Skip to main content

A statistical approach to ocean model testing and tuning

  • Chapter
Stochastic Modelling in Physical Oceanography

Part of the book series: Progress in Probability ((PRPR,volume 39))

  • 388 Accesses

Abstract

For many purposes such as the forecasting of oceanic conditions or the prediction of climate changes, it is important to have realistic models of the ocean, that is models which are able to reproduce sufficiently well the main features of interest, and their time variability. This is particularly critical in the design of coupled ocean-atmosphere models where model errors are generally exacerbated by the coupling, so that artificial “flux-corrections” (Sausen et al, 1988) are often used to prevent a drift toward unreasonable climate conditions, even though they may distort the dynamics. Although more complex models should represent reality more correctly than simpler ones, they do not necessarily do so, as illustrated by the El Niño-Southern Oscillation (ENSO) phenomenon where simple ocean-atmosphere models have so far provided forecasts as good as general circulation models (GCMs), in part because of the drift of the latter (Latif et al, 1993). Provided models are consistent with known physics within the tolerance allowed by the approximations made, model adequacy should thus be judged by the ability at reproducing the relevant observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allaart, M.A.F. and A. Kattenberg, 1990: A primitive equation model for the equatorial Pacific. Technical Report TR-124, KNMI.

    Google Scholar 

  2. Blanke, B., and P. Delecluse, 1993: Low frequency variability of the tropical Atlantic ocean simulated by a general circulation model with mixed layer physics. J. Phys. Oceanogr., 23, 1363–1388.

    Article  Google Scholar 

  3. Blumenthal, M.B. and M.A. Cane, 1989: Accounting for parameter uncertainties in model verification: an illustration with tropical sea surface temperature. J. Phys. Oceanogr., 19, 815–830.

    Article  Google Scholar 

  4. Braconnot, P., and C. Frankignoul, 1993: Testing model simulations of the thermocline depth variability in the tropical Atlantic from 1982 through 1984. J. Phys. Oceanogr., 23, 626–647.

    Article  Google Scholar 

  5. Braconnot, P. and C. Frankignoul, 1994: On the ability of the LODYC GCM at simulating the thermocline depth variability in the equatorial Atlantic. Climate Dynamics, 9, 221–234.

    Article  Google Scholar 

  6. Cane, M.A., 1984: Modeling sea level during El Niño. J. Phys. Oceanogr., 14, 1864–1874.

    Article  Google Scholar 

  7. Février, S., J. Sirven and C. Frankignoul, 1995: An intermediate resolution model of the seasonal variability of the tropical Atlantic. The Global Atmosphere-Ocean System, to appear.

    Google Scholar 

  8. Flury, B.N., 1989: Common Principal Components and Related Multivariate Models. Wiley and Sons.

    Google Scholar 

  9. Frankignoul, C., 1995: Statistical analysis of GCM output. In Analysis of Climate Variability. Applications of Statistical Techniques. H. von Storch and A. Navarra, Ed., Springer Verlag, 139–152.

    Google Scholar 

  10. Frankignoul, C., C. Duchêne and M. Cane, 1989: A statistical approach to testing equatorial ocean models with observed data. J. Phys. Oceanogr., 19, 1191–1208.

    Article  Google Scholar 

  11. Frankignoul, C., S. Février, N. Sennéchael, J. Verbeek and P. Braconnot, 1995: An intercomparison between four tropical ocean models. Part 1: Thermocline variability. Tellus, 47A, 351–364.

    Google Scholar 

  12. Hasselmann, K., 1979: On the signal-to-noise problem in atmospheric response studies. In Meteorology of the Tropical Oceans, D.B. Shaw, Ed., Roy. Meteor. Soc., 251–259.

    Google Scholar 

  13. Latif, M., A. Steri, E. Maier-Reimer, and M.M. Junge, 1993: Structure and predictability of the El Niño/ Southern Oscillation phenomenon in a coupled ocean-atmosphere general circulation model. J. Clim., 6, 700–708.

    Article  Google Scholar 

  14. Livezey, R.E., 1995: Field intercomparison. In Analysis of Climate Variability. Applications of Statistical Techniques. H. von Storch and A. Navarra, Ed., Springer Verlag, 159–175.

    Google Scholar 

  15. Livezey, R.E. and W.Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 11, 46–59.

    Article  Google Scholar 

  16. Morrison, D.F., 1976: Multivariate Statistical Methods. McGraw-Hill.

    Google Scholar 

  17. Stuart, A. and Ord, J.K., 1991: Kendall’s Advanced Theory of Statistics. 5th edition. Edward Arnold.

    Google Scholar 

  18. Reverdin, G., P. Delecluse, C. Levi, A. Morlière, and J. M. Verstraete, 1991: The near surface tropical Atlantic in 1982–1984. Results from a numerical simulation and data analysis. Progress in Oceanogr., 27, 273–340.

    Article  Google Scholar 

  19. Sausen, R., K. Bartheis and K. Hasselmann, 1988: Coupled ocean-atmosphere models with flux correction. Climate Dynamics, 2, 154–163.

    Article  Google Scholar 

  20. Seager, R., S.E. Zebiak and M.A. Cane, 1988: A model of the tropical Pacific sea surface temperature climatology. J. Geophys. Res., 93, 11,587–11,601.

    Google Scholar 

  21. Seber, G.A.F., 1984: Multivariate Observations. Wiley and Sons.

    Google Scholar 

  22. Seber, G.A.F. and C.J. Wild, 1989: Nonlinear Regression. Wiley and Sons.

    Google Scholar 

  23. Sennéchael, N., C. Frankignoul and M.A. Cane, 1994: An adaptive procedure for tuning a sea surface temperature model. J. Phys. Oceanogr., 24, 2288–2305.

    Article  Google Scholar 

  24. Sennéchael, N., 1994: Optimisation d’un modèle de l’ocan atlantique tropical par méthode inverse adaptative. Thèse de doctorat, Université Pierre et Marie Curie, Paris.

    Google Scholar 

  25. Servain, J., J. Picaut and A.J. Busalacchi, 1985: Interannual and seasonal variability of the tropical Atlantic ocean depicted by 16 years of sea surface temperature and wind stress. In Coupled Ocean-atmosphere Models, J.C.J. Nihoul, Ed., Elsevier, 211–237.

    Google Scholar 

  26. Tarantola, A. 1987: Inverse problem theory. Elsevier.

    Google Scholar 

  27. von Storch, H., 1982: A remark on Chervin-Schneider’s algorithm to test significance. J. Atmos. Sci., 39, 187–189.

    Article  Google Scholar 

  28. Van Huffel, S. and J. Vandewalle, 1991: The Total Least Squares Problem. Frontiers in Applied Mathematics, 9, SIAM, Philadelphia.

    Google Scholar 

  29. Yao, Y., 1965: An approximate degrees of freedom solution to the multivariate Behrens-Fisher problem. Biometrika, 52, 139–147.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Frankignoul, C. (1996). A statistical approach to ocean model testing and tuning. In: Adler, R.J., Müller, P., Rozovskii, B.L. (eds) Stochastic Modelling in Physical Oceanography. Progress in Probability, vol 39. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2430-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2430-3_4

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7533-6

  • Online ISBN: 978-1-4612-2430-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics