Skip to main content

Salt-Affected Soils: Their Reclamation and Management for Crop Production

  • Chapter
Advances in Soil Science

Part of the book series: Advances in Soil Science ((SOIL,volume 11))

Abstract

Agricultural production in the arid and semiarid regions of the world is limited by poor water resources, limited rainfall, and the detrimental effects associated with an excess of soluble salts, constrained to a localized area or sometimes extending over the whole of the basin. In order to minimize vagaries of arid weather, bring more land under irrigation, and produce and stabilize greater yields per unit area, numerous water development projects have been commissioned all over the world. Extension of irrigation to the arid regions, however, usually had led to an increase in the area affected by shallow water tables and to intensifying and expanding the hazards of salinity. This is because irrigation water brings in additional salts and releases immobilized salts in the soil through mineral dissolution and weathering, and losing water volumes through evapotranspiration and concentrating the dissolved salts in soil solution. Fertilizers and decaying organic matter also serve as additional salt sources. Atmospheric salt depositions, though varying with location, may be an important source along the coasts. The relative significance of each source in contributing soluble salts depends on the natural drainage conditions, soil properties, water quality, soil water, and agronomic management practices followed for crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrol, I.P., and D.R. Bhumbla. 1978. Some comments on terminology relating to salt-affected soils, pp. 6–19 to 6–27. In: Proc. Dryland-Saline-Seep Control, Edmonton, Canada, June 1978.

    Google Scholar 

  • Abrol, I.P., and D.R. Bhumbla. 1979. Crop responses to differential gypsum applications in a highly sodic soil and the tolerance of several crops to exchangeable sodium under field conditions. Soil Sci. 127:79–85.

    CAS  Google Scholar 

  • Abrol, I.P., and I.S. Dahiya. 1974. Flow associated precipitation reaction in saline-sodic soils and their significance. Geoderma 11:1–9.

    Google Scholar 

  • Abrol, I.P., D.R. Bhumbla, and K.S. Dargan. 1973. Reclaiming alkali soils. Tech. Bull. No. 2, Central Soil Salinity Research Institute, Karnal, India.

    Google Scholar 

  • Abrol, I.P., R. Chhabra, and R.K. Gupta. 1980. A fresh look at the diagnostic criteria for sodic soils, pp. 142–147. In: Proc. Int. Symp. Salt-Affected Soils, Karnal, India.

    Google Scholar 

  • Abrol, I.P., I.S. Dahiya, and D.R. Bhumbla. 1975. On the method of determining gypsum requirement of soils. Soil Sci. 120:30–36.

    CAS  Google Scholar 

  • Abrol, I.P., R.K. Gupta, and S.B. Singh. 1979. Note on the solubility of gypsum and sodic soil reclamation. J. Indian Soc. Soil Sci. 27:481–483.

    Google Scholar 

  • Acharya, C.L., and I.P. Abrol. 1978. Exchangeable sodium and soil water behavior under field conditions. Soil Sci. 125:310–319.

    Google Scholar 

  • Agarwal, R.R., J.S.P. Yadav, and R.N. Gupta. 1982. Saline and alkali soils of India. ICAR, New Delhi.

    Google Scholar 

  • Alperovitch, N., and I. Shainberg. 1973. Reclamation of alkali soils with CaCl2 solutions, pp. 431–440. In: A. Hadas (ed.), Physical aspects of soil, water and salts in ecosystems. Springer-Verlag, Berlin.

    Google Scholar 

  • Alperovitch, N., I. Shainberg, and J.D. Rhoades. 1986. Effect of mineral weathering on the response of sodic soils to exchangeable magnesium. Soil Sci. Soc. Amer. J. 50:901–904.

    CAS  Google Scholar 

  • American Society of Civil Engineering, Irrigation and Drainage Division. 1988. Agriculture salinity assessment and management manual. ASCE Pub. (in press).

    Google Scholar 

  • Armhein, C., J.J. Jurinak, and W.M. Moore. 1985. Kinetics of calcite dissolution as affected by carbon dioxide partial pressure. Soil Sci. Soc. Amer. J. 49:1393–1398.

    Google Scholar 

  • Arora, H.S., and N.T. Coleman. 1979. The influence of electrolyte concentration on flocculation of clay suspensions. Soil Sci. 127:134–139.

    CAS  Google Scholar 

  • Babcock, K.L. 1960. Evidence for sodium fixation in salt-affected soils. Soil Sci. Soc. Amer. J. 24:85–86.

    CAS  Google Scholar 

  • Barr, T.N. 1981. The world food situation and global prospects. Science 214:1087–1095.

    PubMed  CAS  Google Scholar 

  • Barrer, R.M. 1978. Cation-exchange equilibria in zeolites and feldspathoids. In: L.D. Sand and F.A. Mumpton (eds.), Natural zeolites—occurrence, properties. Pergamon, NY.

    Google Scholar 

  • Barton, F.M., and M.M. Wilde. 1971. Dissolution rates of polycrystalline samples of gypsum and orthorhombic forms of calcium sulfate by rotating disc method. Trans. Faraday Soc. 67:3590–3597.

    CAS  Google Scholar 

  • Beek, G.G.E.M., and N. Breeman. 1973. The alkalinity of alkali soils. J. Soil Sci. 24:129–136.

    Google Scholar 

  • Bernstein, L. 1962. Salt-affected soils and plants, pp. 139–174. In: Problems of the arid zones, Proc. UNESCO Symp. Paris.

    Google Scholar 

  • Bhardwaj, K.K.R., and I.P. Abrol. 1978. Nitrogen management in alkali soils, pp. 83–86. In: S.P. Sen (ed.), Nitrogen assimilation and crop productivity. Associated Publ. Co., New Delhi.

    Google Scholar 

  • Bhumbla, D.R., and I.P. Abrol. 1979. Saline and sodic soils, pp. 719–738. In: Soils and Rice, Symp., IRRI, Los Banos, Laguna, Phillipines, Sept. 20–23, 1977.

    Google Scholar 

  • Bingham, F.T., and M.J. Garber. 1970. Zonal salinization of the root system with NaCl and boron in relation to growth and water uptake of corn plants. Soil Sci. Soc. Amer. J. 34:122–126.

    CAS  Google Scholar 

  • Black, C.A. (ed.). 1968. Soil-plant relationships. Wiley, NY.

    Google Scholar 

  • Bower, C.A. 1948. Rapid tests for soluble and exchangeable sodium in saline and alkali soils. J. Amer. Soc. Agron. 40:1100–1105.

    CAS  Google Scholar 

  • Bower, C.A., and J.T. Hatcher. 1962. Characterization of salt-affected soils with respect to sodium. Soil Sci. 93:275–280.

    CAS  Google Scholar 

  • Bresler, E., B.L. McNeal, and D.L. Carter. 1982. Saline and sodic soils, principles-dynamics-modelling. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Brown, A.C., and J.J. Jurinak. 1984. Non-biological pyrite oxidation in alkali soils. Agron. Abst. p. 175.

    Google Scholar 

  • Carter, D.L., and C.D. Fanning. 1964. Combining surface mulches and periodic water applications for reclaiming saline soils. Soil Sci. Soc. Amer. J. 28:564–567.

    Google Scholar 

  • Central Soil Salinity Research Institute. 1979. A decade of research. CSSRI, Karnel, India. Centeral Soil Salinity Research Institute. 1986, 1987. Annual reports. Karnal, India.

    Google Scholar 

  • Chand, M., I.P. Abrol, and D.R. Bhumbla. 1977. A comparison of the effect of eight amendments on soil properties and crop growth in a highly sodic soil. Indian J. Agric. Sci. 47:348–354.

    CAS  Google Scholar 

  • Chang, C.W., and H.E. Dregne. 1955. Effect of exchangeable sodium on soil properties, on growth and cation content of alfalfa and cotton. Soil Sci. Soc. Amer. J. 19:29–35.

    CAS  Google Scholar 

  • Chaudry, G.H., and B.P. Warkentin. 1968. Studies on exchange of sodium from soils by leaching with calcium sulphate. Soil Sci. 105:190–197.

    Google Scholar 

  • Chawla, K.L., and I.P. Abrol. 1982. Effect of gypsum fineness on the reclamation of sodic soils. Agric. Water Mgt. 5:41–50.

    Google Scholar 

  • Chhabra, R. 1985. Crop response to phosphorus and potassium fertilization of a sodic soil. Agron. J. 77:699–702.

    Google Scholar 

  • Chhabra, R., and I.P. Abrol. 1977. Reclaiming effect of rice grown in a sodic soil. Soil Sci. 124:49–55.

    CAS  Google Scholar 

  • Chhabra, R., I.P. Abrol, and M.V. Singh. 1981. Dynamics of phosphorus during reclamation of sodic soils. Soil Sci. 132:319–324.

    CAS  Google Scholar 

  • Chhabra, R., S.B. Singh, and I.P. Abrol. 1979. Effect of exchangeable sodium percentage on the growth, yield and chemical composition of sunflower (Helianthus annuus). Soil Sci. 127:242–247.

    CAS  Google Scholar 

  • Cole, C.V. 1957. Hydrogen and calcium relationships of calcareous soils. Soil Sci. 83:141–150.

    CAS  Google Scholar 

  • Collis-George, N., and D.E. Smiles. 1963. An examination of cation balance and moisture characteristics of determining the stability of soil aggregates. J. Soil Sci. 14:21–32.

    CAS  Google Scholar 

  • Coordinated Research Project of ICAR, Salt-affected soils and saline water use, 1986–1988. Annual reports. Karnal, India.

    Google Scholar 

  • Cruz-Romero, G., and N.T. Coleman. 1974. Reactions among calcium carbonate, carbon dioxide and sodium adsorbents. Soil Sci. Soc. Amer. J. 38:738–742.

    CAS  Google Scholar 

  • Cruz-Romero, G., and N.T. Coleman. 1975. Reactions responsible for high pH in Na saturated soils and clays. J. Soil Sci. 26:169–175.

    CAS  Google Scholar 

  • Darab, K. 1980. Magnesium in solenetz soils, pp. 92–101. In: Int. Symp. Salt-Affected Soils, Karnal, India.

    Google Scholar 

  • Dargan, K.S., and R.K. Chillar. 1973. A technique for sugarbeet and vegetables in saline-alkaline soils. Indian Farming. 22:13–16.

    Google Scholar 

  • Devitt, D., W.M. Jarrell, W.A. Jury, O.R. Lunt, and L.H. Stolzy. 1984. Wheat response to sodium uptake under zonal saline-sodic conditions. Soil Sci. Soc. Amer. J. 48:86–92.

    CAS  Google Scholar 

  • Dieleman, P.J. 1963. Reclamation of salt affected soils in Iraq. Inst. Land Reclamation and Improvement, ILRI Pub. 11, Wageningen.

    Google Scholar 

  • Doering, E.J., and W.O. Willis. 1975. Chemical reclamation for sodic strip-mine spoils. ARS-NC-20, U.S. Dept. Agric, Washington, DC.

    Google Scholar 

  • Doering, E.J., L.C. Benz, and G.T. Reichman. 1982. Shallow-water table concept for drainage design in semi-arid and sub-humid regions, pp. 42–49. In: Proc. 4th Natl. Drainage Symp. Amer. Soc. Agric. Eng.

    Google Scholar 

  • Drever, J.O. 1982. The geochemistry of natural waters. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Dutt, G.R., R.W. Terkeltoub, and R.S. Rauschkloub. 1972. Prediction of gypsum and leaching requirements for sodium-affected soils. Soil Sci. 114:93–103.

    CAS  Google Scholar 

  • Eaton, F.M. 1950. Significance of carbonates in irrigation waters. Soil Sci. 69:123–133.

    CAS  Google Scholar 

  • El-Swaify, S. A., 1973. Structural changes in tropical soils due to anions in irrigation waters. Soil Sci. 37:956–958.

    Google Scholar 

  • El-Swaify, S.A., and W.W. Emerson. 1975. Changes in physical properties of soil clays due to precipitated aluminum and ion hydroxides: 1. Swelling and aggregate stabiltiy after drying. Soil Sci. Soc. Amer. J. 39:106–1063.

    Google Scholar 

  • Emerson, W.W. 1977. Interparticle bonding, pp. 477–498. In: Soils: An Australian viewpoint. Division of Soils, CSIRO, Melbourne, Academic Press, London.

    Google Scholar 

  • Emerson, W.W. 1983. Physical properties and structure, pp. 78–104. In: J.S. Russel and E.L. Greacen (eds.), Soil factors in crop production in a semi-arid environment. Univ. Queensland Press, Brisbane, Australia.

    Google Scholar 

  • Emerson, W.W., and C.L. Chi. 1977. Exchangeable calcium, magnesium and sodium and the dispersion of illite. II. Dispersion of illites in water. Aust. J. Soil Res. 15:225–265.

    Google Scholar 

  • Evangelou, V.P., and E.J. Coale. 1987. Dependence of the Gapon coefficient on exchangeable sodium for mineralogically different soils. Soil Sci. Soc. Amer. J. 51:68–72.

    CAS  Google Scholar 

  • Evangelou V.P., and R.E. Phillips. 1987. Sensitivity analysis on the comparison between the Gapon and Vanselow exchange coefficients. Soil Sci. Amer. J. 1473–1479.

    Google Scholar 

  • FAO-UNESCO. 1974. Soil map of the world. 1:5000000. Volume 1. Legend. UNESCO, Paris.

    Google Scholar 

  • Fenn, L.B., and D.E. Kissel. 1973. Ammonia volatilization from surface applications of ammonium compounds on calcareous soils: I. General theroy. Soil Sci. Soc. Amer. J. 37:855–859.

    CAS  Google Scholar 

  • Fleisher, Z., and J. Hagin. 1981. Lowering ammonia volatilization losses from urea application by activation of nitrification process. Fertilizer Res. 2:101–107.

    CAS  Google Scholar 

  • Frear, G.L., and J. Johnston. 1929. The solubility of calcium carbonate (calcite) in certain aqueous solutions at 25°C. J. Amer. Chem. Soc. 51:2082–2093.

    CAS  Google Scholar 

  • Freney, J.R., R. Leuning, J.R. Simpson, O.T. Denmead, and W.A. Muirhead. 1985. Estimating ammonia volatilization from flooded rice fields by simplified techiques. Soil Sci. Soc. Amer. J. 49:1049–1054.

    CAS  Google Scholar 

  • Frenkel, H., J.O. Goertzen, and J.D. Rhoades. 1978. Effect of clay type and content, exchangeable sodium percentage and electrolyte concentration on clay dispersion and soil hydraulic conductivity. Soil Sci. Soc. Amer. J. 42:32–39.

    CAS  Google Scholar 

  • Garrels, R.M., and F.T. Mackenzie. 1967. Equilibrium concepts in natural water system. Adv. Chem. Ser. 67:222–242.

    Google Scholar 

  • Ghai, S.K., D.L.N. Rao, and L. Batra. 1988. Nitrogen contribution to wetland rice by green manuring with Sesbania spp. in an alkaline soil. Biol. Fertilizer Soils 6:22–25.

    Google Scholar 

  • Gill, H.S. 1987. Doctoral dissertation, Kurukshetr Univ., Kurukshetra, India.

    Google Scholar 

  • Girdhar, I.K., and J.S.P. Yadav. 1982. Effect of magnesium rich waters on soil properties, yield and chemical composition of wheat. Soil Sci. 134:348–352.

    CAS  Google Scholar 

  • Gobran, G.R., and S. Miyamoto. 1985. Dissolution rate of gypsum in aqueous salt solutions. Soil Sci. 140:89–94.

    CAS  Google Scholar 

  • Goertzen, J.O., and C. A. Bower. 1958. Carbon dioxide from plant roots as a factor in the replacement of adsorbed sodium in calcareous soils. Soil Sci. Soc. Amer. J. 22:36–37.

    CAS  Google Scholar 

  • Greene, R.S.B., and G.W. Ford. 1983. The effect of gypsum on cation exchange and leaching in two red duplex wheat soils. Aust. J. Soil Res. 21:187–193.

    Google Scholar 

  • Gupta, R.K., and B.K. Khosla. 1982. Seasonal variations in salt and water content profiles in shallow and saline ground watertables. Indian J. Agric. Sci. 52:506–510.

    Google Scholar 

  • Gupta, R.K., and R.R. Singh. 1988. A comparative evaluation of the reclamation efficiency of surface concentrated versus internally incorporated CaCl2 and gypsum amendments in an alkali soil. Soil Sci. 146.

    Google Scholar 

  • Gupta, R.K., D.K. Bhumbla, and I.P. Abrol. 1984. Effect of soil pH, organic matter and calcium carbonate on the dispersion behavior of alkali soils. Soil Sci. 137:245–251.

    CAS  Google Scholar 

  • Gupta, R.K., D.R. Bhumbla, and I.P. Abrol. 1985a. Release of exchangeable sodium from an alkali soil upon amendment application. Role of variable charge and cation hydrolysis. Soil Sci. 139:312–312.

    CAS  Google Scholar 

  • Gupta, R.K., R. Chhabra, and I.P. Abrol. 1981. Relationship between pH and exchangeable sodium in a sodic soil. Soil Sci. 131:215–219.

    CAS  Google Scholar 

  • Gupta, A.P., S.S. Khana, and N.K. Tomar. 1985a. Effect of sodicity on the utilization of phosphatic fertilizers by wheat. Soil Sci. 139: 47–52.

    CAS  Google Scholar 

  • Gupta, R.K., C.P. Singh, and I.P. Abrol. 1985b. Determination of cation exchange capacity and exchangeable sodium in alkali soils. Soil Sci. 139:326–332.

    CAS  Google Scholar 

  • Gupta, R.K., C.P. Singh, and I.P. Abrol. 1985c. Dissolution of gypsum in alkali soils. Soil Sci. 140:382–386.

    CAS  Google Scholar 

  • Gupta, R.K., R.R. Singh, and I.P. Abrol. 1988. Influence of simultaneous changes in sodicity and pH on the hydraulic conductivity of an alkali soil under rice culture. Soil Sci. 146:395–402.

    Google Scholar 

  • Gupta, R.K., R.R. Singh, and K.K. Tanji. 1989. Phosphorus release in sodium-dominated soils. Communicated.

    Google Scholar 

  • Gupta, R.K., Van dem Sef Elshout, and I.P. Abrol. 1987. Effect of pH on Zn adsorption precipitation reactions in an alkali soil. Soil Sci. 143:198–204.

    CAS  Google Scholar 

  • Hardie, L.A., and H.P. Eugester. 1970. The evolution of closed-basin brines, pp. 273–290. Mineral. Soc. Amer. Spec. Publ. No. 3.

    Google Scholar 

  • Harmsen, G.W., A. Quispel, and D. Otzen. 1954. Observations on the formation and oxidation of pyrites in the soil. Plant Soil 5:324–347.

    CAS  Google Scholar 

  • Hira, G.S., and N.T. Singh. 1980. Irrigation water requirement for dissolution of gypsum in sodic soils. Soil Sci. Soc. Amer. J. 44:353–358.

    Google Scholar 

  • Hira, G.S., M.S. Bajwa, and N.T. Singh. 1981. Prediction of water requirement for dissolution of gypsum in sodic soils. Soil Sci. 131:353–358.

    CAS  Google Scholar 

  • Hodgson, J.E. 1963. Chemistry of the micronutrient elements in soils. Adv. Agron. 15:119–159.

    Google Scholar 

  • Hoffman, G.J. 1980. Guidelines for the reclamation of salt affected soils. Second Inter-American Conf. Salinity and Water Management Technology, Juarez, Mexico.

    Google Scholar 

  • Hoffman, G.J. 1986. Yields of irrigated crops under saline conditions. In: Conf. Proc. Decision criteria for residuals management in agriculture. Univ. California, April, 1986.

    Google Scholar 

  • Holford, I.C.R., and G.E.G. Mattingley. 1975. Surface area of calcium carbonate in soils. Geoderma 13:247–255.

    CAS  Google Scholar 

  • Internatinal Rice Research Institute. 1976, 1977. Annual reports. Los Banos, Phillipines.

    Google Scholar 

  • Isbell, R.F. 1984. Soil classification problems in the tropics and sub-tropics, pp. 17–26. In: Int. Workshop on Soils—Research in Tropics. Sept. 12–16, 1983. Townsville, Queensland, Australia.

    Google Scholar 

  • Isbell, R.F., and J. Williams. 1981. Dry soils in Australia: characteristics and classification, pp. 124–150. In: F.H. Beinroth and A. Osman (eds). Proc. Third Int. Soil Classification Workshop. ACSAD, Damascus, Syria.

    Google Scholar 

  • Jackson, M.L., S.A. Twez, A.L. Willis, G.A. Bourbeau, and R.P. Dennington. 1948. Weathering sequence in clay size minerals in soils and sediments. I. Fundamental generalizations. J. Phys. Colloid Chem. 52:1237–1260.

    CAS  Google Scholar 

  • Jahiruddin, M., N.T. Livesey, and M.S. Cressner. 1985. Observations on the effect of soil pH upon zinc absorption by soils. Commun. Soil. Sci. Plant Anal. 16:909–922.

    CAS  Google Scholar 

  • Jardine, P.M., and D.L. Sparks. 1984. Potassium-calcium exchange in multireac-tive soil system. II. Thermodynamics. Soil Sci. Soc. Amer. J. 48:45–50.

    CAS  Google Scholar 

  • Jeffery, J.J., and N.C. Uren. 1983. Copper and zinc species in the soil solution and the effects of soil pH. Aust. J. Soil Res. 21:479–488.

    CAS  Google Scholar 

  • Jewitt, T.N. 1942. Loss of ammonia from ammonium sulphate applied to alkaline soils. Soil Sci. 54:401–409.

    CAS  Google Scholar 

  • Jury, W.A., W.W. Jarrell, and D. Devitt. 1979. Reclamation of saline-sodic soils by leaching. Soil Sci. Soc. Amer. J. 43:1100–1106.

    CAS  Google Scholar 

  • Kanwar, J.S., and D.R. Bhumbla. 1969. Physico-chemical characteristics of sodic soils of the Punjab and Haryana and their amelioration by use of gypsum. Agrokem. Talajt. 18(Suppl.): 325–330.

    Google Scholar 

  • Kanwar, J.S., and N.S. Randhawa. 1974. Micronutrient research in soil and plant in India. A review. ICAR Publ., New Delhi, India.

    Google Scholar 

  • Kapoor, B.S., H.B. Singh, and S.C. Goswami. 1981a. Analcime in a sodic profile. J. Indian Soc. Soil Sci. 28:513–515.

    Google Scholar 

  • Kapoor, B.S., H.B. Singh, S.C. Goswami, I.P. Abrol, G.P. Bhargava, and D.K. Pal. 1981b. Weathering of micaceous minerals in some salt affected soils. J. Indian Soc. Soil Sci. 29:486–492.

    CAS  Google Scholar 

  • Kelley, W.P. 1948. Cation exchange in soils. Waverly Press, Baltimore, MD.

    Google Scholar 

  • Kemper, W.D., J. Olsen, and C.J. DeMooy. 1975. Dissolution rate of gypsum in flowing water. Soil Sci. Soc. Amer. J. 39:458–463.

    Google Scholar 

  • Keren, R., and P. Kauschansky. 1981. Coating of calcium carbonate on gypsum particle. Soil Sci. Soc. Amer. J. 45:1242–1244.

    CAS  Google Scholar 

  • Keren, R., and G.A. O’Connor. 1982. Gypsum dissolution and sodic soil reclamation as affected by water flow velocity. Soil Sci. Soc. Amer. J. 46:726–732.

    CAS  Google Scholar 

  • Keren, R., and I. Shainberg. 1981. Effect of dissolution rate on the efficiency of industrial and mineral gypsum in improving infiltration of a sodic soil. Soil Sci. Soc. Amer. J. 45:103–107.

    CAS  Google Scholar 

  • Khosla, B.K., K.S. Dargan, I.P. Abrol, and D.R. Bhumbla. 1973. Effect of depth of mixing gypsum on soil properties and yield of barley, rice and wheat grown on a saline sodic soil. Indian J. Agric. Sci. 43:1024–1031.

    Google Scholar 

  • Khosla, B.K., R.K. Gupta, and I.P. Abrol. 1979. Salt leaching and effect of gypsum application in a saline-sodic soil. Agric. Water Mgt. 2:193–202.

    Google Scholar 

  • Kovda, V.A. 1965. Alkaline soda-saline soils. Agrokem. Talajt. 14(Suppl.): 15–48.

    CAS  Google Scholar 

  • Kovda, V.A., C. van den Berg, and R.M. Hagan. 1973. Irrigation, drainage and salinity. FAO/UNESCO, Hutchinson, London.

    Google Scholar 

  • Kreit, J.F., I. Shainberg, and A.J. Herbillion. 1982. Hydrolysis and decomposition of hectorite in dilute salt solutions. Clays Clay Mineral 30:233–241.

    Google Scholar 

  • Kumar, A., and I.P. Abrol. 1986. Grasses in alkali soils. Tech. Bull. No. 11, Central Soil Salinity Research Inst., Karnal, India.

    Google Scholar 

  • Lagerwerff, J.V., and J.P. Holland. 1960. Growth and mineral content of carrots and beans as related to varying osmotic and ionic composition effects in saline-sodic sand culture. Agron. J. 52:603–608.

    CAS  Google Scholar 

  • Leffelaar, P.A., and R. Sharma. 1977. Leaching of a highly saline-sodic soil. J. Hydrol. 32:203–218.

    CAS  Google Scholar 

  • Letey, J., A. Dinar, and K.C. Knapp. 1985. Crop-water production function model for saline irrigation waters. Soil Sci. Soc. Amer. J. 49:1005–1009.

    Google Scholar 

  • Lindsay, W.L. 1979. Chemical equilibrium in soil. Wiley, NY.

    Google Scholar 

  • Loveday, J. 1974. Recognition of gypsum responsive soils. Aust. J. Soil Res. 12:87–96.

    Google Scholar 

  • Loveday, J. 1976. Relative significance of electrolyte and cation exchange effects when gypsum is applied to a sodic clay soil. Aust. J. Soil. Res. 14:361–371.

    CAS  Google Scholar 

  • Loveday, J. 1984. Amendments for reclaiming sodic soils, pp. 220–237. In: I. Shainberg and J. Shalhavet (eds.), Soil salinity under irrigation processes and management. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Loveday, J., and J.C. Pyle. 1973. The Emerson dispersion test and its relationship to hydraulic conductivity. Tech. Paper 15, CSIRO Aust. Div. Soils.

    Google Scholar 

  • Maas, E.V. 1988. Crop salt tolerance. In: Agriculture salinity assessment and management manual. ASCE Publ. (in press).

    Google Scholar 

  • Maas, E.V., and G.J. Hoffman. 1977. Crop salt-tolerance and current assessment.J. Irrig. Drainage Div., ASCE 103(2): 115–134.

    Google Scholar 

  • Magaritz, M., A. Nadler, H. Koyumdjisky, and J. Dan. 1981. Using Na/Cl ratio to trace sources of salinity in a semi-arid zone. Water Resources Res. 17:602–608.

    CAS  Google Scholar 

  • Magdoff, F., and E. Bresler. 1973. Evaluation of methods of reclaiming sodic soils with CaCl2. pp. 431–440. In: A. Hadas (eds.), Physical aspects of soil water salts in ecosystems, Vol. 4. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Manin, M., A. Pissarra, and J.W. Van Hoom. 1982. Drainage and desalinization of heavy clay soil in Portugal. Agric. Water Mgt. 5:227–240.

    Google Scholar 

  • Mashhady, A.S., and D.L. Rowell. 1978. Soil alkalinity. Equilibria and alkalinity development. J. Soil Sci. 29:65–75.

    CAS  Google Scholar 

  • McGeorge, W.T., and E.L. Breazeale. 1955. The value of pyrite and pyrrhotite as soil conditioner. Rep. 12A, Agric. Exp. Sta. Univ. Arizona, Tucson.

    Google Scholar 

  • McNeal, B.L., and N.T. Coleman. 1966. Effect of solution composition on soil hydraulic conductivity. Soil Sci. Soc. Amer. J. 30:308–312.

    CAS  Google Scholar 

  • McNeal, B.L., W.A. Norvell, and N.T. Coleman. 1966a. Effect of soluction composition on soil hydraulic conductivity and on the swelling of extracted soil clays. Soil Sci. Soc. Amer. J. 30:308–317.

    CAS  Google Scholar 

  • McNeal, B.L., G.A. Pearson, J.T. Hatcher, and C.A. Bower. 1966b. Effect of rice culture on the reclamation of sodic soils. Agron. J. 58:238–240.

    Google Scholar 

  • Merrill, S.D., J.R. Deutsch, and M.W. Pole. 1987. Saturation percentage. In: D.R. Williams and G.E. Schuman (eds.), Reclaiming mine soils and overburn in the Western United States. Soil Conerv. Soc. Amer. Ankeny, IA.

    Google Scholar 

  • Millet, G. 1970. Geology of clays. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Ming, D.W., and J.B. Dixon. 1984. Quantitative determination of soil zeolites using a cation exchange capacity method. Agron. Abstr., p. 274.

    Google Scholar 

  • Ming, D.W., and F.A. Mumpton. 1984. Zeolites in soils. Agron. Abstr., p. 274.

    Google Scholar 

  • Minhas, P.S., and B.K. Khosla. 1986. Solute displacement in a silt loam soil as affected by dry method of water application under different evaporation rates. Agric. Water Mgt. 12:64–74.

    Google Scholar 

  • Miyamoto, S., J. Ryan, and J.L. Strochlein. 1975. Sulfuric acid and leaching requirements for reclaiming sodium affected calcareous soils. Plant Soil 43:573–585.

    CAS  Google Scholar 

  • Moore, A.W., R.F. Isbell, and K.H. Northkote. 1983. Classification of Australian soils, pp. 253–266. In An Australian viewpoint. Div. Soils, CSIRO, Melbourne, Academic Press, London.

    Google Scholar 

  • Murakami, H. 1968. Some problems on the oxidation of oxidizable sulfur. J. Sci. Soil Manure (Jap.) 39:116–120.

    CAS  Google Scholar 

  • Nadler, A., and M. Magaritz. 1982. The effect of sodium carbonate presence on the soil extract’s chemical composition. Soil Sci. Soc. Amer. J. 46:1333–1336.

    CAS  Google Scholar 

  • Nakayama, F.S. 1970. Hydrolysis of CaCO3, Na2CO3 and NaHCO3 and their combinations in the presence and absence of external CO2 source. Soil Sci. 109:391–398.

    CAS  Google Scholar 

  • Northcote, K.H., and J.K.M. Skene. 1972. Australian soils with saline and sodic properties. Soil Pub. 27, CSIRO, Melbourne, Australia.

    Google Scholar 

  • Oosterbaan, O.J. 1982. Annual report. Int. Inst. Land Reclamation, Wageningen, pp. 50–54.

    Google Scholar 

  • Oster, J.D. 1982. Gypsum usage in irrigated agriculture; a review. Fertilizer Res. 3:73–89.

    CAS  Google Scholar 

  • Oster, J.D., and H. Frenkel. 1980. The chemistry of the reclamation of sodic soils with gypsum and lime. Soil Sci. Soc. Amer. J. 44:41–45.

    CAS  Google Scholar 

  • Oster, J.D., and J.D. Rhoades. 1975. Calculated drainage water compositions and salt burdens resulting from irrigation with river waters in Western United States. J. Envir. Qual. 4:73–79.

    CAS  Google Scholar 

  • Oster, J.D., and F.W. Schroer. 1979. Infiltration as influenced by irrigation water quality. Soil Sci. Soc. Amer. J. 43:444–447.

    CAS  Google Scholar 

  • Oster, J.D., and I. Shainberg. 1979. Exchangeable cation hydrolysis on soil weathering as affected by exchangeable sodium. Soil Sci. Soc. Amer. J. 43:70–75.

    CAS  Google Scholar 

  • Oster, J.D., and G. Sposito. 1980. The Gapon coefficient and the exchangeable sodium percentage-sodium adsorption ratio relation. Soil Sci. Soc. Amer. J. 44:258–260.

    CAS  Google Scholar 

  • Overstreet, R., J.C. Martin, and H.M. King. 1951. Gypsum, sulfur, sulfuric acid for reclaiming an alkali soil of the Fresno series. Hilgardia 21:113–126.

    CAS  Google Scholar 

  • Pal, D.K. 1985. Potassium release from muscovite and biotite under alkaline conditions. Pedologie 35:133–136.

    CAS  Google Scholar 

  • Paliwal, K.V., and A.P. Gandhi. 1976. Effect of salinity, Ca: Mg ratio in irrigation water and soil texture on the predictabiltiy of exchangeable sodium percentage. Soil Sci. 122:85–90.

    CAS  Google Scholar 

  • Peech, M. 1965. Hydrogen ion activity. In: C.A. Black (ed.), Methods of soil analysis, Part II. ASA Mono. 9., Madium, WI.

    Google Scholar 

  • Petrosian, G.P., and A.I. Techitchian. 1969. Soda-saline soils of the Ararat Plain and methods of their reclamation. Agrokem. Talajt. 18(Suppl.): 121–138.

    Google Scholar 

  • Polemio, M., and J.D. Rhoades. 1977. Determining cation exchange capacity: A new procedure for calcareous and gypsiferous soils. Soil Sci. Soc. Amer. J. 41:524–527.

    CAS  Google Scholar 

  • Ponnamperuma, F.N. 1972. The chemistry of submerged soils. Adv. Agron. 24:29–96.

    CAS  Google Scholar 

  • Ponnamperuma, F.N. 1984. Role of cultivar tolerance in increasing rice production in saline lands, pp. 255–271. In: R.C. Staples and G.H. Taenniessen (eds.), Salinity tolerance in plants. Strategies for crop improvement. Wiley, NY.

    Google Scholar 

  • Prather, R.J., J.D. Goertzen, J.D. Rhoades, and H. Frenkel. 1978. Efficient amendment use in sodic soil reclamation. Soil Sci. Soc. Amer. J. 42:782–786.

    CAS  Google Scholar 

  • Pratt, P.F., and F.L. Bair. 1969. Sodium hazard of bicarbonate irrigation water. Soil Sci. Soc. Amer. J. 33:880–883.

    CAS  Google Scholar 

  • Pratt, P.F., and D.W. Thorne. 1948. Solubility and physiological availability of phosphate in sodium and calcium systems. Soil Sci. Soc. Amer. J. 13:213–217.

    Google Scholar 

  • Pupisky, H., and I. Shainberg. 1979. Salt effects on the hydraulic conductivity of a sandy soil. Soil Sci. Soc. Am. J. 43:429–433.

    Google Scholar 

  • Quirk, J.P. 1977. Chemistry of saline soils and their physical properties pp. 79–90. In: T. Talsma and J.R. Philip (eds.), Salinity and water use. Aust. Acad. Sci., Canberra.

    Google Scholar 

  • Quirk, J.P., and R.K. Schofield. 1955. The effect of electrolyte concentration on soil permeability. J. Soil Sci. 6:163–178.

    CAS  Google Scholar 

  • Quispel, A., G.W. Harmsen, and D. Otzen. 1952. Contribution to the chemical and bacteriological oxidation of pyrite in soil. Plant Soil 4:43–55.

    CAS  Google Scholar 

  • Rahman, A.W., and D.L. Rowell. 1979. The influence of Mg in saline and sodic soils: A specific effect or a problem of cation exchange. J. Soil Sci. 30:535–546.

    CAS  Google Scholar 

  • Rains, D.W., and E. Epstein. 1967. Preferential absorption of potassium by leaf tissue of the mangrove, Avicennia marina: An aspect of halophyte competence in coping with salt. Aust. J. Biol. Sci. 20:847–857.

    CAS  Google Scholar 

  • Rao, D.L.N. 1987. Slow release urea fertilizers—Effect on flood water chemistry, ammonia volatilization and rice growth in an alkali soil. Fertilizer Res. 13:209-212.

    CAS  Google Scholar 

  • Rao, D.L.N., and L. Batra. 1983. Ammonia volatilization from applied nitrogen in alkali soils. Plant Soil 70:219–228.

    CAS  Google Scholar 

  • Rao, D.L.N., and L. Batra. 1984. Evaluation of conventional, slow release and nitrification inhibitor treated fertilizers for rice in an alkali soil. IRRN 9:26–27.

    Google Scholar 

  • Rao, D.L.N., and S.K. Ghai. 1985. Urease and dehydrogenase activity of alkali and reclaimed soils. Aust. J. Soil Res. 23:661–665.

    CAS  Google Scholar 

  • Rao, D.L.N., and S.K. Ghai. 1986a. Urease inhibitors: Effect on wheat growth in an alkali soil. Soil Biol. Biochem. 18:255–258.

    CAS  Google Scholar 

  • Rao, D.L.N., and S.K. Ghai. 1986b. Effect of phenylphosphorodiamidate on urea hydrolysis, ammonia volatilization and rice growth in an alkali soil. Plant Soil 94:313–320.

    CAS  Google Scholar 

  • Rao, K.V.G.K., O.P. Singh, R.K. Gupta, S.K. Kamra, R.S. Pandey, P.S. Kumbhare, and I.P. Abrol. 1986. Drainage investigations for salinity control in Haryana. Tech. Bull. 10, Central Soil Salinity Res. Inst., Karnal, India.

    Google Scholar 

  • Rasmussen, W.W., D.P. Moore, and L.A. Alban. 1972. Improvement of a solonetzic (slick spot) soil by deep ploughing, subsoiling and amendments. Soil Sci. Soc. Amer. J. 36:137–142.

    Google Scholar 

  • Reddy, M.R., and H.F. Perkins. 1974. Fixation of zinc by clay minerals. Soil Sci. Soc. Amer. J. 38:229–231.

    CAS  Google Scholar 

  • Rengasamy, P., R.S.B. Greene, and G.W. Ford. 1984. The role of clay fraction inthe particle arrangement and stability of soil aggregates. A review. Clay Res. 3:53–67.

    CAS  Google Scholar 

  • Reynolds, C.M., and D.C. Wolf. 1987. Influence of urease activity and soil properties on ammonia volatilization from urea. Soil Sci. 143:418–425.

    CAS  Google Scholar 

  • Rhoades, J.D. 1982. Reclamation and management of salt-affected soils after drainage, pp. 123–187. In: Proc. 1st Annual Western Provincial Conf. on rationalization of water and soil research and management, Lethbridge, Alberta, Canada.

    Google Scholar 

  • Rhoades, J.D. 1984. Principles and methods of monitoring salinity, pp. 143–167. In: I. Shainberg and J. Shalhevet (eds.), Soil salinity under irrigation, processes and management. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Rhoades, J.D., and R.D. Ingvalson. 1969. Macroscopic swelling and hydraulic conductivity properties of four vermicullitic soils. Soil Sci. Soc. Amer. J. 33:364–367.

    CAS  Google Scholar 

  • Rimmer, D.L., and D.J.Greenland. 1976. Effect of CaCO3 on the swelling behavior of a soil clay. J. Soil Sci. 27:129–139.

    CAS  Google Scholar 

  • Rolston, D.E., J.W. Biggar, R.J. Miller, D.R. Nielsen and F.E. Broadbent. 1985. Crop response to temporally and spatially variable soil-salinity profiles, pp. 93–101. In: Soil and plant interactions with salinity. Kearney Found. Five-Year Rep., 1980–85.

    Google Scholar 

  • Rupela, O.P., and P. Tauro. 1973. Isolation and characterization of Thiobacillus from alkali soils. Soil Biol. Biochem. 5:891–897.

    CAS  Google Scholar 

  • Saeed, M., and R.L. Fox. 1977. Relationship between suspension pH and Zn solubility in acid and calcareous soils. Soil Sci. 124:199–203.

    CAS  Google Scholar 

  • Schofield, R.K., and H.R. Samson. 1954. Flocculation of kaolinite due to the attraction of oppositely charged crystal faces. Discuss. Faraday Soc. 18:135–145.

    CAS  Google Scholar 

  • Schulz, R.K., R. Overstreet, and I. Barshad. 1964. Some unusual ionic exchange properties of sodium in certain salt affected soils. Soil Sci. 99:161–165.

    Google Scholar 

  • Sehgal, J.L., G.F. Hall, and G.P. Bhargava. 1975. An appraisal of the problems in classifying saline-sodic soils of the Indo-Gangetic plains in N.W. India. Geoderma 14:75–91.

    CAS  Google Scholar 

  • Shainberg, I., and M. Gal. 1982. The effect of lime on the response of soils to sodic conditions. J. Soil Sci. 33:489–498.

    CAS  Google Scholar 

  • Shainberg, I., and J. Letey. 1984. Response of soils to sodic and saline conditions. Hilgardia 52(2): 1–57.

    Google Scholar 

  • Shainberg, I., R. Keren, and H. Frenkel. 1982. Response of sodic soils to gypsum and calcium chloride application. Soil Sci. Soc. Amer. J. 46:116–117.

    Google Scholar 

  • Shainberg, I., and J. Shalhavet (eds.), 1984. Soil salinity under irrigation processes and management. Springer-Verlag, Heidelberg, Berlin.

    Google Scholar 

  • Shainberg, I., J.D. Rhoades, and R.J. Prather. 1981a. Effect of low electrolyte concentration on clay dispersion and hydraulic conductivity of a sodic soil. Soil Sci. Soc. Amer. J. 45:273–277.

    CAS  Google Scholar 

  • Shainberg, I., J.D. Rhoades, D.L. Suarez, and R.J. Prather. 1981b. Effect of mineral weathering on clay dispersion and hydraulic conductivity of sodic soils. Soil Sci. Soc. Amer. J. 45:287–291.

    Google Scholar 

  • Shanmuganathan, R.T., and J.M. Oades. 1983. Modification of soil physical properties by addition of calcium compounds. Aust. J. Soil Res. 21:285–300.

    CAS  Google Scholar 

  • Sharma, B.D., P.N. Takkar, and U.S. Sadana. 1982. Evaluating levels and methods of zinc application to rice in sodic soils. Fertilizer Res. 3:161–167.

    Google Scholar 

  • Shaw, E., and L.A. Dean. 1952. Use of dithiozone as an extractant to estimate the zinc untrient status of soils. Soil Sci. 73:341–347.

    CAS  Google Scholar 

  • Shukla, U.C., and K.G. Parsad. 1974. Ameliorative role of zinc on maize growth under alkali soil conditions. Agron. J. 66:804–806.

    CAS  Google Scholar 

  • Sidhu, P.S., and R.J. Gilkes. 1977. Mineralogy of soil developed on alluvium in the Indo-Gangetic plain (India). Soil Sci. Soc. Amer. J. 41:1194–1201.

    CAS  Google Scholar 

  • Silverman, M.P. 1967. Mechanism of bacterial pyrite oxidation. J. Bacteriol. 94:1046–1057.

    PubMed  CAS  Google Scholar 

  • Singh, G. 1987. Nitrogen management of rice-wheat sequence in alkali soils. Indian J. Agron. 32:387–391.

    Google Scholar 

  • Singh, M.V., and I.P. Abrol. 1985b. Solubility and adsorption of zinc in a sodic soil. Soil Sci. 140:406–411.

    CAS  Google Scholar 

  • Singh, M.V., and I.P. Abrol. 1986. Transformation and movement of zinc in an alkali soil and their influence on the yield and uptake of zinc by rice and wheat crops. Plant Soil 94:445–449.

    CAS  Google Scholar 

  • Singh, M.V., R.R. Chhabra, and I.P. Abrol. 1983. Factors affecting DTPA ex-tractable zinc in sodic soils. Soil Sci. 36:359–366.

    Google Scholar 

  • Singh, O., and S.D. Nijhawan. 1943. Availability of phosphates in alkaline and calcareous soils. Indian J. Agric. Sci. 130:131–141.

    Google Scholar 

  • Singh, S.B., and I.P. Abrol. 1983. Influence of exchangeable sodium on the yield of pea and its chemical composition and nutrient uptake. Indian J. Agric. Sci. 53:685–689.

    Google Scholar 

  • Singh, S.B., R. Chhabra, and I.P. Abrol. 1979. Effect of exchangeable sodium on the yield and chemicla composition of ray a (Brassica juncea Linn.). Agron. J. 71:767–771.

    CAS  Google Scholar 

  • Singh, S.B., R. Chhabra, and I.P. Abrol. 1980. Effect of soil sodicity on the yield and chemical composition of cowpea grown for fodder. Indian J. Agric. Sci. 50:870–874.

    Google Scholar 

  • Singh, S.B., R. Chhabra, and I.P. Abrol. 1981. Effect of exchangeable sodium on the yield, chemical composition and oil content of safflower and linseed. Indian J. Agric. Sci. 51:885–891.

    CAS  Google Scholar 

  • Soil Survey Staff. 1975. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. U.S. Dept. Agric. Handbook No. 436. U.S. Govt. Printing Office, Washington, D.C.

    Google Scholar 

  • Solov’ev, V.A. 1969. Plant growth and water and mineral element supply under conditions of NaCl salinization. Soviet Plant Physiol. 16:722–727.

    Google Scholar 

  • Sposito, G. 1977. The Gapon and Van Selow selectivity coefficients. Soil Sci. Soc. Amer. J. 41:1205–1206.

    CAS  Google Scholar 

  • Sposito, G., and C.S. LeVesque. 1985. Sodium-calcium-magnesium exchange on Wyoming beutonite in the presenc of adsorbed sodium. Soil Sci. Soc. Amer. J. 49:1153–1159.

    CAS  Google Scholar 

  • Sposito, G., and S.W. Mattigod. 1977. On the chemical foundation of the sodium adsorption ratio. Soil Sci. Soc. of Amer. J. 41:32–329.

    Google Scholar 

  • Stumm, W., and J.J. Morgan. 1970. Aquatic chemistry. Wiley-Interscience, NY.

    Google Scholar 

  • Stumm-Zollinger, E. 1972. Bacterial mediation in the oxidation of pyrite. Arch. Mikrobiol. 83:110–115.

    Google Scholar 

  • Suarez, D.L. 1987. Prediction of pH errors in soil water extracts due to degassing. Soil Sci. Soc. Amer. J. 51:64–67.

    CAS  Google Scholar 

  • Suarez, D.L., J.D. Rhoades, R. Lavado, and C.M. Grieve. 1984. Effect of pH on saturated hydraulic conductivity and soil dispersion. Soil Sci. Soc. Amer. J. 48:50–55.

    CAS  Google Scholar 

  • Sung, W., and W. Stumm. 1980. Kinetics and product of ferrous iron oxygenation in aqueous systems. Environ. Sci. Technol. 14:561–570.

    CAS  Google Scholar 

  • Szabolcs, I. 1974. Salt affected soils in Europe. Martinus Nijhoff, The Hague, Research Inst. Soil Sci. Agric. Chem., Acad. Sci., Budapest.

    Google Scholar 

  • Szabolcs, I. 1979. Review of research on salt-affected soils. Natural Resources Res. 15:137. UNESCO, Paris.

    Google Scholar 

  • Takkar, P.N., and V.K. Nayyar. 1981. Effect of gypsum and zinc in rice nutrition on sodic soil. Exp. Agric. 17:49–55.

    CAS  Google Scholar 

  • Takkar, P.N., and N.S. Randhawa. 1978. Micronutrients in Indian agriculture. Fertilizer New 23:1–26.

    Google Scholar 

  • Takkar, P.N., and T. Singh. 1978. Zinc nutrition of rice as influenced by rates of gypsum and zinc fertilization of alkali soils. Agron. J. 70:447–450.

    CAS  Google Scholar 

  • Tanji, K.K. 1969. Solubility of gypsum in aqueous electrolytes as affected by ion association and ionic strengths up to 0.15 cm and at 25°C. J. Envir. Sci. Technol. 3:656–661.

    CAS  Google Scholar 

  • Tanji, K.K., and S.J. Deverel. 1984. Simulation modelling for reclamation of sodic soils, pp. 238–251. In: I. Shainberg and J. Shalhevet (eds.), Soil salinity under irrigation, processes and management. Springer-Verlag, Heidelberg, Berlin.

    Google Scholar 

  • Tanji, K.K., and L.D. Whittig. 1985. Carbonate and sulfate chemistry and mineralogy in salt-affected soils, pp. 73–84. In: Soil and plant interactions with salinity. Kearney Found. Five-Year Rep., 1980–85.

    Google Scholar 

  • Tanji, K.K., L.D. Doneen, G.V. Ferry, and R.S. Ayers. 1972. Computer simulation analysis on reclamation of salt-affected soils in San Joaquin Valley, California. Soil Sci. Soc. Amer. J. 36:127–133.

    Google Scholar 

  • Temple, K.L., and E.W. Delchamps. 1953. Autotrophic bacteria and the formation of acid in bituminous coal mines. Appl. Microbiol. 1:255–258.

    PubMed  CAS  Google Scholar 

  • Thorstenson, D.C., D.W. Fisher, and M.G. Croft. 1979. The geochemistry of the Fox Hills-Basal Hill creek aquifer in southwestern North Dakota and northwestern South Dakota. Water Resources Res. 15:1479–1498.

    CAS  Google Scholar 

  • Thorup, J.T.1972. Soil sulfur application. Sulfur Inst. J. 8:16–17.

    Google Scholar 

  • Toogood, J.A., and R.R. Cairns (eds.), 1978. Solonetzic soils technology and management. Bull. B 78–1, Univ. Alberta, Edmonton.

    Google Scholar 

  • Turner, R.C., and J. Clark. 1956. The pH of calcareous soil. Soil Sci. 82:337–341.

    CAS  Google Scholar 

  • Unz, R.F., and D.G. Lundgren. 1961. A comparative nutritional study of three chemoautotrophic bacteria: Ferrobacillus ferroxidans, Thiobacillus ferroxidans, and Thiobacillus thioxidans. Soil Sci. 92:302–313.

    Google Scholar 

  • U.S.Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. Handbook 60, U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Van Olphen, H. 1977. An introduction to clay colloid chemistry, 2d. Interscience, New York.

    Google Scholar 

  • Van Schilfgaarde, J. 1984. Drainage design for salinity control, pp. 190–197. In: I. Shainberg and J.Shalhevet (eds.), Soil salinity under irrigation, processes and management. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Varallyay, G. 1978. Moisture status and flow phenomena in salt-affected soils. In: Proc. Indo-Hungarian Seminar, managment salt-affected soils, Karnal, India.

    Google Scholar 

  • Venkatakrishannan, S., and I.P. Abrol. 1981. Amelioration of a sodic soil through Thiobacilli inoculation and pyrite application. Indian Soc. Soil Sci. 29:526–529.

    Google Scholar 

  • Vlek, P.L.G., and J.M. Stumpe. 1978. Effect of solution chemistry and environmental conditions on ammonia volatilization losses from aqueous system. Soil Sci. Soc. Amer. J. 42:416–421.

    CAS  Google Scholar 

  • Vlek, P.L.G., Th.J.M. Blom, J. Beek, and W.L. Lindsay. 1974. Determination of the solubility product of various iron hydroxides and jarosite by the chelation method. Soil Sci. Soc. Amer. J. 38:429–432.

    CAS  Google Scholar 

  • Vorob’eva, L.P., L.P. Vyrodova, and E.E. Goronenkova. 1986. Evaluating alkalinity of calcareous soils. Moscow Univ. Soil Bull. 41:12–17.

    Google Scholar 

  • Wallace, A. 1966. Current topics in plant nutrition, pp. 115–117. Lithographed by Edwards Bros., Ann Arbor, MI.

    Google Scholar 

  • Whitney, R.S., and R. Gardner. 1943. The effect of carbon dioxide on soil reactions. Soil Sci. 55:127–141.

    CAS  Google Scholar 

  • Williams, W.A. 1966. Management of nonleguminous green manures and crop residues to improve infiltration rates of an irrigated soil. Soil Sci. Soc. Amer. J. 30:631–634.

    Google Scholar 

  • Yaalon, D.H. 1958. Studies on the effect of saline irrigation water on calcareous soils. II. The behavior of calcium carbonate. Bull. Res. Council Isr. 7G: 115–122.

    Google Scholar 

  • Yadav, J.S.P., and I.K. Girdhar. 1981. Effect of different magnesium: Calcium ratios and sodium adsorption ratio values of leaching water on the properties of calcareous versus noncalcareous soils. Soil Sci. 131:194–198.

    CAS  Google Scholar 

  • Yahia, T.A., S. Miyamoto, and J.L. Strochlein. 1975. Effect of surface applied sulfuric acid on water penetration into dry calcareous and sodic soil. Soil Sci. Soc. Amer. J. 39:1201–1204.

    CAS  Google Scholar 

  • Zantua, M.I., L.C. Dumenil, and J.M. Bremner. 1977. Relationships between soil urease activity and other soil properties. Soil Sci. Soc. Amer. J. 41:350–352.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Gupta, R.K., Abrol, I.P. (1990). Salt-Affected Soils: Their Reclamation and Management for Crop Production. In: Lal, R., Stewart, B.A. (eds) Advances in Soil Science. Advances in Soil Science, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3322-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3322-0_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7966-2

  • Online ISBN: 978-1-4612-3322-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics