Skip to main content

Approaches in Treating Nerve Cell Death with Calcium Chelators

  • Chapter
Cell Death and Diseases of the Nervous System
  • 185 Accesses

Abstract

Calcium ions (Ca2+) are ubiquitous intracellular second messengers which regulate numerous cellular functions. For this reason, neurons possess a complex homeostatic machinery which tightly controls the temporal and spatial distribution of Ca2+ within the cell. It is widely believed that a disruption of Ca2+ homeostasis is a major contributing factor to neuronal cell death occurring in many of the nervous system disorders including cerebral hypoxia/ischemia, brain trauma, inflammatory, and degenerative diseases (also see chapters by Leist and Nicotera, Dykens, Olney and Ishimaru, Dietrich, Wood, Vornov, Shin and Lee, and Bar-Peled and Rothstein). Therefore, many therapeutic strategies for these disorders aim at preventing either the processes leading to Ca2+ homeostatic failure, or the consequences of Ca2+ excess. Recent insights into mechanisms triggering and perpetuating disturbances of cellular calcium regulation have led to new approaches to the study of cellular calcium homeostasis, and to treatment of neuronal injury. One such approach, which illustrates the complexities associated with Ca2+ regulation, has been the use of exogenous Ca2+- chelating agents. These compounds have been employed in recent years to study normal and pathological cellular Ca2+ signaling, to evaluate the role of Ca2+ buffering in neuronal vulnerability to injury, and to treat neuronal injuries thought to be associated with Ca2+ homeostatic failure. The purpose of this chapter, therefore, is to examine current knowledge on the role of Ca2+ buffers as probes of mechanisms leading to nerve cell death, and as potential therapeutic agents for Ca2+-dependent neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. McLean AEM, McLean E, Judah JD. Cellular necrosis in the liver induced and modified by drugs. Int Rev Exp Pathol 1965, 4: 127–157.

    PubMed  CAS  Google Scholar 

  2. Schanne FAX, Kane AB, Young EA, Farber JL. Calcium dependence of toxic cell death: A final common pathway. Science 1979, 206: 700–702.

    Article  PubMed  CAS  Google Scholar 

  3. Cheung JY, Bonventre JV, Malis CD, Leaf A. Calcium and ischemic injury. N Eng J Med 1986, 314: 1670–1676.

    Article  CAS  Google Scholar 

  4. Tymianski M, Charlton MP, Carlen PL, Tator CH. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci 1993, 13: 2085–2104.

    PubMed  CAS  Google Scholar 

  5. Waxman SG, Black JA, Ransom BR, Stys PK. Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium. Brain Res 1993, 614: 137–145.

    Article  PubMed  CAS  Google Scholar 

  6. Stys PK, Ransom BR, Waxman SG, Davis PK. Role of extracellular calcium in anoxic injury of mammalian central white matter. Proc Natl Acad Sci USA 1990, 87: 4212–4216.

    Article  PubMed  CAS  Google Scholar 

  7. Goldberg MP, Giffard RG, Kiurth MC, Choi DW. Role of extracellular calcium and magnesium in ischemic neuronal injury in vitro. Neurology 1989, 39(suppl): 217 (Abstract).

    Google Scholar 

  8. Choi DW. Calcium-mediated neurotoxicity: Relationship to specific channel types and role in ischemic damage. TINS 1988, 11: 465–467.

    PubMed  CAS  Google Scholar 

  9. Choi DW. Ionic dependence of glutamate neurotoxicity. J Neurosci 1987, 7: 369–379.

    PubMed  CAS  Google Scholar 

  10. Garthwaite G, Hajos F, Garthwaite J. Ionic requirements for neurotoxic effects of excitatory amino acid analogues in rat cerebellar slices. Neuroscience 1986, 18: 437–447.

    Article  PubMed  CAS  Google Scholar 

  11. Kass IS, Lipton P. Calcium and long-term transmission damage following anoxia in dentate gyrus and CAI regions of rat hippocampal slice. J Physiol 1986, 378: 313–334.

    PubMed  CAS  Google Scholar 

  12. Choi DW. Glutamate neurotoxicity in cortical cell culture is calcium dependent Neurosci Lett 1985, 58: 293–297.

    Article  PubMed  CAS  Google Scholar 

  13. Schlaepfer WW, Bunge RP. Effects of calcium ion concentration on the degeneration of amputated axons in tissue culture J Cell Biol 1973, 59: 456–470.

    Article  PubMed  CAS  Google Scholar 

  14. Balentine JD, Paris DU, Dean DL. Calcium-induced spongiform and necrotizing myelopathy. Lab Invest 1982, 47: 286–295.

    PubMed  CAS  Google Scholar 

  15. Balentine JD, Paris DU, Greene WB. Ultrastructural pathology of nerve fibers in calcium-induced myelopathy. J Neuropathol Exp Neurol 1984, 43: 500–510.

    Article  PubMed  CAS  Google Scholar 

  16. Balentine JD. Spinal cord trauma: In search of the meaning of granular axoplasm and vesicular myelin. J Neuropathol Exp Neurol 1988, 47: 77–92.

    Article  PubMed  CAS  Google Scholar 

  17. Hansen AJ, Zeuthen T. Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol Scand 1981, 113: 437–445.

    Article  PubMed  CAS  Google Scholar 

  18. Simon RP, Griffiths T, Evans MC, Swan JH, Meldrum BS. Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischemia: an electron microscopy studly in the rat. J Cereb Blood Flow Metab 1984, 4: 350–361.

    Article  PubMed  CAS  Google Scholar 

  19. Chen ST, Hsu CY, Hogan EL, Juan HY, Banik NL, Balentine JD. Brain calcium content in ischemic infarction. Neurology 1987, 37: 1227–1229.

    Article  PubMed  CAS  Google Scholar 

  20. Uematsu D, Greenberg JEI, Mickey WF, Reivich M. Nimodipine attenuates both increase in cytosolic free calcium and histologic damage following focal cerebral ischemia and reperfusion in cats. Stroke 1989, 20: 1531–1537.

    Article  PubMed  CAS  Google Scholar 

  21. Benveniste H, Diemer NH. Early postischemic 45Ca accumulation in rat dentate hilus. J Cereb Blood Flow Metab 1988, 8: 713–719.

    Article  PubMed  CAS  Google Scholar 

  22. Silver IA, Erecinska M. Intracellular and exctracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J Gen Physiol 1990, 95: 837–866.

    Article  PubMed  CAS  Google Scholar 

  23. Michaels RL, Rothman SM. Glutamate neurotoxicity in vitro: antagonist pharmacology and intracellular calcium concentrations. J Neurosci 1990, 10: 283–292.

    PubMed  CAS  Google Scholar 

  24. Dubinsky JM, Rothman SM. Intracellular calcium concentration during “chemical hypoxia” end excitotoxic neuronal injury. J Neurosci 1991, 11: 2545–2551.

    PubMed  CAS  Google Scholar 

  25. Kurth MC, Weiss JH, Choi DW. Relationship between glutamate-induced 45-Calcium influx and resultant neuronal injury in cultured cortical neurons. Neurology 1989, 39(suppl): 217 (Abstract).

    Google Scholar 

  26. Hartley DM, Kurth MC, Bjerkness L, Weiss JH, Choi DW. Glutamate receptor-induced 45Ca2+ accumulation in cortical cell culture correlates with subsequent neuronal degeneration. J Neurosci 1993, 13: 1993–2000.

    PubMed  CAS  Google Scholar 

  27. Schramm M, Eimerl S. The quantity of Ca that enters a neuron to cause its death in glutamate toxicity. Soc Neurosci Abstr 1993, 19: 1501 (Abstract).

    Google Scholar 

  28. Eimrel S, Schramm M. The quantity of calcium that appears to induce neuronal death J Neurochem 1994, 62: 1223–1226.

    Article  Google Scholar 

  29. Goldberg MP, Kurth MC, Giffard RG, Choi DW. 45Calcium accumulation and intracellular calcium during in vitro “ischemia”. Soc Neurosci Abstr 1989, 15: 803(Abstract).

    Google Scholar 

  30. Lobner D, Lipton P. Intracellular calcium levels and calcium fluxes in the CAI region of the rat hippocampal slice during in vitro ischemia: Relationship to electrophysiological cell damage J Neurosci 1993, 13, 4861–4871.

    Google Scholar 

  31. Lu YM, Yin HZ, Weiss JH. Ca2+ permeable AMPA/kainate channels permit rapid injurious Ca2+ entry Neuroreport 1995, 6: 1089–1092.

    Article  PubMed  CAS  Google Scholar 

  32. Lipscombe D, Madison D, Poenie M, Reuter H, Tsien RY, Tsien RW. Spatial distribution of calcium channels and cytosolic transients in growth cones and cell bodies of sympathetic neurons. Proc Natl Acad Sci USA 1988, 85: 2398–2402.

    Article  PubMed  CAS  Google Scholar 

  33. Robitaille R, Adler EM, Charlton MP. Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron 1990, 5: 773–779.

    Article  PubMed  CAS  Google Scholar 

  34. Robitaille R, Garcia ML, Kaczorowski GJ, Charlton MP Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release tiNeuron 1993, 11 645–655.

    Google Scholar 

  35. Westenbroek RE, Ahlijanian MK, Catterall WA. Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal neurons. Nature 1990, 347: 281–284.

    Article  PubMed  CAS  Google Scholar 

  36. Pollock JA, Assaf A, Peretz A, Nichols CD, Mojet MH, Hardie RC, Minke B. TRP, a protein essential for inositide-mediated Ca2+ influx is localized adjacent to the calcium stores in Drosophila photoreceptors. J Neurosci 1995, 15: 3747–3760.

    PubMed  CAS  Google Scholar 

  37. Connor JA, Wadman WJ, Hockberger PE, Wong RKS. Sustained dendritic gradients of calcium induced by excitatory amino acids in CAI hippocampal neurons. Science 1988, 240: 649–653.

    Article  PubMed  CAS  Google Scholar 

  38. Jones OT, McGurk JF, Bennett MVL, Zuckin RS, Collinridge G, Benke T, Angelides KJ. Distribution of NMD A receptors on hippocampal neurons. Soc Neurosci Abstr 1990, 2: No 3963 (Abstract).

    Google Scholar 

  39. Jones KA, Baughman RW. Both NMDA and non-NMDA subtypes of glutamate receptors are concentrated at synapses on cerebral cortical neurons in culture. Neuron 1991, 7: 593–603.

    Article  PubMed  CAS  Google Scholar 

  40. Muller W, Connor JA. Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses. Nature 1991, 354: 73–80.

    Article  PubMed  CAS  Google Scholar 

  41. Craig AM, Blackstone CD, Hijganir RL, Banker G. The distribution of glutamate receptors in cultured rat hippocampal neurons: Postsynaptic clustering of AMPA-selective subunits. Neuron 1993, 10: 1055–1068.

    Article  PubMed  CAS  Google Scholar 

  42. Benke TA, Jones OT, Collingridge GL, Angelides KJ. N-Methyl-D-aspartate receptors are clustered and immobilized on dendrites of living cortical neurons. Proc Natl Acad Sci USA 1993, 30: 7819–7823.

    Article  Google Scholar 

  43. Guthrie PB, Segal M, Kater SB. Independent regulation of calcium revealed by imaging dendritic spines. Nature 1991, 354: 76–80.

    Article  PubMed  CAS  Google Scholar 

  44. Yuste R, Gutnick MJ, Saar D, Delaney KR, Tank DW. Ca2+ accumulations in dendrites of neocortiical pyramidal neurons: An apical band and evidence for two functional compartments. Neuron 1995, 13: 23–43.

    Article  Google Scholar 

  45. Seymour-Laurent KJ, Barish ME. Inositol 1,4,5-triphosphate and ryanodine receptor distribution and patterns of acetylcholine-and caffeine-induced calcium release in cultured mouse hippocampal neurons. J Neurosci 1995, 15: 2592–2608.

    PubMed  CAS  Google Scholar 

  46. Hernandez-Cruz A, Sala F, Adams PR. Subcellular calcium transients visualized by confocal microscopy in a voltage-clamped vertebrate neuron. Science 1990, 247: 858–862.

    Article  PubMed  CAS  Google Scholar 

  47. Delisle S, Welsh MJ. Inositol triphosphate is required for the propagation of calcium waves in xenopus oocytes. J Biol Chem 1992, 267: 7963–7966.

    PubMed  CAS  Google Scholar 

  48. Lechleiter JD, Clapham DE. Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes Cell 1992, 69: 283–294.

    Article  PubMed  CAS  Google Scholar 

  49. Connor JA. Intracellular calcium mobilization by inositol 1,4,5-trisphosphate: intracellular movements and compartmentalization. Cell Calcium 1993, 14: 185–200.

    Article  PubMed  CAS  Google Scholar 

  50. Lerea LS, McNamara JO. Ionotropic glutamate receptor subtypes activate c-fos transcription by distinct calcium-requiring intracellular signalling pathways. Neuron 1993, 10: 31–41.

    Article  PubMed  CAS  Google Scholar 

  51. Bading H, Ginty DD, Greeneberg ME. Regulation of gene expression in hippocampal neurons by distinct calcium signalling pathways. Science 1993, 260: 181–186.

    Article  PubMed  CAS  Google Scholar 

  52. Hajimohammadreza I, Probert AW, Coughenour LL, Borosky SA, Marcoux FW, Boxer PA, Wang KKW. A specific inhibitor of calcium/calmodulin-dependent protein kinase-II provides neuroprotection against NMD A-and hypoxia/hypoglycemia-induced cell death. J Neurosci 1995, 15: 4093–4101.

    PubMed  CAS  Google Scholar 

  53. Reynolds IJ, Hastings TG. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci 1995, 15: 3318–3327.

    PubMed  CAS  Google Scholar 

  54. Wahlestedt C, Golanov E, Yamamoto S, Yee F, Ericson H, Yoo H, Inturrisi CE, Reis DJ. Antisense oligonucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions. Nature 1993, 363: 260–263.

    Article  PubMed  CAS  Google Scholar 

  55. Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J. NMDA-dependent Superoxide production and neurotoxicity. Nature 1993, 364: 535–537.

    Article  PubMed  CAS  Google Scholar 

  56. Roberts-Lewis JM, Marcy VR, Zhao Y, Vaught JL, Siman R, Lewis ME. Aurintricarboxylic acid protects hippocampal neurons from NMDA-and ischemia-induced toxicity in vivo. J Neurochem 1993, 61: 378–381.

    Article  PubMed  CAS  Google Scholar 

  57. Baimbridge KG, Celio MR, Rogers JH. Calcium-binding proteins in the nervous system. TINS 1992, 15: 303–308.

    PubMed  CAS  Google Scholar 

  58. Neher E, Augustine GJ. Calcium gradients and buffers on bovine chromaffin cells. J Physiol 1992, 450: 273–301.

    PubMed  CAS  Google Scholar 

  59. Zhou Z, Neher E. Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J Physiol 1993, 469: 245–273.

    PubMed  CAS  Google Scholar 

  60. Chard PS, Bleakman D, Christakos S, Fullmer CS, Miller RJ. Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. J Physiol 1993, 472: 341–357.

    PubMed  CAS  Google Scholar 

  61. Nowycky MC, Pinter MJ. Tiime courses of calcium and calcium-bound buffers following calcium influx in a model cell. Biophys J 1993, 64: 77–91.

    Article  PubMed  CAS  Google Scholar 

  62. Kasai H, Peterson OH. Spati.al dynamics of second messengers: IP3 and cAMP as long-range and associative messengers. TINS 1994, 17: 95–101.

    PubMed  CAS  Google Scholar 

  63. Roberts WM. Localization of carlcium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci 1994, 15: 3246–3262.

    Google Scholar 

  64. Roberts WM. Spatial calcium bruffering in saccular hair cells. Nature 1993, 363: 74–76.

    Article  PubMed  CAS  Google Scholar 

  65. Speksnijder JE, Miller AL, Weisenseel MH, Chen TH, Jaffe LF. Calcium buffer injections block fucoid egg development by facilitating calcium diffusion. Proc Natl Acad Sci USA 1989, 86: 6607–6611.

    Article  PubMed  CAS  Google Scholar 

  66. Stern MD. Buffering of calcium in the vicinity of a channel pore. Cell Calcium 1992, 13: 183–192.

    Article  PubMed  CAS  Google Scholar 

  67. Sala F, Hernandez-Cruz A. Calcium diffusion modelling in a spherical neuron: relevance of buffering properties. Biophys J 1990, 57: 313–324.

    Article  PubMed  CAS  Google Scholar 

  68. Neher E. Concentration profiles of intracellular calcium in the presence of a diffusible chelator, in Calcium Electrogenesis and Neuronal Functioning, 1st ed. (Heinemann U, Klee M, Neher E, eds.), Springer-Verlag, Berlin-Heidelberg: Exp Brain Res, Series 14, 1986, pp. 80–96.

    Chapter  Google Scholar 

  69. Thayer SA, Miller RJ. Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurones in vitro. J Physiol 1990, 425: 85–115.

    PubMed  CAS  Google Scholar 

  70. Lledo PM, Somasundram B, Morton AJ, Emson PC, Mason WT. Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis. Neuron 1992, 9: 943–954.

    Article  PubMed  CAS  Google Scholar 

  71. Pozzan T, Rizzuto R, Volpe, P, Meldolesi J. Molecular and cellular physiology of intracellular calcium stores. Physiolgical Rev 1994, 74: 595–635.

    CAS  Google Scholar 

  72. Werth JL, Thayer SA. Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J Neurosci 1994, 14: 348–356.

    PubMed  CAS  Google Scholar 

  73. White RJ, Reynolds IJ. Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calciumloads in cultured cortical neurons. J Neurosci 1995, 15: 1318–1328.

    PubMed  CAS  Google Scholar 

  74. Blaustein MP. Calcium transport and buffering in neurons. TINS 1988, 11: 438–443.

    PubMed  CAS  Google Scholar 

  75. Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. [Review]. Am J Physiol 1990, 258: C755–C786.

    PubMed  CAS  Google Scholar 

  76. Moudy AM, Handran SD, Goldberg MP, Ruffin N, Karl I, Kranzeble P, DeVivo DC, Rothman SM. Abnormal calcium homeostasis and mitochondrial polarization in a human encephalomyopathy. Proc Natl Acad Sci USA 1995, 92: 729–733.

    Article  PubMed  CAS  Google Scholar 

  77. Scharfman HE, Schwartzkroin PA. Protection of dentate hilar cells from prolonged stimulation by intracellular calcium chelation. Science 1989, 246: 257–260.

    Article  PubMed  CAS  Google Scholar 

  78. Lukas W, Jones KA. Cortical neurons containing calretinin are selectively resistant to calcium overload and excitotoxicity in vitro. Neuroscience 1994, 61: 307–316.

    Article  PubMed  CAS  Google Scholar 

  79. Mattson MP, Rychlik B, Chu JC, Christakos S. Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin-D28k in cultured hip-pocampal neurons. Neuron 1991, 6: 41–51.

    Article  PubMed  CAS  Google Scholar 

  80. Diop AG, Lesort M, Esclaire F, Dumas M, Hugon J. Calbindin D28K-containing neurons, and not HSP70-expressing neurons, are more resistant to HIV-1 envelope (gpl20) toxicity in cortical cell cultures. J Neurosci Res 1995, 42: 252–258.

    Article  PubMed  CAS  Google Scholar 

  81. Pike CJ, Cotman CW. Calretinin-immunoreactive neurons are resistant to beta-amyloid toxicity in vitro. Brain Res 1995, 671: 293–298.

    Article  PubMed  CAS  Google Scholar 

  82. Mockel V, Fischer G. Vulnerability to excitotoxic stimuli of cultured rat hippocampal neurons containing the calcium-binding proteins calretinin and calbindin D28K. Brain Res 1994, 648: 109–120.

    Article  PubMed  CAS  Google Scholar 

  83. Weiss JH, Koh JY, Baimbridge KG, Choi DW. Cortical neurons containing somatostatin-or parvalbumin-like immunoreactivity are atypically vulnerable to excitotoxic injury in vitro. Neurology 1990, 40: 1288–1292.

    Article  PubMed  CAS  Google Scholar 

  84. Dowd DR, MacDonald PN, Komm BS, Haussler MR, Miesfeld RL. Stable expression of the calbindin-D2XK complementary DNA interferes with the apoptotic pathway in lymphocytes. Mol Endocrinol 1992, 6: 1843–1848.

    Article  PubMed  CAS  Google Scholar 

  85. Vito P, Lacana E, D’Adamio L. Interfering with apoptosis: Ca(2+)-binding protein ALG-2 and Alzheimer’s disease gene ALG-3. Science 1996, 271: 521–525.

    Article  PubMed  CAS  Google Scholar 

  86. Yui S, Mikami M, Yamazaki M. Induction of apoptotic cell death in mouse Iymphoma and human leukemia cell lines by a calcium-binding protein complex, calprotectin, derived from inflammatory peritoneal exudate cells. J Leukoc Biol 1995, 58: 650–658.

    PubMed  CAS  Google Scholar 

  87. Goodman JH, Wasterlain CG, Massarweh WF, Dean E, Sollas AL, Sloviter RS. Calbindin-D28K immunoreactivity and selective vulnerability to ischemia in the dentate gyrus of the developing rat. Brain Res 1993, 606: 309–314.

    Article  PubMed  CAS  Google Scholar 

  88. Nitsch C, Scotti A, Sommacal A, Kalt G. GABAergic hippocampal neurons resistant to ischemia-induced neuronal death contain the Ca2(+)-binding protein parvalbumin. Neurosci Lett 1989, 105: 263–268.

    Article  PubMed  CAS  Google Scholar 

  89. Rami A, Rabie A, Thomasset M, Krieglstein J. Calbindin-D28K and ischemic damage of pyramidal cells in rat hippocampus. J Neurosci Res 1992, 31: 89–95.

    Article  PubMed  CAS  Google Scholar 

  90. German DC, Manaye KF, Sonsalla PK, Brooks BA. Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced parkinsonism: sparing of calbindin-D28k-containing cells. Ann NY Acad Sci 1992, 648: 42–62.

    Article  PubMed  CAS  Google Scholar 

  91. Mouatt-Prigent A, Agid Y, Hirsch EC. Does the calcium binding protein calretinin protect dopaminergic neurons against degeneration in Parkinson’s disease? Brain Res 1994, 668: 62–70.

    Article  PubMed  CAS  Google Scholar 

  92. Yamada T, McGeer PL, Baimbridge KG, McGeer KG. Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res 1990, 526: 303–307.

    Article  PubMed  CAS  Google Scholar 

  93. Reiner A, Medina L, Figueredo-Cardenas G, Anfinson S. Brainstem motoneuron pools that are selectively resistant in amyotrophic lateral sclerosis are preferentially enriched in parvalbumin: Evidence from monkey brainstem for a calcium-mediated mechanism in sporadic ALS. Exp Neurol 1995, 131: 239–250.

    Article  PubMed  CAS  Google Scholar 

  94. Harkany T, DeJong GI, Soos K, Penke B, Luiten PG, Gulya K. Beta-amyloid (1–42) affects cholinergic but not parvalbumin-containing neurons in the septal complex of the rat. Brain Res 1995, 698: 270–274.

    Article  PubMed  CAS  Google Scholar 

  95. Freund TF, Buzsaki G, Leon A, Baimbridge KG, Somogyi P. Relationship of neuronal vulnerability and calcium binding protein immunoreactivity in ischemia. Exp Brain Res 1990, 83: 55–66.

    Article  PubMed  CAS  Google Scholar 

  96. Tortosa A, Ferrer I. Poor correlation between delayed neuronal death induced by transient forebrain ischemia, and immunoreactivity for parvalbumin and calbindin D-28k in developing gerbil hippocampus. Acta Neuropathol (Berl) 1994, 88: 67–74.

    Article  CAS  Google Scholar 

  97. Tsien RY. Fluorescence measurement and photochemical manipulation of cytosolic free calcium. TINS 1988, 11: 419–424.

    PubMed  CAS  Google Scholar 

  98. Roe MW, Lemasters JJ, Herman B. Assessment of fura-2 for measurements of cytosolic free calcium. Cell Calcium 1990, 11: 63–73.

    Article  PubMed  CAS  Google Scholar 

  99. Moore EDW, Becker PL, Fogarty KE, Williams DA, Fay FS. Ca2+ imaging in single living cells: Theoretical and practical issues. Cell Calcium 1990, 11: 157–179.

    Article  PubMed  CAS  Google Scholar 

  100. Tsien RY. A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 1981, 290: 577–528.

    Article  Google Scholar 

  101. Tsien RY. New calcium indicators and buffers with high selectivity against magnesium and protons: Design, synthesis, and properties of prototype structures. Biochemistry 1980, 19: 2396.

    Article  PubMed  CAS  Google Scholar 

  102. Williams S, Johnston D. Long-term potentiation of hippocampal mossy fiber synapses is blocked by postsynaptic injection of calcium chelators. Neuron 1989, 3: 583–588.

    Article  PubMed  CAS  Google Scholar 

  103. Winslow JL, Duffy SN, Charlton MP. Homosynaptic facilitation of transmitter release in crayfish is not affected by mobile calcium chelators: Implications for the residual ionized calcium hypothesis from electrophysiological and computational analyses. J Neurophysiol 1994, 72: 1769–1793.

    PubMed  CAS  Google Scholar 

  104. Zhang L, Pennefather P, Velumian A, Tymianski M, Charlton M, Carlen PL. Potentiation of a slow Ca2+-dependent K+ current by intracellular Ca2+ chelators in hippocampal CAI neurons of rat brain slices J Neurophysiol 1995, 74: 2225-2241 (Abstract).

    Google Scholar 

  105. Spigelman I, Tymianski M, Wallace MC, Carlen PL, Velumian AA. Modulation of hippocampal synaptic transmission by low concentrations of cell-permeant calcium chelators: Effects of calcium affinity, structure, and binding kinetics. Neuroscience 1996, (in press).

    Google Scholar 

  106. Ouanounou A, Zhang L, Tymianski M, Charlton MP, Wallace MC, Carlen PL. Accumulation and extrusion of permeant Ca2+ chelators in attenuation of synaptic transmission at hippocampal CAI neurons. Neuroscience 1996, (in press).

    Google Scholar 

  107. Smith SJ, Augustine GJ. Calcium ions, active zones, and synaptic transmitter release. TINS 1988, 11: 458–464.

    PubMed  CAS  Google Scholar 

  108. Augustine GJ, Adler EM, Charlton MP. The calcium signal for transmitter secretion from presynaptic nerve terminals. Ann NY Acad Sci 1991, 635: 365–381.

    Article  PubMed  CAS  Google Scholar 

  109. Adler EM, Augustine GJ, Duffy SN, Charlton MP. Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J Neurosci 1991, 11: 1496–1507.

    PubMed  CAS  Google Scholar 

  110. Tymianski M, Charlton MP, Carlen PL, Tator CH. Properties of neuroprotective cell-permeant Ca2+ chelators: Effects on [Ca2+]i and glutamate neurotoxicity in vitro J Neurophysiol 1994, 267: 1973–1992.

    Google Scholar 

  111. Wang SS, Thompson SH. Local positive feedback by calcium in the propagation of intracellular calcium warves. Biophys J 1995, 69: 1683–1697.

    Article  PubMed  CAS  Google Scholar 

  112. Penning LC, Keirse MJ, Vansteveninck J, Dubbelman TM. Ca(2+)mediated prostaglandin E2 induction reduces haematoporphyrin-derivative-induced cytotoxicity of T24 human bladder transitional carcinoma cells in vitro. Biochem J 1993, 292: 237–240.

    PubMed  CAS  Google Scholar 

  113. Ueda N, Shah SV. Role of intracellular calcium in hydrogen peroxideinduced renal tubular cell injury. Am J Physiol 1992, 263: Pt 2):F214–21.

    Google Scholar 

  114. Babich H, Palace MR, Stern A. Oxidative stress in fish cells: In vitro studies. Arch Environ Contam Toxicol 1993, 24: 173–178.

    Article  PubMed  CAS  Google Scholar 

  115. Fernandez A, Kiefer J, Fosdick L, McConkey DJ. Oxygen radical production and thiol depletion are required for Ca(2+)-mediated endogenous endonuclease activation in apoptotic thymocytes. J Immunol 1995, 155: 5133–5139.

    PubMed  CAS  Google Scholar 

  116. Cantoni O, Sestili P, Cattalbeni F, Bellomo G, Pou S, Cohen M, Cerutti P. Calcium chelator Quin 22 prevents hydrogen-peroxide-induced DNA breakage and cytotoxicity. Eur J Biochem 1989, 182: 209–212.

    Article  PubMed  CAS  Google Scholar 

  117. Coorssen JR, Haslam RJ. GTPgammaS and phorbol ester act synergistically to stimulate both Ca2+-independent secretion and phospholipase D activity in permeabilized human platelets. FEBS Lett 1993, 316: 170–174.

    Article  PubMed  CAS  Google Scholar 

  118. Pellegrini-Giampietro DE, Cherici G, Alesiani M, Carla V, Moroni F. Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J Neurosci 1990, 10: 1035–1041.

    PubMed  CAS  Google Scholar 

  119. Dugan LL, Sensi SL, Canzoniero LMT, Handran SD, Rothman SM, Lin TS, Goldberg MP, Choi DW. Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci 1995, 15: 6377–6388.

    PubMed  CAS  Google Scholar 

  120. Sanfeliu C, Hunt A, Patel AJ. Exposure to N-methyl-D-aspartate increases release of arachidonic acid in primary cultures of rat hippocampal neurons and not in astrocytes. Brain Res 1990, 526: 241–248.

    Article  PubMed  CAS  Google Scholar 

  121. Lazarewicz JW, Wroblewski JT, Costa E. N-Methyl-D-Aspartate sensitive glutamate receptors induce calcium-mediated arachidonic acid release in primary cultures of cerebellar granule cells. J Neurochem 1990, 55: 1875–1881.

    Article  PubMed  CAS  Google Scholar 

  122. Dumuis A, Sebben M, Haynes L, Pin JP, Bockaert J: NMDA receptors activate the arachidonic acid cascade system instriatal neurons. Nature 1988, 336: 68–70.

    Article  PubMed  CAS  Google Scholar 

  123. Yoshida A, Ueda T, Takauji R, Liu YP, Fukushima T, Inuzuka M, Nakamura T. Role of calcium ion in induction of apoptosis by etoposide in human leukemia HL-60 cells. Biochem Biophys Res Commun 1993, 196: 927–934.

    Article  PubMed  CAS  Google Scholar 

  124. Zhivotovsky B, Cedervall, B, Jiang S, Nicotera P, Orrenius S. Involvement of Ca2+ in the formation of high molecular weight DNA fragments in thymocyte apoptosis. Biochem Biophys Res Commun 1994, 202: 120–127.

    Article  PubMed  CAS  Google Scholar 

  125. Robertson LE, Chubb S, Meyn RE, Story M, Ford R, Hittelman WN, Plunkett W. Induction of alpoptotic cell death in chronic Iymphocytic leukemia by 2-chloro-2′-deoxy-edenosine and 9-beta-D-arabinosyl-2-fluoroadenine. Blood 1993, 81: 143–150.

    PubMed  CAS  Google Scholar 

  126. Jiang S, Chow SC, Nicotera P, Orrenius S. Intracellular Ca2+ signals activate apoptosis in thymocytes: studies using the Ca(2+)-ATPase inhibitor thapsigargin. Exp Cell Res 1994, 212: 84–92.

    Article  PubMed  CAS  Google Scholar 

  127. Penning LC, Rasch MH, Ben-Hur E, Dubbelman TM, Havelaar AC, Van Der Zee J, Van Steveninck J. A role for the transient increase of cytoplasmic free calcium in cell rescue after photodynamic treatment. Biochim Biophys Acta 1992, 1107: 255–260.

    Article  PubMed  CAS  Google Scholar 

  128. Whyte MK, Hardwick SJ, Meagher LC, Savill JS, Haslett C. Transient elevations of cytosolic free calcium retard subsequent apoptosis in neutrophils in vitro. J Clin Invest 1993, 92: 446–455.

    Article  PubMed  CAS  Google Scholar 

  129. Kudo Y, Takeda K, Yamazaki K. Quin-2 protects neurons against cell death due to Ca2+ overload. Brain Res 1990, 528: 48–54.

    Article  PubMed  CAS  Google Scholar 

  130. Tymianski M, Wallace MC, Spigelman I, Uno M, Carlen PL, Tator CH, Charlton MP. Cell permeant Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron 1993, 11: 221–235.

    Article  PubMed  CAS  Google Scholar 

  131. Randall RD, Thayer SA. Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci 1992, 12: 1882–1895.

    PubMed  CAS  Google Scholar 

  132. Tymiaski M, Charlton MP, Carlen PL, Tator CH. Secondary Ca2+ overload indicates early neuronal injury which precedes staining with viability indicators. Brain Res 1993, 607: 319–323.

    Article  Google Scholar 

  133. Petrozzino JJ, Pozzo Miller LD, Connor JA. Micromolar Ca2+ transients in dendritic spines of hippocampal pyramidal neurons in brain slice. Neuron 1995, 14: 1223–1231.

    Article  PubMed  CAS  Google Scholar 

  134. Tymianski M, Spigelman I, Zhang L, Carlen PL, Tator CH, Charlton MP, Wallace MC. Mechanism of action and persistence of neuroprotection by cell permeant Ca2+ chelators. J Cereb Blood Flow Metab 1994, 14: 911–923.

    Article  PubMed  CAS  Google Scholar 

  135. Niesen C, Charlton MP, Carlen PL. Postsynaptic and presynaptic effects of the calcium chelator BAPTA on synaptic transmission in rat hippocampal dentate granule neurons. Brain Res 1991, 555: 319–325.

    Article  PubMed  CAS  Google Scholar 

  136. Dubinsky JM. Effects of calcium chelators on intracellular calcium and excitotoxicity. Neurosci Lett 1993, 150: 129–132.

    Article  PubMed  CAS  Google Scholar 

  137. Baimbridge KG, Abdel-Hamid KM. Intra-neuronal Ca2+-buffering with BAPTA enhances glutamate excitotoxicity in vitro and ischemic damage in vivo. Soc Neurosci Abstr 1992, 18.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tymianski, M. (1999). Approaches in Treating Nerve Cell Death with Calcium Chelators. In: Koliatsos, V.E., Ratan, R.R. (eds) Cell Death and Diseases of the Nervous System. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1602-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1602-5_30

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7213-7

  • Online ISBN: 978-1-4612-1602-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics