Skip to main content

Neonatal Water and Electrolyte Metabolism

  • Chapter

Abstract

Water composes over 60% of all body matter in the adult, and close to 80% in the neonate.1,2 Water serves as the vehicle to carry nutrients to the body’s cells and remove its waste materials. The distribution of water determines the size of the body fluid compartments, and with water concentration, establishes the physiochemical milieu that allows cellular work to occur. Thus, water metabolism is integral to all life functions. This comprehensive review of water metabolism in the neonate, encompasses cellular regulation, cardiac and vascular physiology, as well as renal, neurologic, and hormonal functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edelman IS, Liebman J. Anatomy of body electrolytes. Am J Med 1959; 27: 256–277.

    Article  PubMed  CAS  Google Scholar 

  2. Friis-Hansen B. Body water compartments in children. Pediatrics 1961; 28: 169–181.

    PubMed  CAS  Google Scholar 

  3. Robertson JD. The habitat of the early vertebrates. Biol Rev 1957; 32: 156–187.

    Article  Google Scholar 

  4. Dahlstrom H. Basal metabolism and extracellular fluid. Acta Physiol Scand 1950; 21 (suppl 71): 5–80.

    Google Scholar 

  5. Wedgewood RJ, Bass DE, Klincis JA, et al. Relationship of body composition to basal metabolic rate in normal man. J Appl Physiol 1953; 6: 317–334.

    Google Scholar 

  6. Astrup J. Energy-requiring cell functions in the ischemic brain. J Neurol Surg 1982; 56: 282–497.

    Google Scholar 

  7. Valtin H. Renal function: mechanisms preserving fluid and solute balance in health. Boston: Little, Brown, 1973: 22.

    Google Scholar 

  8. Weast RC, ed. Handbook of chemistry and physics. 69th ed. Boca Raton: CRC Press, 1988:D-269.

    Google Scholar 

  9. Michel CC. Fluid movements through capillary walls. In: Renkin EM, Michel CC, eds. Handbook of physiology, section II, Vol IV part ( 1 ). Bethesda, MD: American Physiologic Society, 1984: 375–409.

    Google Scholar 

  10. Guyton AC. Textbook of medical physiology. 6th ed. Philadelphia: W.B. Saunders, 1981; 339: 41–54.

    Google Scholar 

  11. Macknight ADC, Leaf A. Regulation of cellular volume. Physiol Rev 1977; 57: 510–573.

    PubMed  CAS  Google Scholar 

  12. Strauss J. Fluid and electrolyte composition of the fetus and newborn. Pediatr Clin North Am 1966; 13: 1077–1102.

    PubMed  CAS  Google Scholar 

  13. MacLaurin JC. Changes in body water distribution during the first two weeks of life. Arch Dis Child 1966; 41: 286–291.

    Article  PubMed  CAS  Google Scholar 

  14. Trachtman H, Barbour R, Sturman JA, Finburg L. Taurine and osmoregulation: taurine is a cerebral osmoprotective molecule in chronic hypernatremic dehydration. Pediatr Res 1988; 23: 35–39.

    Article  PubMed  CAS  Google Scholar 

  15. Trachtman H. Cell volume regulation: a review of cerebral adaptive mechanisms and implications for clinical treatment of osmolal disturbances. Pediatr Nephrol 1991; 5: 743–750.

    Article  PubMed  CAS  Google Scholar 

  16. McManus MI, Churchwell KB, Strange K. Regulation of cell volume in health and disease. N Engl J Med 1995; 333: 1260–1266.

    Article  PubMed  CAS  Google Scholar 

  17. Trachtman H, Yancey PH, Gullans SR. Cerebral cell volume regulation during hypernatremia in developing rats. Brain Res 1995; 693: 155–162.

    Article  PubMed  CAS  Google Scholar 

  18. Landis EM, Pappenheimer JR. Exchange of substances through capillary walls. In: Hamilton WF, ed. Handbook of physiology. Circulation section II, Vol. II. Washington, D.C.: American Physiologic Society, 1963: 961–1034.

    Google Scholar 

  19. Wiel MH, Henning RJ, Puri VK. Colloid oncotic pressure: clinical significance. Crit Care Med 1979: 113–116.

    Google Scholar 

  20. Webster HL. Colloid osmotic pressure: Theoretical aspects and background. Clin Perinatol 1982; 9: 505–521.

    PubMed  CAS  Google Scholar 

  21. Bhat R, Javed S, Malalis L, Vidyasagar D. Colloid osmotic pressure in healthy and sick neonates. Crit Care Med 1981; 9: 563–567.

    Article  PubMed  CAS  Google Scholar 

  22. Sola A, Gregory GA. Colloid osmotic pressure of normal newborns and premature infants. Crit Care Med 1981; 9: 568–572.

    Article  PubMed  CAS  Google Scholar 

  23. Starling EH. On the absorption of fluid from the connective tissue spaces. J Physiol (Lond) 1896; 19: 312–326.

    CAS  Google Scholar 

  24. Pappenheimer JR, Soto-Rivera. Effective osmotic pressure of the plasma proteins and other quantities associated with capillary circulation in the hind limb of cats and dogs. Am J Physiol 1948; 152: 471–491.

    PubMed  CAS  Google Scholar 

  25. Landis EM. Capillary pressure and capillary permeability. Physiol Rev 1934; 14: 404–481.

    Google Scholar 

  26. Civetta JM. A new look at the Starling equation. Crit Care Med 1979; 7: 84–91.

    Article  PubMed  CAS  Google Scholar 

  27. Taylor AE. Capillary fluid filtration. Circ Res 1981; 49: 557–575.

    Article  PubMed  CAS  Google Scholar 

  28. Granger DN, Miller T, Allen R, et al. Permselectivity of cat liver blood-lymph barrier to endogenous macromolecules. Gastroenterology 1979; 77: 103–109.

    PubMed  CAS  Google Scholar 

  29. Nicoll PA, Taylor AE. Lymph formation and flow. Annu Rev Physiol 1977; 39: 73–95.

    Article  PubMed  CAS  Google Scholar 

  30. Chien S, Sinclair DE, Dellenbeck RJ, et al. Effect of endotoxin on capillary permeability to macromolecules. Am J Physiol 1966; 210: 1401–1410.

    PubMed  CAS  Google Scholar 

  31. Brigham KL, Bowers RE, Owen PS. Effects of antihistamines on lung vascular response to histamine in unanesthetized sheep. J Clin Invest 1976; 58: 391–398.

    Article  PubMed  CAS  Google Scholar 

  32. Comper WD, Laurent TC. Physiologic function of connective tissue polysaccharides. Physiol Rev 1978; 58: 255–315.

    PubMed  CAS  Google Scholar 

  33. Guyton AC. Interstitial fluid pressure: II. Pressure volume curves of interstitial space. Circ Res 1965; 16: 452–460.

    CAS  Google Scholar 

  34. Guyton AC, Granger HJ, Taylor AE. Interstitial fluid. Physiol Rev 1971: 527–563.

    Google Scholar 

  35. Guyton AC. Textbook of medical physiology. 6th ed. Philadelphia: WB Saunders, 1981: 435–447.

    Google Scholar 

  36. Guyton AC, Lindsey AW. Effect of elevated left atrial pressure and decreased plasma protein concentration on the development of pulmonary edema. Circ Res 1959; 7: 649–657.

    Article  PubMed  CAS  Google Scholar 

  37. Bland RD. Edema formation in the newborn lung. Clin Perinatol 1982; 9: 593–611.

    PubMed  CAS  Google Scholar 

  38. Barr PA, Bailey PE, Sumners J, Cassady G. Relation between arterial blood pressure and blood volume and effect of infused albumin in sick preterm infants. Pediatrics 1977; 60: 282–289.

    PubMed  CAS  Google Scholar 

  39. Schrier RW. Pathogenesis of sodium and water retention in high output and low output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy. First of two parts. N Engl J Med 1988; 319: 1065–1071.

    Article  PubMed  CAS  Google Scholar 

  40. Robertson GL, Berl T. Water metabolism. In: Brenner BM, Rector FC, eds. The kidney. Philadelphia: WB Saunders, 1986: 385–431.

    Google Scholar 

  41. Andersson B. Regulation of body fluids. Annu Rev Physiol 1977; 39: 185–200.

    Article  PubMed  CAS  Google Scholar 

  42. Gauer OH, Henry JP, Behn C. The regulation of extracellular fluid volume. Annu Rev Physiol 1970; 32: 547–595.

    Article  PubMed  CAS  Google Scholar 

  43. Guyton AC, Scanlon LJ, Armstrong GG. Effects of pressoreceptor reflex and cushing reflex on urinary output. Fed Proc 1952; 11: 61–62.

    Google Scholar 

  44. Hall JE, Guyton AC, Colemean TG, et al. Regulation of arterial pressure: role of pressure natriuresis and diuresis. Fed Proc 1986; 45: 2897–2903.

    PubMed  CAS  Google Scholar 

  45. Mann JFE, Johnson AK, Gantten D, Eberhard R. Thirst and the renin-angiotensin system. Kidney Int 1987; 32 (supp121): S27–S34.

    Google Scholar 

  46. Robertson GL, Shelton RL, Athar S. The osmoregulation of vasopressin. Kidney Int 1976; 10: 25–37.

    Article  PubMed  CAS  Google Scholar 

  47. DeTorrente A, Robertson GL, McDonald KM, Schrier RW. Mechanism of diuretic response to left atrial pressure in the anesthetized dog. Kidney Int 1975: 355–361.

    Google Scholar 

  48. Shapiro MD, Nicholls KM, Groves BM, et al. Interrelationship between cardiac output and vascular resistance as determinants of effective arterial blood volume in cirrhotic patients. Kidney Int 1985; 28: 206–211.

    Article  PubMed  CAS  Google Scholar 

  49. Mills IH. Renal regulation of sodium excretion. Annu Rev Med 1970; 21: 75–98.

    Article  PubMed  CAS  Google Scholar 

  50. Brenner BM, Troy JL, Daugharty TM. On the mechanism of inhibition in fluid reabsorption by the renal proximal tubule of the volume expanded rat. J Clin Invest 1971; 50: 1596–1602.

    Article  PubMed  CAS  Google Scholar 

  51. Leake RD, Trygstad CW. Glomerular filtration rate during the period of adaptation to extrauterine life. Pediatr Res 1977; 11: 959–962.

    Article  PubMed  CAS  Google Scholar 

  52. Spitzer A. The role of the kidney in sodium homeostasis during maturation. Kidney Int 1982; 21: 539–545.

    Article  PubMed  CAS  Google Scholar 

  53. Laragh JH. Atrial natriuretic hormone: the renin aldosterone axis and blood pressure-electrolyte homeostasis. N Engl J Med 1985; 313: 1330–1340.

    Article  PubMed  CAS  Google Scholar 

  54. Laragh JH, Sealey JE. The renin-angiotensin-aldosterone hormonal system of sodium, potassium and blood pressure homeostasis. In: Orloff J, Berliner RN, eds. Handbook of physiology, section VIII, renal physiology. Washington, DC: American Physiologic Society, 1973: 831–908.

    Google Scholar 

  55. Jones DP, Chesney RW. Development of tabular function. In: Bailie MD, ed. Renal function and disease. Clin Perinatol 1992; 19: 33–57.

    Google Scholar 

  56. Aperia A, Holtback U, Syren ML, et al. Activation/deactivation of renal Na+, K+ ATPase: a final common pathway for regulation of natriuresis. FASEB J 1994; 8: 436–439.

    PubMed  CAS  Google Scholar 

  57. Ohtomo Y, Meister B, Hokfelt T, Aperia A. Coexisting NPY and NE synergistically regulate renal tubular Na+, K+ ATPase activity. Kidney Int 1994; 45: 1606–1613.

    Article  PubMed  CAS  Google Scholar 

  58. Ibarra F, Aperia A, Svensson LB, et al. Bidirectional regulation of Na+, K+ ATPase activity by dopamine and an alphaadrenergic agonist. Proc Natl Acad Sci USA 1993; 90: 21–24.

    Article  PubMed  CAS  Google Scholar 

  59. Meister B, Aperia A. Molecular mechanisms involved in catecholamine regulation of sodium transport. Semin Nephrol 1993; 13: 41–49.

    PubMed  CAS  Google Scholar 

  60. Smith FG, Klindefus JM, Robillard JE. Effects of volume expansion on renal sympathetic nerve activity, cardiovascular and renal function in lambs. Am J Physiol 1992; 262: R651–R658.

    PubMed  CAS  Google Scholar 

  61. Smith FG, Sato T, McWeeny OJ, et al. Role of renal nerves in response to volume expansion in conscious, newborn lambs. Am J Physiol 1989; 257: R1519–R1525.

    PubMed  CAS  Google Scholar 

  62. Aperia A. Dopamine action and metabolism in the kidney. Curr Opinion Nephrol Hypertens 1994; 3: 39–45.

    Article  CAS  Google Scholar 

  63. Johnson MD, Malvin RL. Stimulation of renal sodium reabsorption by angiotension II. Am J Physiol 1977; 232: F298–F306.

    PubMed  CAS  Google Scholar 

  64. Seifter JL, Skorecki KL, Stivelman JC, et al. Control of extracellular fluid volume and pathophysiology of edema formation. In: Brenner BM, Rector FC, eds. The kidney. Philadelphia: WB Saunders, 1986: 343–384.

    Google Scholar 

  65. el-Dhar SS. Development biology of the renal kallikreinkinin system. Pediatr Nephrol 1994; 8: 624–631.

    Article  Google Scholar 

  66. Dunn FL, Brennon TJ, Nelson AE, Robertson GL. The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J Clin Invest 1973; 52: 3212–3219.

    Article  PubMed  CAS  Google Scholar 

  67. Lasseter WE, Gottschalk CW. Regulation of water balance: urine concentration and dilution. In: Schrier RW, Gottschalk CW, eds. Diseases of the kidney, 4th ed. Boston: Little, Brown, 1988: 119–142.

    Google Scholar 

  68. Grantham JJ, Burg MB. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am J Physiol 1966; 211: 255–259.

    PubMed  CAS  Google Scholar 

  69. Sagnella GA, MacGregor GA. Cardiac peptides and the control of sodium excretion. Nature 1984; 309: 666–667.

    Article  PubMed  CAS  Google Scholar 

  70. Blaine EH. Emergence of a new cardiovascular control system: atrial natriuretic factor. Clin Exp Theor Pract 1985; A7 (5&6): 839–850.

    Article  CAS  Google Scholar 

  71. Seymour AA. Renal and systemic effects of atrial natriuretic factor. Clin Exp Theor Pract 1985; A7 (5&6): 887–906.

    Article  CAS  Google Scholar 

  72. Richards AM, Ikram H, Yanckle TG, et al. Renal, hemodynamic, and hormonal effects of human alpha atrial natriuretic peptide in healthy volunteers. Lancet 1985; 1: 545–548.

    Article  PubMed  CAS  Google Scholar 

  73. Andersson S, Tikkanen I, Pesonen E, et al. Atrial natriuretic peptide in patent ductus arteriosus. Pediatr Res 1987; 21: 396–398.

    Article  PubMed  CAS  Google Scholar 

  74. Baylen BG, Ogata H, Ikeganim M, et al. Left ventricular performance and contractility before and after volume infusion: a comparative study in preterm and full-term newborn. Circulation 1986; 73: 1042–1049.

    Article  PubMed  CAS  Google Scholar 

  75. Gruskin AB, Edelman CM Jr, Yuan S. Maturational changes in renal blood flow in piglets. Pediatr Res 1970; 4: 7–13.

    Article  PubMed  CAS  Google Scholar 

  76. Spitzer A. Renal physiology and function development. In: Edelman CM Jr, ed. The kidney and urinary tract, vol. 1. 1978: 25–128.

    Google Scholar 

  77. Cleary GM, Higgins ST, Merton DA, et al. Developmental changes in renal artery blood flow velocity during the first three weeks of life in preterm neonates. J Pediatr 1996; 129: 251–257.

    Article  PubMed  CAS  Google Scholar 

  78. Robillard JE, Matson JR, Sessions C, et al. Maturational changes in the fetal glomerular filtration rate. Am J Obstet Gynecol 1975; 122: 601–606.

    PubMed  CAS  Google Scholar 

  79. Robillard JE, Matson JR, Sessions C, et al. Developmental aspects of renal tubular reabsorption of water in the lamb fetus. Pediatr Res 1979; 13: 1172–1176.

    Article  PubMed  CAS  Google Scholar 

  80. Chung EE, Moore ES, Cevallos EE, et al. The effect of gestational age and arterial pressure on renal function in utero. Pediatr Res 1976; 10: 437A.

    Google Scholar 

  81. Rudolph AM, Heyman MA, Teramo KAW, et al. Studies on circulation of the previable human fetus. Pediatr Res 1971; 5: 452–465.

    Article  CAS  Google Scholar 

  82. Calcagno PL, Rubin MI. Renal extaction of para-amino hippurate in infants and children. J Clin Invest 1963; 42: 1632–1639.

    Article  PubMed  CAS  Google Scholar 

  83. Aperia A, Broberger O, Elinder G, et al. Postnatal development of renal function in pre-term and full-term infants. Acta Pediatr Scand 1981; 70: 183–187.

    Article  CAS  Google Scholar 

  84. Guignard JP, Torrado A, Mazouni SM, Gautier E. Renal function in respiratory distress syndrome. J Pediatr 1976; 88: 845–850.

    Article  PubMed  CAS  Google Scholar 

  85. Seitel H, Scopes J. Rates of creatinine clearance in babies less than one week of age. Arch Dis Child 1973; 48: 717–720.

    Article  Google Scholar 

  86. Manuli MA, Lorenz JM. Extracellular pH modifies adaptive response to high K+ in cultured canine kidney cells. Am J Physiol 1992; 262: F897–901.

    PubMed  CAS  Google Scholar 

  87. Celsi G, Wang ZM, Akusjarvi G, Aperia A. Sensitive periods for glucocorticoids’ regulation of Na+, K+ ATPase mRNA in the developing lung and kidney. Pediatr Res 1993; 33: 5–9.

    Article  PubMed  CAS  Google Scholar 

  88. Norton ME, Merrill J, Cooper BAB, et al. Neonatal complications after the administration of indomethacin for preterm labor. N Engl J Med 1993; 329: 1602–1607.

    Article  PubMed  CAS  Google Scholar 

  89. Van den Anker JN, Hop WCJ,, de Groot R et al. Effects of prenatal exposure to betamethasone and indomethacin on the glomerular filtration rate in the preterm infant. Pediatr Res 1994; 36: 578–581.

    Article  PubMed  CAS  Google Scholar 

  90. Stefano JL, Norman ME, Morales MC, et al. Decreased erythrocyte Na, K ATPase activity associated with cellular potassium loss in extremely low birth weight infants with nonoliguric hyperkalemia. J Pediatr 1993; 122: 276–284.

    Article  PubMed  CAS  Google Scholar 

  91. Stefano JL, Norman ME. Nitrogen balance in extremely low birth weight infants with nonoliguric hyperkalemia. J Pediatr 1993; 123: 632–635.

    Article  PubMed  CAS  Google Scholar 

  92. Gaycock GB, Aperia A. Salt and the newborn kidney. Pediatr Nephrol 1991; 5: 65–70.

    Article  Google Scholar 

  93. Gruskay JA, Costarino AT, Polin RA, Baumgart S. Non-oligurie hyperkalemia in the premature infant less than 1000 grams. J Pediatr 1988; 113: 381–386.

    Article  PubMed  CAS  Google Scholar 

  94. Leake RD, Zakanddin S, Trygstad CW, et al. The effects of large-volume intravenous fluid infusion on neonatal renal function. J Pediatr 1976; 89: 968–972.

    Article  PubMed  CAS  Google Scholar 

  95. Smith CA, Yudkin S, Young W, et al. Adjustment of electrolytes and water following premature births. Pediatrics 1949; 3: 34–48.

    PubMed  CAS  Google Scholar 

  96. Edelman CM, Trompkon V, Barnett HL. Renal concentrating ability in newborn infants. Fed Proc 1959; 18: 40A.

    Google Scholar 

  97. Heller H. The renal function of newborn infants. J Physiol (Lond) 1944; 102: 429–440.

    CAS  Google Scholar 

  98. Imbert-Teboul M, Chabardes D, Cligue A, et al. Ontogenesis of hormone-dependent adenylate cyclase in isolated rat nephron segments. Am J Physiol 1984; 247: F316–325.

    PubMed  CAS  Google Scholar 

  99. Aperia A, Broberger O, Thodenius, et al. Development of renal control of salt and fluid homeostasis during the first year of life. Acta Pediatr Scand 1975; 64: 393–398.

    Article  CAS  Google Scholar 

  100. Edelman CM, Barnett HL. Role of kidney in water metabolism in young infants. J Pediatr 1960; 56: 154–179.

    Article  Google Scholar 

  101. Aperia A, Elinder G. Distal tubular sodium reabsorption in the developing rat kidney. Am J Physiol 1981; 29: F487–491.

    Google Scholar 

  102. Aperia A, Broberger O, Thodenius K. Renal response to an oral sodium load in newborn full-term infants. Acta Pediatr Scand 1972; 61: 670–676.

    Article  CAS  Google Scholar 

  103. Robillard JE, Sessions C, Kennedy RL, et al. Interrelationships between glomerular filtration rate and renal transport of sodium and chloride during fetal life. Am J Obstet Gynecol 1977; 128: 727–734.

    PubMed  CAS  Google Scholar 

  104. Goldsmith DI, Drukker A, Blaufox MD, et al. Hemodynamic and excretory responses of the neonatal canine kidney to acute volume expansion. Am J Physiol 1979; 237 (5): F392–397.

    PubMed  CAS  Google Scholar 

  105. Aperia A, Zetterstrom R. Renal control of fluid homeostasis in the newborn infant. Clin Perinatol 1982; 9: 523–533.

    PubMed  CAS  Google Scholar 

  106. Drukker A, Goldsmith DI, Spitzer A, et al. The reninangiotensin system in newborn dogs. Developmental patterns and response to acute saline loading. Pediatr Res 1980; 14: 304–307.

    Article  PubMed  CAS  Google Scholar 

  107. Day RL, Radde IC, Balfe JW, et al. Electrolyte abnormalities in very low birthweight infants. Pediatr Res 1976; 10: 522–526.

    Article  PubMed  CAS  Google Scholar 

  108. DeFronzo RA, Bia M, Smith D. Clinical disorders of hyperkalemia. Annu Rev Med 1982; 33: 521–554.

    Article  PubMed  CAS  Google Scholar 

  109. Aperia A, Broberger O, Thodenius K, et al. Developmental study of the renal response to an oral salt load in pre-term infants. Acta Pediatr Scand 1974; 63: 517–524.

    Article  CAS  Google Scholar 

  110. Cox M. Potassium homeostasis. Med Clin North Am 1981; 65: 363–384.

    PubMed  CAS  Google Scholar 

  111. Kaplan BS. Some thoughts on potassium and acetazolamide in developing kidneys. Dev Pharmacol Ther 1981; 2: 52–54.

    PubMed  CAS  Google Scholar 

  112. Brion LP, Fleischman AR, Schwartz GJ. Hyperkalemia in very low birthweight infants with non-oligurie renal failure. Pediatr Res 1985; 19: 336A.

    Google Scholar 

  113. Fildes RD, Eisner GM, Calcagno PL, et al. Renal alphaadrenoceptors and sodium excretion in the dog. Am J Physiol 1985; 248: F128–F133.

    PubMed  CAS  Google Scholar 

  114. Kotchen TA, Strickland AL, Rice MS, Walters DR. A study of the renin-angiotensin system in newborn infants. J Peds 1972; 80: 938–946.

    Article  CAS  Google Scholar 

  115. Richer C, Hornych H, Amiel-Tison C. Plasma renin activity and its postnatal development in preterm infants. Biol Neonate 1977; 31: 301–304.

    Article  PubMed  CAS  Google Scholar 

  116. Csaba I, Ertyl T, Nemeth M, et al. Postnatal development of renin-angiotensin-aldosterone system, Raas, in relation to electrolyte balance in premature infants. Pediatr Res 1979; 13: 817–820.

    Article  PubMed  Google Scholar 

  117. Pipkin FB, Phil D, Smales ORC. A study of factors affecting blood pressure and angiotensin II in newborn infants. J Pediatr 1977; 91: 113–119.

    Article  CAS  Google Scholar 

  118. Godard C, Geering JM, Geering K, Vallotton MB. Plasma renin activity related to sodium balance, renal function

    Google Scholar 

  119. Bender JW, Davitt MK, Jose P. Angiotensin-I converting enzyme activity in term and premature infants. Biol Neonate 1978; 34: 19–23.

    Article  PubMed  CAS  Google Scholar 

  120. Mattioli L, Zakheim M, Mullis K, Molteni A. Angiotensin- I converting enzyme activity in idiopathic respiratory distress syndrome of the newborn infant and in experimental alveolar hypoxia in mice. J Pediatr 1975; 87: 97–101.

    Article  PubMed  CAS  Google Scholar 

  121. Schubert F, George JM, Rao MB. Vasopressin and oxytocin content of human fetal brain at different stages of gestation. Brain Res 1981; 213: 111–117.

    Article  PubMed  CAS  Google Scholar 

  122. Chard T, Hudson CN, Edwards CRW, Boyd NRH. Release of oxytocin and vasopressin by the human foetus during labour. Nature 1971; 234: 352–353.

    Article  PubMed  CAS  Google Scholar 

  123. Wiriyathian S, Rosenfeld CR, Arant BS, et al. Urinary arginine vasopressin: pattern of excretion in the neonatal period. Pediatr Res 1986; 20: 103–108.

    Article  PubMed  CAS  Google Scholar 

  124. Rees L, Forsling ML, Brook CGD, Vasopressin concentrations in the neonatal period. Clin Endocrinol 1980; 12: 357–362.

    Article  CAS  Google Scholar 

  125. Hadeed Ai, Leake RD, Weitzman RE, Fisher DA. Possible mechanisms of high blood levels of vasopressin during the neonatal period. J Pediatr 1979; 94: 805–808.

    Article  Google Scholar 

  126. Pohjavuouri M. Obstetric determinants of plasma vasopressin concentrations and renin activity at birth. J Pediatr 1983; 103: 966–968.

    Article  Google Scholar 

  127. Polin RA, Hussain MK, James LS, Frantz AG. High vasopressin concentrations in human umbilical cord blood-lack of correlation with stress. J Perinatol Med 1977; 5: 114–119.

    Article  CAS  Google Scholar 

  128. Weitzman RE, Fisher DE, Robillard JE, et al. Arginine vasopressin response to an osmotic stimulus in the fetal sheep. Pediatr Res 1978; 12: 35–38.

    Article  PubMed  CAS  Google Scholar 

  129. Robillard JE, Weitzman RE, Fisher DE, Smith FG. The dynamics of vasopressin release and blood volume regulation during fetal hemorrhage in the lamb fetus. Pediatr Res 1979; 13: 606–610.

    Article  PubMed  CAS  Google Scholar 

  130. Robillard JE, Matson JR, Sessions C, Smith FG. Developmental aspects of renal tubular reabsorption of water in the lamb fetus. Pediatr Res 1979; 13: 1172–1176.

    Article  PubMed  CAS  Google Scholar 

  131. Stern P, LaRochelle FT, Little GA. Vasopressin and pneumothorax in the neonate. Pediatrics 1981; 68: 499–503.

    PubMed  CAS  Google Scholar 

  132. Leslie GI, Philips JB, Work J, et al. The effect of assisted ventilation on creatinine clearance and hormonal control of electrolyte balance in very low birth weight infants. Pediatr Res 1986; 20: 447–452.

    Article  PubMed  CAS  Google Scholar 

  133. Weinberg JA, Weitzman RE, Zakauddin S, Leake RD. Inappropriate secretion of antidiuretic hormone in a premature infant. Pediatrics 1977; 90: 111–114.

    Article  CAS  Google Scholar 

  134. Hoppenstein JM, Miltenberger FW, Moran WH. The increase in blood levels of vasopressin in infants during birth and surgical procedures. Surg Gynecol Obstet 1968; 127: 966–974.

    PubMed  CAS  Google Scholar 

  135. Waters CB, Weinberg JE, Leake RD, Fisher DA. Arginine vasopressin levels during painful stimulus in infancy. Pediatr Res 1982; 16: 569.

    Article  PubMed  CAS  Google Scholar 

  136. Kaplan SL, Feigin RD. Inappropriate secretion of antidiuretic hormone complicating neonatal hypoxic-ischemic encephalopathy. J Pediatr 1978; 92: 431–433.

    Article  PubMed  CAS  Google Scholar 

  137. Pohjavuori M. Obstetric determinants of plasma vasopressin concentrations and renin activity at birth. Pediatrics 1983; 103: 966–968.

    Article  CAS  Google Scholar 

  138. Robillard JE, Weitzman RE. Developmental aspects of the fetal renal response to exogenous arginine vasopressin. Am J Physiol 1980; 7: F407–414.

    Google Scholar 

  139. Rees L, Brook GD, Shaw JCL, Forsling ML. Hyponatremia in the first week of life in preterm infants. Part I arginine vasopressin secretion. Arch Dis Child 1984; 59: 414–422.

    Article  PubMed  CAS  Google Scholar 

  140. Schlondorff D, Weber H, Trizna W, Fine LG. Vasopressin responsiveness of renal adenylate cyclase in newborn rats and rabbits: Am J Physiol 1978; 234: F16–F21.

    PubMed  CAS  Google Scholar 

  141. Edelman CM, Wolfish NM. Dietary influence on renal maturation in preterm infants. Pediatr Res 1968; 2: 421.

    Google Scholar 

  142. Kovacs L, Sulyok E, Lichardus B, et al. Renal response to arginine vasopressin in premature infants with late hyponatraemia. Arch Dis Child 1986; 61: 1030–1032.

    Article  PubMed  CAS  Google Scholar 

  143. Svenningsen NW, Aronson AS. Postnatal development of renal concentration capacity as estimated by DDAVP-test in normal and asphyxiated neonates. Biol Neonate 1974; 25: 230–241.

    Article  PubMed  CAS  Google Scholar 

  144. Edelman CM, Barnett HL, Stark H. Effect of urea on concentration of urinary nonurea solute in premature infants. J Appl Physiol 1966; 21: 1021–1025.

    Google Scholar 

  145. Sulyok E, Kovacs L, Lichardus B, et al. Late hyponatremia in premature infants: role of aldosterone and arginine vasopressin. J Pediatr 1985; 106: 990–994.

    Article  PubMed  CAS  Google Scholar 

  146. Edelman CM. Developmental renal physiology. In: Gruskin AB, Norman ME, eds. Proceedings of the Fifth International Pediatric Nephrology Symposium. The Hague: Martinus Nijhoff, 1981: 15–27.

    Google Scholar 

  147. Costarino AT, Baumgart S, Norman ME, Polin RA. Renal adaptation to extrauterine life in patients with respiratory distress syndrome. Am J Dis Child 1985; 139: 1060–1063.

    PubMed  CAS  Google Scholar 

  148. Ekblad H, Kero P, Vuolteenaho O, et al. Atrial natriuretic peptide in the preterm infant: lack of correlation with natriuresis and diuresis. 1992; 81: 978–982.

    CAS  Google Scholar 

  149. Tulassay T, Rascher W, Seyberth HW, et al. The role of atrial natriuretic peptide in sodium homeostasis in premature infants. J Pediatr 1986; 109: 1023–1027.

    Article  PubMed  CAS  Google Scholar 

  150. Kojuma T, Hirata Y, Fukuda Y, et al. Plasma atrial natriuretic peptide and spontaneous diuresis in sick neonates. Arch Dis Child 1987; 62: 667–670.

    Article  Google Scholar 

  151. Ronconi M, Fortunato A, Soffiati G, et al. Vasopressin, atrial natriuretic factor and renal water homeostasis in premature newborn infants with respiratory distress syndrome. J Perinatol Med 1995; 23d: 307–314.

    Article  CAS  Google Scholar 

  152. Rozycki HJ, Baumgart S. Atrial natriuretic factor and renal function during diuresis in preterm infants. Clin Res 1987; 35: 556A.

    Google Scholar 

  153. Muchant DG, Thornhill BA, Belmonte DC, et al. Chronic sodium loading augments natriuretic response to acute volume expansion in the preweaned rat. Am J Physiol 1995; 269: R15–R22.

    PubMed  CAS  Google Scholar 

  154. Arant BS Jr. Functional immaturity of the newborn kidney: paradox or prostaglandin? In: Strauss J, ed. Homeostasis, nephrotoxicity and renal anomalies in the newborn. Boston: Martinus Nijhoff, 1984: 271–278.

    Google Scholar 

  155. Cassady G. Effect of caesarian section on neonatal body water spaces. N Engl J Med 1971; 285: 887–891.

    Article  PubMed  CAS  Google Scholar 

  156. Costarino AT, Baumgart S. Controversies in fluid and electrolyte therapy for the premature infant Clin Perinatol 1988; 15: 863–878.

    CAS  Google Scholar 

  157. Lorenz JM, Kleinman LI, Kotagal UR. Water balance in very low birthweight infants: relationship to water and sodium intake and effect on outcome. J Pediatr 1982; 101: 423–432.

    Article  PubMed  CAS  Google Scholar 

  158. Brans YW, Cassady G. Intrauterine growth and maturation in relation to fetal deprivation. In: Gruenwald P, ed. The placenta and its maternal supply line. London: Medical and Technical Publishing, 1975: 307–334.

    Google Scholar 

  159. Cheek DB, Talbert JI. Extracellular volume (and sodium) and body water in infants. In: Cheek DB, ed. Human growth: body composition, cell growth, energy and interngence. Philadelphia: Lea & Febiger, 1968: 117–134.

    Google Scholar 

  160. Osler M, Pedersen J. The body composition of newborn infants of diabetic mothers. Pediatrics 1960; 26: 985–992.

    PubMed  CAS  Google Scholar 

  161. Baumgart S, Langman CB, Sosulski R, et al. Fluid, electrolyte, and glucose maintenance in the very low birthweight infant. Clin Pediatr 1982; 21: 199–206.

    Article  CAS  Google Scholar 

  162. Brown ER, Stark A, Sosenko I, et al. Bronchopulmonary dysplasia: possible relationships to pulmonary edema. J Pediatr 1978; 92: 982–984.

    Article  PubMed  CAS  Google Scholar 

  163. Bell EF, Warburton D, Stonestreet BS, et al. Effect of fluid administration on the development of symptomatic patient ductus arteriosus and congestive heart failure in premature infants. N Engl J Med 1980; 302: 598–604.

    Article  PubMed  CAS  Google Scholar 

  164. Spitzer AR, Fox WW, Delavoria-Papadopoulos M. Maximum diuresis: a factor in predicting recovery for respiratory distress sydrome and the development of bronchopulmonary dysplasia. J Pediatr 1981; 98: 476–479.

    Article  PubMed  CAS  Google Scholar 

  165. Arant BS. Adaptation of the infant to an external milieu. In: Gruskin AB, Norman ME, eds. Pediatric nephrology. Proceedings of the Fifth International Pediatric Nephrology Symposium 1980. The Hague: Martinus Nijhoff, 1981: 265–272.

    Google Scholar 

  166. Sulyok E, Jequier E, Prod’hom LS. Respiratory contribution to the thermal balance of the newborn infant under various ambient conditions. Pediatrics 1973; 51: 641–650.

    PubMed  CAS  Google Scholar 

  167. Sinclair JC. Metabolic rate and temperature control. In: Smith CA, Nelson NM, eds. The physiology of the newborn infant. 4th ed. Springfield, IL: Charles C. Thomas, 1976: 354–415.

    Google Scholar 

  168. Winters RW. Maintenance fluid therapy. In: The body fluids in pediatrics. Boston: Little, Brown, 1973: 113–133.

    Google Scholar 

  169. Sosulski R, Baumgart S. Respiratory water loss and heat balance in intubated premature infants receiving humidifled air. J Pediatr 1983; 103: 307–310.

    Article  PubMed  CAS  Google Scholar 

  170. Rosenfield WN, Linshaw M, Fox HA. Water intoxication: warmers. a complication of nebulization with nasal CPAP. J Pediatr 1976; 89: 113–114.

    Article  Google Scholar 

  171. Weinstein MR, Oh W. Oxygen consumption in infants with bronchopulmonary dysplasia. J Pediatr 1981; 99: 958–961.

    Article  PubMed  CAS  Google Scholar 

  172. Kurzner SI, Garg M, Bautista B, et al. Growth failure in bronchopulmonary dysplasia: elevated metabolic rates and pulmonary mechanics. J Pediatr 1988; 112: 73–80.

    Article  PubMed  CAS  Google Scholar 

  173. Jhaveri M, Kumar SP. Passage of the first stool in very low birthweight infants. Pediatrs 1987; 79: 1005–1007.

    CAS  Google Scholar 

  174. Fanaroff AA, Ward M, Gruber HS, et al. Insensible water loss in low birthweight infants. Pediatrics 1972; 50: 236–245.

    PubMed  CAS  Google Scholar 

  175. Williams PR, Oh W. Effects of radiant warmer on insensible water loss in newborn infants. Am J Dis Child 1974; 128: 511–514.

    PubMed  CAS  Google Scholar 

  176. Baumgart S, Engle WD, Fox WW, et al. Radiant warmer power and body size as determinants of insensible water loss in the critically ill neonate. Pediatr Res 1981; 15: 1495–1499.

    Article  PubMed  CAS  Google Scholar 

  177. Bell EF, Neidich GA, Cashore WJ, et al. Combined effect of radiant warmer and phototherapy on insensible water loss in low-birthweight infants. J Pediatr 1979; 94: 810–813.

    Article  PubMed  CAS  Google Scholar 

  178. Wu PYK, Hodgman JE. Insensible water loss in preterm infants: changes with postnatal development and nonionizing radiant energy. Pediatrics 1974; 54: 704–712.

    PubMed  CAS  Google Scholar 

  179. Costarino AT, Baumgart S. Modern fluid and electrolyte management of the critically ill premature infant. Pediatr Clin North Am 1986; 33: 153–178.

    PubMed  CAS  Google Scholar 

  180. Bruck K. Heat production and temperature regulation. In: Stave U, ed. Perinatal physiology. New York: Plenum, 1978: 455–498.

    Chapter  Google Scholar 

  181. Hey EN, Katz G. Evaporative water loss in the newborn baby. J Physiol (Lond) 1969; 200: 605–619.

    CAS  Google Scholar 

  182. Wheldon AE, Rutter N. The heat balance of small babies nursed in incubators and under radiant warmers. Early Hum Dev 1982; 6: 131–143.

    Article  PubMed  CAS  Google Scholar 

  183. Baumgart S, Engle WD, Fox WW, et al. Effect of heat shielding on convection and evaporation, and radiant heat transfer in the premature infant. J Pediatr 1981; 99: 948–956.

    Article  PubMed  CAS  Google Scholar 

  184. Okken A, Blijhan C, Franz W, et al. Effects of forced convection of heated air on insensible water loss and heat loss in preterm infants in incubators. J Pediatr 1982; 101: 108–112.

    Article  PubMed  CAS  Google Scholar 

  185. Baumgart S. Radiant energy and insensible water loss in the premature newborn infant nursed under a radiant warmer. Clin Perinatol 1982; 9: 483–503.

    PubMed  CAS  Google Scholar 

  186. Hammarlund K, Sedin G. Transepidermal water loss in newborn infants: VIII. Relation to gestational age and post-natal age in appropriate and small for gestational age infants. Acta Paediatr Scand 1983; 72: 721–728.

    Article  PubMed  CAS  Google Scholar 

  187. Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface areas: a height-weight formula validated in infants, children and adults. J Pediatr 1978; 93: 62–66.

    Article  PubMed  CAS  Google Scholar 

  188. Baumgart S. Partitioning of heat losses and gains in premature newborn infants under radiant warmers. Pediatrics1985; 75: 89–99.

    Google Scholar 

  189. Baumgart S, Fox WW, Polin RA. Physiologic implications of two different heat shields for infants under radiant warmers. J Pediatr 1982; 100: 787–790.

    Article  PubMed  CAS  Google Scholar 

  190. Engle WD, Baumgart S, Schwartz JG, et al. Combined effect of radiant warmer power and phototherapy on insensible water loss in the critically ill neonate. Am J Dis Child 1981; 135: 516–520.

    PubMed  CAS  Google Scholar 

  191. Knauth A, Gordin MS, McNelis W, Baumgart S. Semipermeable polyurethane membrane as an artificial skin for the premature neonate. Pediatrics 1989; 83: 945–950.

    PubMed  CAS  Google Scholar 

  192. Sedin G, Hammarlund K, Nilsson GE, et al. Measurements of transepidermal water loss in newborn infants. Clin Perinatol 1985; 12: 79–96.

    PubMed  CAS  Google Scholar 

  193. Lauweryns JM, Claessens S, Boussauw L. The pulmonary lymphatics in neonatal hyaline membrane disease. Pediatrics 1968; 41: 917–930.

    PubMed  CAS  Google Scholar 

  194. Jefferies AL, Coates G, O’Brodovich H. Pulmonary epithelial permeability in hyaline membrane disease. N Engl J Med 1984; 31: 1075–1080.

    Article  Google Scholar 

  195. Rees L, Shaw JCL, Brook GD, Forsling ML. Hyponatremia in the first week of life in preterm infants. Part II: sodium and water balance. Arch Dis Child 1984; 59: 423–429.

    Article  PubMed  CAS  Google Scholar 

  196. Huet F, Semama D, Grimaldi M, et al. Effects of theophylline on renal insufficiency in neonates with respiratory distress syndrome. Intensive Care Med 1995; 21: 511–514.

    Article  PubMed  CAS  Google Scholar 

  197. Lorenz JM, Kleinman LI, Ahmed G, Markarian K. Phases of fluid and electrolyte homeostasis in the extremely low birth weight infant. Pediatrics 1995; 96: 484–489.

    PubMed  CAS  Google Scholar 

  198. Ramiro-Tolentino SB, Markarian K, Kleinman LI. Renal bicarbonate excretion in extremely low birth weight infants. Pediatrics 1996; 98: 256–261.

    PubMed  CAS  Google Scholar 

  199. Ishizaki Y, Isozaki-Fukuda Y, Kojima T, et al. Evaluation of diagnositic criteria of acute renal failure in premature infants. Acta Paediatr Jpn 1993; 35: 311–315.

    Article  PubMed  CAS  Google Scholar 

  200. Shaffer SG, Meade VM. Sodium balance and extracellular volume regulation in very low birth weight infants. J Pediatr 1989; 115: 285–290.

    Article  PubMed  CAS  Google Scholar 

  201. Vanpee M, Ergander U, Herin P, Aperia A. Renal function in sick, very low-birth-weight infants. Acta Paediatr 1993; 82: 714–718.

    Article  PubMed  CAS  Google Scholar 

  202. Vanpee M, Blennow M, Linne T, et al. Renal function in very low birth weight infants: normal maturity reached during early childhood. J Pediatr 1992; 121: 784–788.

    Article  PubMed  CAS  Google Scholar 

  203. Bueva A, Guignard JP. Renal function in preterm neonates. Pediatr Res 1994; 36: 572–577.

    Article  PubMed  CAS  Google Scholar 

  204. Cornblath M, Forbes AE, Pildes RS, et al. A controlled study of early fluid administration on survival of low birthweight infants. Pediatrics 1966; 38: 547–554.

    PubMed  CAS  Google Scholar 

  205. Spahr RC, Klein AM, Brown DR, et al. Fluid administration and bronchopulmonary dysplasia. Am J Dis Child 1980; 134: 958–960.

    PubMed  CAS  Google Scholar 

  206. Gersony WM, Peckham GJ, Ellison RC, et al. Effects of indomethacin in premature infants with patent ductus arteriosus: results of a national collaborative study. J Pediatr 1983; 102: 895–906.

    Article  PubMed  CAS  Google Scholar 

  207. Van Marter LJ, Pagano M, Allred EN, et al. Rate of bronchopulmonary dysplasia as a function of neonatal intensive care practices. 1992; 120: 938–946.

    Google Scholar 

  208. Corbet A, Adams J. Current therapy in hyaline membrane disease. Clin Perinatol 1978; 5: 299–316.

    PubMed  CAS  Google Scholar 

  209. Harris P. Role of arterial pressure in the oedema of heart disease. Lancet 1988; 1: 1036–1038.

    Article  PubMed  CAS  Google Scholar 

  210. Firth JD, Raine AEG, Ledingham JGG. Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet 1988; 1: 1033–1036.

    Article  PubMed  CAS  Google Scholar 

  211. Bichet DG, Vicki J, Van Putten BS, Schrier RW. Potential role of increased sympathetic activity in impaired sodium and water excretion in cirrhosis. N Engl J Med 1982; 307: 1552–1557.

    Article  PubMed  CAS  Google Scholar 

  212. Levy M, Wexler MJ. Sodium excretion in dogs with low-grade caval constriction: role of hepatic nerves. Am J Physiol 1987; 253: F672–F678.

    PubMed  CAS  Google Scholar 

  213. Kumar A, Pontoppidan H, Baratz RA, Laver MB. Inappropriate response to increased plasma ADH during mechanical ventilation in acute respiratory failure. Anesthesiology 1974; 40: 215–221.

    Article  PubMed  CAS  Google Scholar 

  214. Leslie G, Philips JB, Work J. The effect of assisted ventilation on creatinine clearance and hormonal control of electrolyte balance in very low birth weight infants. Pediatr Res 1986; 20: 447–452.

    Article  PubMed  CAS  Google Scholar 

  215. Finberg L. Dangers to infants caused by changes in osmolal concentration. Pediatrics 1967; 40: 1031–1034.

    PubMed  CAS  Google Scholar 

  216. Shaffer SG, Kilbride HW, Hayen LK, et al. Hyperkalemia in very low birth weight infants. J Pediatr 1992; 121: 275–279.

    Article  PubMed  CAS  Google Scholar 

  217. Sato K, Kondo T, Iwao H, et al. Internal potassium shift in premature infants: cause of nonoliguric hyperkalemia. J Pediatr 1995; 126: 109–113.

    Article  PubMed  CAS  Google Scholar 

  218. Costarino T, Grusday JA, Corcoran L, et al. Sodium restriction versus daily maintenance replacement in very low birth weight premature neonates: a randomized, blind therapeutic trial. J Pediatr 1992; 120: 99–106.

    Article  PubMed  Google Scholar 

  219. Porot R, Brodsky N. Effect of Tegaderm use on outcome of extremely low birth weight (ELBW) infants. Pediatr Res 1993; 33: 231A.

    Google Scholar 

  220. Harpin A, Rutter N. Humidification of incubators. Arch Dis Child 1985; 60: 219–224.

    Article  PubMed  CAS  Google Scholar 

  221. Sulyok E. The relationship between electrolyte and acid base balance in premature infants during early postnatal life. Biol Neonate 1971; 95: 227–237.

    Google Scholar 

  222. Honour JW, Shackleton CHL, Valman HB. Sodium homeostasis in preterm infants. Lancet 1974; 2: 1147.

    Article  PubMed  CAS  Google Scholar 

  223. Roy RN, Chance CW, Radde IC, et al. Late hyponatremia in very low birthweight infants (1.3 kg). Pediatr Res 1976; 10: 526–531.

    Article  PubMed  CAS  Google Scholar 

  224. Sulyok E, Nemeth M, Teny IF, et al. Relationship between maturity, electrolyte balance, and the function of reninangiotensin-aldosterone system in newborn infants. Biol Neonate 1979; 35: 60–65.

    Article  PubMed  CAS  Google Scholar 

  225. Sulyok E, Rascher W, Baranyai Z, et al. Influence of NaCL supplementation on vasopressin secretion and water excretion in premature infants. Biol Neonate 1993; 64: 201–208.

    Article  PubMed  CAS  Google Scholar 

  226. Harkavy KL, Scanlon JW, Jose P. The effects of theophylline on renal function in the premature newborn. Biol Neonate 1979; 35: 126–130.

    Article  PubMed  CAS  Google Scholar 

  227. Heimler R, Boumas BT, Jendrzejczak BM, et al. Relationship between nutrition, weight change, and fluid compartments in preterm infants during the first week of life. J Pediatr 1993; 122: 110–114.

    Article  PubMed  CAS  Google Scholar 

  228. Bauer K, Bovermann G, Roithmaier A, et al. Body composition, nutrition, and fluid balance during the first two weeks of life in preterm neonates weighing less than 1500 grams. J Pediatr 1991; 118: 615–620.

    Article  PubMed  CAS  Google Scholar 

  229. Vanpee M, Herin P, Broberger U, Aperia A. Sodium supplementation optimizes weight gain in preterm infants. Acta Paediatr 1995; 84: 1312–1314.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Costarino, A.T., Baumgart, S. (1998). Neonatal Water and Electrolyte Metabolism. In: Cowett, R.M. (eds) Principles of Perinatal—Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1642-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1642-1_46

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7227-4

  • Online ISBN: 978-1-4612-1642-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics