Skip to main content

Part of the book series: Statistics for Industry and Technology ((SIT))

  • 391 Accesses

Abstract

Exact expressions axe derived for the Average Run Length (ARL) of CUSUM schemes when observations follow an Erlang distribution. Additionally, exact expressions for the quasi-stationary distribution are found. Based on the results for the ARL as function of the headstart and the quasi-stationary density function, the so-called average delay can be determined. Both functions are obtained by solving integral equations. Eventually, by using the right eigenfunction of the CUSUM transition kernel — the left one yields the quasi-stationary density function — a geometric approximation of the run length distribution is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brook, D. and Evans, D. A. (1972). An approach to the probability function of CUSUM-runlength, Biometrika, 59, 539–549.

    Article  MathSciNet  MATH  Google Scholar 

  2. Dvoretzky, A., Kiefer, J. and Wolfowitz, J. (1953). Sequential decision problems for processes with continuous time parameter. Testing hypotheses, Annals of Mathematical Statistics, 242, 254–264.

    Article  MathSciNet  Google Scholar 

  3. Gold, M. (1989). The geometric approximation to the CUSUM run length distribution, Biometrika, 76, 725–733.

    Article  MathSciNet  MATH  Google Scholar 

  4. Harris, T. (1963). The Theory of Branching Processes, Berlin: Springer-Verlag.

    MATH  Google Scholar 

  5. Khan, R. A. (1978). Wald’s approximations to the ARL in CUSUM-procedures, Journal of Statistical Planning and Inference, 2, 63–77.

    Article  MathSciNet  MATH  Google Scholar 

  6. Knoth, S. (1995). Quasistationäre CUSUM-Verfahren bei Erlangverteilung. Ph.D. thesis, TU Chemnitz-Zwickau, Germany.

    Google Scholar 

  7. Knoth, S.(1997a). Exact average run lengths of CUSUM schemes for Erlang distributions Technical Report, 73, Europe-University Viadrina, Frankfurt (Oder), Germany.

    Google Scholar 

  8. Knoth, S. (1997b). Quasi-stationarity of CUSUM schemes for Erlang distributions, Technical Report, 82, Europe-University Viadrina, Frankfurt (Oder), Germany.

    Google Scholar 

  9. Kohlruss, D. (1994). Exact formulas for the OC and the ASN functions of the SPRT for Erlang distributions, Sequential Analysis, 13, 53–62.

    Article  MathSciNet  MATH  Google Scholar 

  10. Lorden, G. (1971). Procedures for reacting to a change in distribution, Annals of Mathematical Statistics, 42, 1897–1908.

    Article  MathSciNet  MATH  Google Scholar 

  11. Lorden, G. and Eisenberger, I. (1973). Detection of failure rate increases, Technometrics, 15, 167–175.

    Article  MATH  Google Scholar 

  12. Lucas, J. M. (1985). Counted data CUSUM’s, Technometrics, 27, 129–144.

    Article  MathSciNet  MATH  Google Scholar 

  13. Madsen, R. W. and Conn, P. S. (1973). Ergodic behaviour for nonnegative kernels, Annals of Probability, 1, 995–1013.

    Article  MathSciNet  MATH  Google Scholar 

  14. Mevorach, Y. and Pollak, M. (1991). A small sample size comparison of the CUSUM and Shiryaev-Roberts approaches to change point detection, The American Journal of Mathematics and Management Science, 11, 277–298.

    MATH  Google Scholar 

  15. Moustakides, G. V. (1986). Optimal stopping times for detecting changes in distributions, The Annals of Statistics, 14, 1379–1387.

    Article  MathSciNet  MATH  Google Scholar 

  16. Page, E. S. (1954). Continuous inspection schemes, Biometrika, 41, 100–115.

    MathSciNet  MATH  Google Scholar 

  17. Pollak, M. (1985). Optimal detection of a change in distribution, Technometrics, 13, 206–227.

    MathSciNet  MATH  Google Scholar 

  18. Pollak, M. and Siegmund, D. (1985). A diffusion process and its applications to detection a change in the drift of Brownian motion, Biometrika, 72, 267–280.

    Article  MathSciNet  MATH  Google Scholar 

  19. Pollak, M. and Siegmund, D. (1986). Approximations to the ARL of CUSUM-tests, Technical Report, Department of Statistics, Stanford University.

    Google Scholar 

  20. Raghavachari, M. (1965). Operating characteristic function and expected sample size of a Sequential Probability Ratio Test for the simple exponential distribution, Bulletin of the Calcutta Statistics Association, 14, 65–73.

    MathSciNet  Google Scholar 

  21. Regula, G. (1975). Optimal CUSUM procedure to detect a change in distribution for the gamma family, Ph.D. thesis, Case Western University, Cleveland, OH.

    Google Scholar 

  22. Riordan, G. (1982). Kombinatornye Toždestva, Moskva: Nauka.

    Google Scholar 

  23. Ritov, Y. (1990). Decision theoretic optimality of the CUSUM procedure, The Annals of Statistics, 18, 1464–1469.

    Article  MathSciNet  MATH  Google Scholar 

  24. Roberts, S. W. (1966). A comparison of some control chart procedures, Technometrics, 8, 411–430.

    Article  MathSciNet  Google Scholar 

  25. Tartakovskij, A. G. and Ivanova, I. A. (1992). Sravnenie nekotorych posle-dovatel’nych pravil obnaruženija razladki, Probi. Pcredači Inf., 28, 21–29.

    Google Scholar 

  26. Vardeman, S. and Ray, D. (1985). Average run lengths for CUSUM schemes when observations are exponentially distributed, Technometrics, 27, 145–150.

    Article  MathSciNet  MATH  Google Scholar 

  27. Waldmann, K.-H. (1986). Bounds for the distribution of the run length of one-sided and two-sided CUSUM quality control schemes, Technometrics, 28, 61–67.

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, A.-L. (1990). Exponential CUSUM scheme for detecting a decrease in mean, Sankhyā, 52, 105–114.

    MATH  Google Scholar 

  29. Woodall, W. H. (1983). The distribution of the run length of one-sided CUSUM procedures for continuous random variables, Technometrics, 24, 295–301.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Birkhäuser Boston

About this chapter

Cite this chapter

Knoth, S. (1998). CUSUM Schemes and Erlang Distributions. In: Kahle, W., von Collani, E., Franz, J., Jensen, U. (eds) Advances in Stochastic Models for Reliability, Quality and Safety. Statistics for Industry and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2234-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2234-7_22

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7466-7

  • Online ISBN: 978-1-4612-2234-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics