, Dexter TM, Taylor DR. Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature 343:76–81, 1990.

    PubMed  CAS  Google Scholar 

  195. Brunner T, Heusser CHH, Dahinden CA. Human peripheral blood basophils primed by interleukin 3 (IL-3) produce IL-4 in response to immunoglobulin E receptor stimulation. J Exp Med 177:605–611, 1993.

    CAS  Google Scholar 

  196. Walz TM, Nishikawa BK, Malm C, Briheim K, Wasteson A. Transforming growth factor alpha expression in normal human blood eosinophils: Differential regulation by granulocyte macrophage colony-stimulating factor and interleukin-3. Leukemia 8:612–619, 1994.

    PubMed  CAS  Google Scholar 

  197. Kurimoto Y, de Weck AL, Dahinden CA. Interleukin-3-dependent mediator release in basophils triggered by C5a. J Exp Med 170:467–479, 1989.

    PubMed  CAS  Google Scholar 

  198. Bischoff SC, de Weck AL, Dahinden CA. Interleukin 3 and granulocyte/macrophage-colony-stimulating factor render human basophils responsive to low concentrations of complement component C3a. Proc Natl Acad Sci 87:6813–6817, 1990.

    PubMed  CAS  Google Scholar 

  199. Dahinden CA, Kurimoto Y, de Weck AL, Lindley I, Dewald B, Baggiolini M. The neutrophil-activating peptide NAF/NAP-1 induces histamine and leukotriene release by interleukin 3-primed basophils. J Exp Med 170:1787–1792, 1989.

    PubMed  CAS  Google Scholar 

  200. Dy M, Machavoine F, Lebel B, Ichikawa A, Gastinel LN, Schneider E. Interleukin-3 promotes histamine synthesis in hematopoietic progenitors by increasing histidine decarboxylase mRNA expression. Biochem Biophys Res Commun 192:167–173, 1993.

    PubMed  CAS  Google Scholar 

  201. McGlashan DW Jr, Hubbard WC. IL-3 alters free arachidonic acid generation in C5a-stimulated human basophils. J Immunol 151:6358–6369, 1993.

    Google Scholar 

  202. Bochner BS, McKelvey AA, Sterbinsky SA, Hildreth JE, Derse CP, Klunk DA, Lichtenstein LM, Schleimer RP. IL-3 augments adhesiveness for endothelium and CD11b expression in human basophils but not neutrophils. J Immunol 145:1832–1837, 1990.

    PubMed  CAS  Google Scholar 

  203. Valent P, Besemer J, Sillaber CH, Butterfield JH, Eher R, Majdic O, Kishi K, Klepetko W, Eckersberger F, Lechner K, Bettelheim P. Failure to detect IL-3-binding sites on human mast cells. J Immunol 145:3432–3437, 1990.

    PubMed  CAS  Google Scholar 

  204. Denburg JA. Basophil and mast cell lineages in vitro and in vivo. Blood 79:846–860, 1992.

    PubMed  CAS  Google Scholar 

  205. Smith TJ, Ducharme LA, Weis JH. Preferential expression of interleukin-12 or inter-leukin-4 by murine bone marrow mast cells derived in mast cell growth factor or interleukin-3. Eur J Immunol 24:822–826, 1994.

    PubMed  CAS  Google Scholar 

  206. Abe T, Sugaya H, Ishida K, Khan WI, Tasdemir I, Yoshimura K. Intestinal protection against strongyloides ratti and mastocytosis induced by administration of interleukin-3 in mice. Immunol 80:116–121, 1993.

    CAS  Google Scholar 

  207. Warringa RA, Koenderman L, Kok PTM, Kreukniet J, Bruijnzeel PLB. Modulation and induction of eosinophil Chemotaxis by granulocyte-macrophage colony-stimulating factor and interleukin-3. Blood 77:2694–2700, 1991.

    PubMed  CAS  Google Scholar 

  208. Takafuji S, Bischoff SC, de Weck AL, Dahinden CA. IL-3 IL-5 prime normal human eosinophils to produce leukotriene C4 in response to soluble agonists. J Immunol 147: 3855–3861, 1991.

    PubMed  CAS  Google Scholar 

  209. Blom M, Tool ATJ, Kok PTM, Koenderman L, Roos D, Verhoeven AJ. Granulocyte-macrophage colony-stimulating factor, Interleukin-3 (IL-3) and IL-5 greatly enhance the interaction of human eosinophils with opsonized particles by changing the affinity of complement receptor type 3. Blood 83:2978–2984, 1994.

    PubMed  CAS  Google Scholar 

  210. Young DA, Lowe LD, Clark SC. Comparison of the effects of IL-3, granocyte-macrophage colony-stimulating factor, and macrophage colony-stimulating factor in supporting monocyte differentiation in culture. J Immunol 145:607–615, 1990.

    PubMed  CAS  Google Scholar 

  211. Gary W, Takahashi D, Andrews F III, Lily MB, Singer JW, Alderson MR. Effect of granulocyte-macrophage colony-stimulating factor and interleukin-3 and interleukin-8 production by human neutrophils and monocytes. Blood 81:357–364, 1993.

    Google Scholar 

  212. Elliott MJ, Vadas MA, Cleland LG, Gamble JR, Lopez AF. IL-3 and granulocyte-macrophage colony-stimulating factor stimulate two distinct phases of adhesion in human monocytes. J Immunol 145:167–176, 1990.

    PubMed  CAS  Google Scholar 

  213. Oster W, Brach MA, Gruss HJ, Mertelsmann R, Herrmann F. Interleukin 1β (IL-1β) expression in human blood mononuclear phagocytes is differentially regulated by granulocyte-macrophage colony-stimulating factor (GM-CSF), M-CSF, and IL-3. Blood 79:1260–1265, 1992.

    PubMed  CAS  Google Scholar 

  214. Frendl G, Beller DI. Regulation of macrophage activation by IL-3: I. IL-3 functions as a macrophage-activating factor with unique properties, inducing Ia and lymphocyte function-associated antigen-1 but not cytotoxicity. J Immunol 144:3392–3399, 1990.

    PubMed  CAS  Google Scholar 

  215. Frendl G, Fenton MJ, Beller DI. Regulation of macrophage activation by IL-3: II. IL-3 and lipopolysaccharide act synergistically in the regulation of IL-1 expression. J Immunol 144:3400–3410, 1990.

    PubMed  CAS  Google Scholar 

  216. Schneider E, Ploemacher RE, Navarro S, van Beurden C, Dy M. Characterization of murine hematopoietic progenitor subsets involved in interleukin-3-induced interleukin-6 production. Blood 78:329–338, 1991.

    PubMed  CAS  Google Scholar 

  217. Crapper RM, Vairo G, Hamilton JA, Clark-Lewis I, Schrader JW. Stimulation of bone marrow-derived and peritoneal macrophages by a T lymphocyte-derived hemopoietic growth factor, persisting cell-stimulating factor. Blood 66:859–866, 1985.

    PubMed  CAS  Google Scholar 

  218. Yuo A, Kitagawa S, Motoyoshi K, Azuma E, Saito M, Takaku F. Rapid priming of human monocytes by human hematopoietic growth factors: Granulocyte-macrophage colony-stimulating factor (CSF), macrophage-CSF, and interleukin-3 selectively enhance superoxide release triggered by receptor-mediated agonist. Blood 79:1553–1557, 1992.

    PubMed  CAS  Google Scholar 

  219. Hamilton JA, Vairo G, Knight KR, Cocks BG. Activation and proliferation signals in murine macrophages. Biochemical signals controlling the regulation of macrophage urokinase-type plasminogen activator activity by colony-stimulating factors and other agents. Blood 77:616–627, 1991.

    PubMed  CAS  Google Scholar 

  220. Weinstein Y, Morishita K, Cleveland JL, Ihle JN. Interleukin 3 (IL-3) induces transcription from nonrearranged T cell receptory loci in IL-3-dependent cell lines. J Exp Med 169:2059–2071, 1989.

    PubMed  CAS  Google Scholar 

  221. Onishi R, Ishikawa T, Kodaka T, Okuma M, Uchiyama T. Interleukin-3-induced downregulation of the expression of interleukin-2 receptor β chain in human T cells. Blood 78:2908–2917, 1991.

    PubMed  CAS  Google Scholar 

  222. Brizzi MF, Garbarino G, Rossi PR, Pagliardi GL, Arduino C, Avanzi GC, Pegoraro L. Interleukin-3 stimulates proliferation and triggers endothelial-leukocyte adhesion molecule 1 gene activation of human endothelial cells. J Clin Invest 91:2887–2892, 1993.

    PubMed  CAS  Google Scholar 

  223. Yong K, Cohen H, Khwaja A, Jones HM, Linch DC. Lack of effect of granulocyte-macrophage and granulocyte colony-stimulating factors on cultured human endothelial cells. Blood 77:1675–1680, 1991.

    PubMed  CAS  Google Scholar 

  224. Kawano Y, Takaue Y, Saito S, Sato J, Shimizu T, Suzue T, Hirao A, Okamoto Y, Abe T, Watanabe T, Kuroda Y, Kimura F, Motoyoshi K, Asano S. Granulocyte colony-stimulating factor (CSF), macrophage-CSF, granulocyte-macrophage CSF, interleukin-3, and interleukin-6 levels in sera from children undergoing blood stem cell autografts. Blood 81:856–860, 1993.

    PubMed  CAS  Google Scholar 

  225. Oster W, Lindemann A, Mertelsmann R, Herrmann F. Regulation of gene expression of M-, G-, GM- and multi-CSF in normal and malignant hematopoietic cells. Blood Cells 14:443–462, 1988.

    PubMed  CAS  Google Scholar 

  226. Saeland S, Caux C, Favre C, Aubry JP, Mannoni P, Pebusque MJ, Gentilhomme O, Otsuka T, Yokota T, Arai N, Arai K, Banchereau J, deVries JE. Effects of recombinant human interleukin-3 on CD34-enriched normal hematopoietic progenitors and on myeloblastic leukemia cells. Blood 72:1580–1588, 1988.

    PubMed  CAS  Google Scholar 

  227. Oster W, Mertelsmann R, Herrmann F. Role of colony-stimulating factors in the biology of acute myelogenous leukemia. Int J Cell Cloning 7:13–29, 1989.

    PubMed  CAS  Google Scholar 

  228. Dunbar CE, Browder TM, Abrams JS, Nienhuis AW. COOH-terminal-modified interleukin-3 is retained intracellularly and stimulates autocrine growth. Science 245: 1493–1496, 1989.

    PubMed  CAS  Google Scholar 

  229. Clayberger C, Luna-Fineman S, Lee JE, Pillai A, Campbell M, Levy R, Krensky AM. Interleukin-3 is a growth factor for human follicular B cell lymphoma. J Exp Med 175:371–376, 1992.

    PubMed  CAS  Google Scholar 

  230. Bergui L, Schena M, Ghaidano G, Riva M, Caligasris-Cappio F. Interleukin-3 and interleukin-6 synergistically promote the proliferation and differentiation of malignant plasma cell precursors in multiple myeloma. J Exp Med 170:613–618, 1989.

    PubMed  CAS  Google Scholar 

  231. Kobayashi M, Tanaka J, Imasmura M, Maeda S, Iwasaki H, Tanaka M, Tsudu Y, Sakurada K, Miyazaki T. Up-regulation of IL-6-receptors by IL-3 on a plasma cell leukaemia cell line which proliferates dependently on both IL-3 and IL-6. British J Haematol 83:535–538, 1993.

    CAS  Google Scholar 

  232. Dai CH, Krantz SB, Dessypris EN, Means RT Jr, Horn ST, Gilbert HS. Polycythemia vera: II. Hypersensitivity of bone marrow erythroid, granulocyte-macrophage, and megakaryocyte progenitor cells to interleukin-3 and granulocyte-macrophage colony-stimulating factor. Blood 80:891–899, 1992.

    PubMed  CAS  Google Scholar 

  233. Fermand JP, Mitjavila MT, Le Couedic JP, Tsapis A, Berger R, Modigliani R, Seligmann M, Brouet JC, Vainchenker W. Role of granulocyte-macrophage colony-stimulating factor, interleukin-3 and interleukin-5 in the eosinophilia associated with T cell lymphoma. British J Haematol 83:359–364, 1993.

    CAS  Google Scholar 

  234. Berdel WE, Danhauser-Riedl S, Steinhauser G, Winton EF. Various human hematopoietic growth factors (interleukin-3, GM-CSF, G-CSF) stimulate clonal growth of non-hematopoietic tumor cells. Blood 73:80–83, 1989.

    PubMed  CAS  Google Scholar 

  235. Berdel WE, Zafferani M, Senekowitsch R, Kreuser ED, Thiel E. Effect of interleukin-3 and granulocyte-macrophage colony-stimulating factor on growth of xenotransplanted human tumour cell lines in nude mice. Eur J Cancer 28:377–380, 1992.

    PubMed  CAS  Google Scholar 

  236. Metcalf D, Begley CG, Johnson GR, Nicola NA, Lopez AF, Williamson DJ. Effects of purified bacterially synthesized murine multi-CSF (IL-3) on hematopoiesis in normal adult mice. Blood 68:46–57, 1986.

    PubMed  CAS  Google Scholar 

  237. Chang JM, Metcalf D, Lang RA, Gonda TJ, Johnson GR. Nonneoplastic hematopoietic myeloproliferative syndrome induced by dysregulated multi-CSF (IL-3) expression. Blood 73:1487–1497, 1989.

    PubMed  CAS  Google Scholar 

  238. Carrington PA, Hill RJ, Stenberg PE, Levin J, Corash L, Schreurs J, Baker G, Levin FC. Multiple in vivo effects of interleukin-3 and interleukin-6 on murine megakaryocytopoiesis. Blood 77:34–41, 1991.

    PubMed  CAS  Google Scholar 

  239. Carrington PA, Hill RJ, Levin J, Verotta D. Effects of interleukin-3 and interleukin-6 on platelet recovery in mice treated with 5-fluorouracil. Exp Hematol 20:462–469, 1992.

    PubMed  CAS  Google Scholar 

  240. Shibata T, Kindler V, Chicheportiche Y, Vassalli P, Izui S. Interleukin-3 perfusion prevents death due to acute anemia induced by monoclonal antierythrocyte autoantibody. J Exp Med 171:1809–1814, 1990.

    PubMed  CAS  Google Scholar 

  241. Frasca D, Leter G, Doria G. Murine recombinant interleukin-3 induces recovery of T and B cells in irradiated mice. Blood 83:1563–1568, 1994.

    PubMed  CAS  Google Scholar 

  242. Tomlinson J, Ziltener HJ. Enhancement of the biologic effects of interleukin-3 in vivo by anti-interleukin-3 antibodies. Blood 82:1133–1141, 1993.

    Google Scholar 

  243. Cockayne DA, Bodine DM, Cline A, Nienhuis AW. Transgenic mice expressing interleukin-3 antisense RNA develop B-cell lymphoproliferation or neurological dysfunction. Blood 80 (Suppl I):1387, 1992.

    Google Scholar 

  244. Donahue RE, Seehra J, Metzger M, Lefebvre D, Rock B, Carbone S, Nathan DG, Garnick M, Sehgal PK, Laston D, LaVallie E, McCoy J, Schendel PF, Norton C, Turner K, Yang Y, Clark SC. Human IL-3 and GM-CSF act synergistically in stimulating hematopoiesis in primates. Science 241:1820–1822, 1988.

    PubMed  CAS  Google Scholar 

  245. Mayer P, Valent P, Schmidt G, Liehl E, Bettelheim P. The in vivo effects of recombinant human interleukin-3: Demonstration of basophil differentiation factor, histamine-producing activity, and priming of GM-CSF-responsive progenitors in nonhuman primates. Blood 74:613–621, 1989.

    PubMed  CAS  Google Scholar 

  246. Wagemaker G, van Gils FCJM, Burger H, Dorssers LCJ, van Leen RW, Persoon NLM, Wielenga JJ, Heeney JL, Knol E. Highly increased production of bone marrow-derived blood cells by administration of homologous interleukin-3 to rhesus monkeys. Blood 76:2235–2241, 1990.

    PubMed  CAS  Google Scholar 

  247. van Gils FCJM, Westerman Y, Visser TP, Burger H, van Leen RW, Wagemaker G. Neutralizing antibodies during treatment of homologous nonglycosylated IL-3 in rhesus monkeys. Leukemia 8:648–651, 1994.

    PubMed  Google Scholar 

  248. Geissler K, Valent P, Mayer P, Liehl E, Hinterberer W, Lechner K, Bettelheim P. Recombinant human interleukin-3 expands the pool of circulating hematopoietic progenitor cells in primates-synergism with recombinant human granulocyte/macrophage colony-stimulating factor. Blood 75:2305–2310, 1990.

    PubMed  CAS  Google Scholar 

  249. Stahl CP, Winton EF, Monroe MC, Haff E, Homan RC, Myers L, Liehl E, Evatt BL. Differential effects of sequential, simultaneous, and single agent Interleukin-3 and granulocyte-macrophage colony-stimulating factor on megakaryocyte maturation and platelet response in primates. Blood 80:2479–2485, 1992.

    PubMed  CAS  Google Scholar 

  250. Gillio AP, Gasparetto C, Laver J, Abboud M, Bonilla MA, Garnick MB, O’Reilly RJ. Effects of interleukin-3 on hematopoietic recovery after 5-fluorouracil or cyclophosphamide treatment of cynomolgus primates. J Clin Invest 85:1560–1565, 1990.

    PubMed  CAS  Google Scholar 

  251. Farese AM, Williams DE, Seiler FR, MacVittie TJ. Combination protocols of cytokine therapy with interleukin-3 and granulocyte-macrophage colony-stimulating factor in a primate model of radiation-induced marrow aplasia. Blood 82:3012–3018, 1993.

    PubMed  CAS  Google Scholar 

  252. Ganser A, Lindemann A, Seipelt G, Ottmann OG, Herrmann F, Eder M, Frisch J, Schulz G, Mertelsmann R, Hoelzer D. Effects of recombinant human interleukin-3 in patients with normal hematopoiesis and in patients with bone marrow failure. Blood 76:666–676, 1990.

    PubMed  CAS  Google Scholar 

  253. Lindemann A, Ganser A, Herrmann F, Frisch J, Seipelt G, Schulz G, Hoelzer D, Mertelsmann R. Biologic effects of recombinant human interleukin-3 in vivo. J Clin Oncol 9:2120–2127, 1991.

    PubMed  CAS  Google Scholar 

  254. Ottmann OG, Ganser A, Seipelt G, Eder M, Schulz G, Hoelzer D. Effects of recombinant human interleukin-3 on human hematopoietic progenitor and precursor cells in vivo. Blood 76:1494–1502, 1990.

    PubMed  CAS  Google Scholar 

  255. Postmus PE, Gietema JA, Damsma O, Biesma B, Limburg PC, Vellenga E, deVries EGE. Effects of recombinant human interleukin-3 in patients with relapsed small-cell lung cancer treated with chemotherapy: A dose-finding study. J Clin Oncol 10:1131–1140, 1992.

    PubMed  CAS  Google Scholar 

  256. Kurzrock R, Talpaz M, Estrov Z, Rosenblum MG, Gutterman JU. Phase I study of recombinant human Interleukin-3 in patients with bone marrow failure. J Clin Oncol 9:1241–1250, 1991.

    PubMed  CAS  Google Scholar 

  257. Biesma B, Pokorny R, Kovarik JM, Duffy FA, Willemse PHB, Mulder NH, deVries EGE. Pharmacokinetics of recombinant human interleukin 3 administered subcutaneously and by continuous intravenous infusion in patients after chemotherapy for ovarian cancer. Cancer Res 53:5915–5919, 1993.

    PubMed  CAS  Google Scholar 

  258. Ganser A, Lindemann A, Ottmann OG, Seipelt G, Hess U, Geissler G, Kanz L, Frisch J, Schulz G, Herrmann F, Mertelsmann R, Hoelzer D. Sequential in vivo treatment with two recombinant human hematopoietic growth factors (interleukin-3 and granulocyte-macrophage colony-stimulating factor) as a new therapeutic modality to stimulate hematopoiesis: Results of a phase I study. Blood 79:2583–2591, 1992.

    PubMed  CAS  Google Scholar 

  259. Brugger W, Bross K, Frisch J, Dern P, Weber B, Mertelsmann R, Kanz L. Mobilization of peripheral blood progenitor cells by sequential administration of interleukin-3 and granulocyte-macrophage colony-stimulating factor following polychemotherapy with etoposide, ifosfamide, and cisplatin. Blood 79:1193–1200, 1992.

    PubMed  CAS  Google Scholar 

  260. Orazi A, Cattoretti G, Schiro R, Siena S, Bregni M, di Nicola M, Gianni AM. Recombinant human interleukin-3 and recombinant human granulocyte-macrophage colony-stimulating factor administered in vivo after high-dose cyclophosphamide cancer chemotherapy: Effect on hematopoiesis and microenvironment in human bone marrow. Blood 79:2610–2619, 1992.

    PubMed  CAS  Google Scholar 

  261. Brugger W, Frisch J, Schulz G, Pressler K, Mertelsmann R, Kanz L. Sequential administration of interleukin-3 and granulocyte-macrophage colony-stimulating factor following standard-dose combination chemotherapy with etoposide, ifosfamide, and cisplatin. J Clin One 10:1452–1459, 1992.

    CAS  Google Scholar 

  262. Nemunaitis J, Appelbaum FR, Singer JW, Lilleby K, Wolff S, Greer JP, Bierman P, Resta D, Campion M, Levitt D, Zeigler Z, Rosenfeld C, Shadduck RK, Buckner CD. Phase I trial with recombinant human interleukin-3 in patients with lymphoma undergoing autologous bone marrow transplantation. Blood 82:3273–3278, 1993.

    PubMed  CAS  Google Scholar 

  263. Gianni AM, Siena S, Bregni M, diNicola M, Peccatori F, Magni M, Ravagnani F, Sklenar I, Bonadonna G. Recombinant human interleukin-3 hastens trilineage hematopoietic recovery following high-dose (7g/m2) cyclophosphamide cancer therapy. Ann Onc 4: 759–766, 1993.

    CAS  Google Scholar 

  264. Biesma B, Willemse PHB, Mulder NH, Sleijfer DT, Gietema JA, Mull R, Limburg PC, Bouma J, Vellenga E, deVries EGE. Effects of interleukin-3 after chemotherapy for advanced ovarian cancer. Blood 80:1141–1148, 1992.

    PubMed  CAS  Google Scholar 

  265. D’Hondt V, Weynants P, Humblet Y, Guillaume T, Canon JL, Beauduin M, Duprez P, Longueville J, Mull R, Chatelain C, et al. Dose-dependent interleukin-3 stimulation of thrombopoiesis and neutropoiesis in patients with small-cell lung carcinoma before and following chemotherapy: A placebo-controlled randomized phase 1b study. J Clin One 11:2063–2071, 1993.

    Google Scholar 

  266. Dercksen MW, Hoekman K, ten Bokkel Huinink WW, Rankin EM, Dubbelman R, van Tinteren H, Wagstaff J. Effects of interleukin-3 on myelosuppression induced by chemotherapy for ovarian cancer and small cell undifferentiated tumours. British J Canc 68:996–1003, 1993.

    CAS  Google Scholar 

  267. Ganser A, Lindemann A, Seipelt G, Ottmann OG, Eder M, Falk S, Herrmann F, Kaltwasser JP, Meusers P, Klausmann M, Frisch J, Schulz G, Mertelsmann R, Hoelzer D. Effects of recombinant human interleukin-3 in aplastic anemia. Blood 76:1287–1292, 1990.

    PubMed  CAS  Google Scholar 

  268. Ganser A, Seipelt G, Lindemann A, Ottmann OG, Falk S, Eder M, Herrmann F, Becher R, Höffken K, Büchner T, Klausmann M, Frisch J, Schulz G, Mertelsmann R, Hoelzer D. Effects of recombinant human interleukin-3 in patients with myelodysplastic syndromes. Blood 76:455–462, 1990.

    PubMed  CAS  Google Scholar 

  269. Willemze R, Fenaux P, Gerhartz H, Zwierzina H, de Witte T, Stryckmans P, Labar B, Sklenar I, Suciu S, Solbu G, Dardenne M, Hoffbrand V, Jacobs A, Josten C, Zittoun R. A randomized phase I/II in patients with myelodysplastic syndromes at relatively low risk of developing leukemia (MDS-LR). Blood 80 (Suppl I):333, 1992.

    Google Scholar 

  270. Ganser A, Ottmann OG, Seipelt G, Lindemann A, Hess U, Geissler G, Maurer A, Frisch J, Schulz G, Mertelsmann R, et al. Effect of long-term treatment with recombinant human interleukin-3 in patients with myelodysplastic syndromes. Leukemia 7:696–701, 1993.

    PubMed  CAS  Google Scholar 

  271. Nand S, Sosman J, Godwin JE, Fisher RI. A phase I/II study of sequential interleukin-3 and granulocyte-macrophage colony-stimulating factor in myelodysplastic syndromes. Blood 83:357–360, 1994.

    PubMed  CAS  Google Scholar 

  272. Bone marrow findings after treatment with recombinant human interleukin-3. Falk S, Seipelt G, Ganser A, Ottmann OG, Hoelzer. Am J Clin Path 95(3):355–362, 1991.

    PubMed  CAS  Google Scholar 

  273. Crump M, Couture F, Kovacs M, Saragosa R, McCrae J, Brandwein J, Huebsch L, Beauregard-Zollinger L, Keating A. Interleukin-3 followed by GM-CSF for delayed engraftment after autologous bone marrow transplantation. Exp Hematol 21:405–410, 1993.

    PubMed  CAS  Google Scholar 

  274. Gillio AP, Faulkner LB, Alter BP, Reilly L, Klafter R, Heller G, Young DC, Lipton JM, Moore MA, O’Reilly RJ. Treatment of diamond-blackfan anemia with recombinant human interleukin-3. Blood 82:744–751, 1993.

    PubMed  CAS  Google Scholar 

  275. Olivieri NF, Feig SA, Valentino L, Berriman AM, Shore R, Freedman MH. Failure of recombinant human interleukin-3 therapy to induce erythropoiesis in patients with refractory diamond-blackfan anemia. Blood 83:2444–2450, 1994.

    PubMed  CAS  Google Scholar 

  276. Bastion Y, Bordigoni P, Debré M, Girault D, Leblanc T, Tchernia G, Ball S, McGuckin C, Gordon-Smith EC, Békassy A, Elinder G, Wranne L. Sustained response after recombinant interleukin-3 and diamond blackfan anemia. Blood 83:617–619, 1994.

    PubMed  CAS  Google Scholar 

  277. Sieff C, Guinan E. In vitro enhancement of erythropoiesis by steel factor indiamond-blackfan anemia and treatment of other congenital cytopenias with recombinant interleukin-3/granulocyte-macrophage colony stimulating factor. Stem Cells 11 (Suppl 2):113–122, 1993.

    PubMed  Google Scholar 

  278. Gillio AP, Faulkner LB, Alter BP, Reilly L, Klafter R, Heller G, Young DC, Upton JM, Moore MA, O’Reilly RJ. Successful treatment of diamond-blackfan anemia with interleukin-3. Stem cells 11 (Suppl 2):123–130, 1993.

    PubMed  Google Scholar 

  279. Guinan EC, Lee YS, Lopez KD, Kohler S, Oette DH, Bruno E, Kozakewich H, Nathan DG, Hoffman R. Effect of interleukin-3 and granulocyte-macrophage colony-stimulating factor on thrombopoiesis in congenital amegakaryocytic thrombocytopenia. Blood 81: 1691–1698, 1993.

    PubMed  CAS  Google Scholar 

  280. Curtis BM, Williams DE, Broxmeyer HE, Dunn J, Farrah T, Jeffery E, Clevenger W, deRoos P, Martin U, Friend D, Graig V, Gayle R, Price V, Cosman D, March CJ, Park LS. Enhanced hematopoietic activity of a human granulocyte/macrophage colony-stimulating factor-interleukin 3 fusion protein. Proc Natl Acad Sci USA 88:5809–5813, 1991.

    PubMed  CAS  Google Scholar 

  281. Vadhan-Raj S, Papadopoulos NE, Burgess MA, Linke KA, Patel SR, Hays C, Arcenas A, Plager C, Kudelka AP, Heittelman WN, Broxmeyer HE, Williams DE, Garrison L, Benjamin RS. Effects of PIXY321, a granulocyte-macrophage colony-stimulating factor/ interleukin-3 fusion protein, on chemotherapy-induced multilineage myelosuppression in patients with sarcoma. J Clin Onc 12:715–724, 1994.

    CAS  Google Scholar 

  282. Gasson JC. Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood 77:1131–1145, 1991.

    PubMed  CAS  Google Scholar 

  283. Sanderson CJ. Interleukin-5, eosinophils, and disease. Blood 79:3101–3109, 1992.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lindemann, A., Mertelsmann, R. (1995). Interleukin-3 and its receptor. In: Kurzrock, R., Talpaz, M. (eds) Cytokines: Interleukins and Their Receptors. Cancer Treatment and Research, vol 80. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1241-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1241-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8528-1

  • Online ISBN: 978-1-4613-1241-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics