Skip to main content

Free Radicals and Mitochondria Dysfunction in Excitotoxicity and Neurodegenerative Disease

  • Chapter
Cell Death and Diseases of the Nervous System

Abstract

The study of neurodegenerative diseases has begun converging with the previously disparate fields of free radical pathophysiology, excitotoxin-mediated neuronal death and mitochondrial physiology. This convergence has been prompted by increasing evidence that excitatory amino acids and free radical toxicity contribute to neuronal apoptosis (1) and to the etiology of chronic neurodegenerative diseases (2–12). Moreover, a growing body of evidence implicates mitochondrial energetic and oxidative dysfunction, due to congenital genetic defects, and perhaps to radical-induced mutations and oxidative enzyme impairment, in several neurodegenerative disorders (reviewed by [5,6,13–17]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ratan RR, Murphy TH, Baraban JM. Oxidative stress induces apoptosis in embryonic cortical neurons. JNeurochem 1994, 62: 376–379.

    Article  CAS  Google Scholar 

  2. Dykens JA, Stern A, Trenkner E. Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J Neurochem 1987, 49: 1223–1228.

    Article  Google Scholar 

  3. Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988, 1: 623–634.

    Article  PubMed  CAS  Google Scholar 

  4. Blass JP, Gibson GE. The role of oxidative abnormalities in the pathophysiology of Alzheimer’s disease. Rev Neurol Paris 1991, 147: 513–525.

    PubMed  CAS  Google Scholar 

  5. Beal MF. Role of excitotoxicity in neurological diseases. Curr Opin Neurobiol 1992a, 2: 657–662.

    Article  PubMed  CAS  Google Scholar 

  6. Beal MF. Mechanisms of excitotoxicity in neurologic diseases. FASEB J 1992b, 6: 3338–3344.

    PubMed  CAS  Google Scholar 

  7. Beal MF, Hyman BT, Koroshetz W. Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? TINS 1993a, 16: 125–131.

    PubMed  CAS  Google Scholar 

  8. Davis RE, Miller S, Hernstadt C, Ghosh SS, Fahy, E, Shinobu LA, Glasko D, Thal LJ, Beal MF, Nowell N, Parker WD. Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease PNAS 1997, 94: 4526–4531.

    Article  PubMed  CAS  Google Scholar 

  9. Parker WD, Davis RE. Primary mitochondrial DNA as a causative event in Alzheimer’s disease, in Mitochondria and Free Radicals in Neurodegenerative Diseases (Beal MF, Howell N, Bodis-Wollner I, eds.) Wiley-Liss, New York 1997, pp. 319–334.

    Google Scholar 

  10. Coyle JT, Puttfarken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993, 262: 689–695.

    Article  PubMed  CAS  Google Scholar 

  11. Schulz JB, Beal MF. Mitochondrial dysfunction in movement disorders. Curr Opin Neurol 1994, 7: 333–339.

    Article  PubMed  CAS  Google Scholar 

  12. Götz, ME, Kunig G, Riederer P, and Youdim MBH. Oxidative stress: free radical production in neural degeneration. Pharmac Ther 1994, 63: 37–122.

    Article  Google Scholar 

  13. Luft R. The development of mitochondrial medicine. Proc Natl Acad Sci USA 1994, 91: 8731–8738.

    Article  PubMed  CAS  Google Scholar 

  14. Schapira AHV, Cooper JM. Mitochondrial function in neurodegeneration and aging. Mutat Res 1992, 275: 133–143.

    Article  PubMed  CAS  Google Scholar 

  15. Browne SE, Beal MF. Oxidative damage and mitochondrial dysfunction in neurodegen-erative diseases. Biochem Soc Trans 1994, 22: 1002–1006.

    PubMed  CAS  Google Scholar 

  16. Swerdlow RH, Parks JK, Miller SW, Tuttle JB, Trimmer PA, Sheehan JP, Bennett JP, Davis RE, Parker WD. Origin and functional consequences of the complex 1 defect in Parkinson’s disease. Ann Neurol 1996, 40: 663–671.

    Article  PubMed  CAS  Google Scholar 

  17. Chiueh CC, Gilbert CL, Colton CA. (eds.). “The Neurobiology of NO-and-OH,” Annals New York Acad Sci, vol 738, New York, 1995, 470 pp.

    Google Scholar 

  18. Gunter KK, Gunter TE. Transport of calcium by mitochondria. J Bioenerg Biomembr 1994, 26: 471–485.

    Article  PubMed  CAS  Google Scholar 

  19. Gunter, TE, Gunter KK, Sheu SS, Gavin CE. Mitochondrial calcium transport: Physiological and pathological relevance. Am J Physiol 1994, 267: 313–39.

    Google Scholar 

  20. Halliwell B, Gutteridge JMC. “Free Radicals in Biology and Medicine.” Oxford University Press, 1989.

    Google Scholar 

  21. Siesjö BK, Agardh CD, Bengtsson F. Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1989, 1: 165–211.

    PubMed  Google Scholar 

  22. Bondy SC, LeBel CP. The relationship between excitotoxicity and oxidative stress in the central nervous system. Free Rad Biol Med 1993, 14: 633–642.

    Article  PubMed  CAS  Google Scholar 

  23. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem 1992, 59: 1609–1623.

    Article  PubMed  CAS  Google Scholar 

  24. Benzi G, Moretti A. Age-and peroxidative stress-related modifications of the cerebral enzymic activities linked to mitochondria and the glutathione system. Free Rad Biol Med 1995, 19: 77–101.

    Article  PubMed  CAS  Google Scholar 

  25. Murphy SN, Thayer SA, Miller RJ. The effects of excitatory amino acids on intracellular calcium in single mouse striatal neurons in vitro. J Neurosci 1987, 7: 4145–4158.

    PubMed  CAS  Google Scholar 

  26. MacDermott AB, Mayer KL, Westbrook GL, Smith SJ, Barker JL. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons. Nature 1986, 321: 519–522.

    Article  PubMed  CAS  Google Scholar 

  27. Siegmund B, Schlüter KD, Piper HM. Calcium and the oxygen paradox. Cardiovasc Res 1993, 27: 1778–1783.

    Article  PubMed  CAS  Google Scholar 

  28. Malis CD, Bonventre JV. Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria. J Biol Chem 1986, 261: 14,201–14,208.

    PubMed  CAS  Google Scholar 

  29. Cao W, Carney JM, Duchon A, Floyd RA, Chevion M. Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci Lett 1988, 88: 233–238.

    Article  PubMed  CAS  Google Scholar 

  30. Gunter KK, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am J Physiol 1991, 27: C755–786.

    Google Scholar 

  31. Shier WT, Dubourdieu DJ. Evidence for two calcium-dependent steps and a sodium-dependent step in the mechanism of cell killing by calcium ions in the presence of iono-phore A23187. Am J Path 1985, 120: 304–315.

    PubMed  CAS  Google Scholar 

  32. Hermes-Lima M. How do Ca2+ and 5-aminolevulinic acid-derived oxyradicals promote injury to isolated mitochondria? Free Rad Biol Med 1995, 19: 381–390.

    Article  PubMed  CAS  Google Scholar 

  33. Wallace DC. Diseases of the mitochondrial DNA. Ann Rev Biochem 1992a, 61: 1175–1212.

    Article  PubMed  CAS  Google Scholar 

  34. Wallace DC. Mitochondrial genetics: a paradigm for aging and degenerative disease? Science 1992b, 256: 628–632.

    Article  PubMed  CAS  Google Scholar 

  35. Deng H-X et al. Amyotrophic lateral sclerosis and structural defects in Cu+, Zn+ superoxide dismutase. Science 1993, 261: 1047–1051.

    Article  PubMed  CAS  Google Scholar 

  36. Bowling AC, Schulz JB, Brown RH Jr, Beal MF. Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 1993a, 61: 2322–2325.

    Article  PubMed  CAS  Google Scholar 

  37. Stadtman ER. Protein oxidation and aging. Science 1992, 257: 1220–1224.

    Article  PubMed  CAS  Google Scholar 

  38. Dykens JA, Wiseman RW, Hardin CD. Phosphotransferase function is conserved during hypoxia-reoxygenation despite impairment of enzyme activity. J Comp Physiol 1996, 166: 359–368

    CAS  Google Scholar 

  39. McCord JM, Russell WJ. Inactivation of creatine phosphokinase by Superoxide during reperfusion injury. Basic Life Sci 1988, 49: 869–873.

    PubMed  CAS  Google Scholar 

  40. Beckman JS, Ischiropoulos H, Zhu L, van der Woerd M, Smith C, Chen J, Harrison J, Martin JC, Tsai M. Kinetics of Superoxide dismutase and iron catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys 1992, 298: 438–445.

    Article  PubMed  CAS  Google Scholar 

  41. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redo-activated forms. Science 1992, 258: 1898–1902.

    Article  PubMed  CAS  Google Scholar 

  42. Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA. Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci USA 1990, 87: 5144–5147.

    Article  PubMed  CAS  Google Scholar 

  43. Bogaert YE, Rosenthal RE, Fiskum G. Postischemic inhibition of cerebral cortex pyruvate dehydrogenase. Free Rad Biol Med 1994, 16: 811–820.

    Article  PubMed  CAS  Google Scholar 

  44. Gibson GE, Sheu KF, Blass JP, Baker A, Carlson KC, Harding B, Perrino P. Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch Neurol 1988, 45: 836–840.

    Article  PubMed  CAS  Google Scholar 

  45. Sims NR, Bowen DM, Neary D, Davison AN. Metabolic processes in Alzheimer’s disease: adenine nucleotide content and production of I4CO2 from [U-14C]glucose in vitro in human neocortex. J Neurochem 1983, 41, 1329–1334.

    Article  PubMed  CAS  Google Scholar 

  46. Kristal BS, Chen J, Yu BP. Sensitivity of mitochondrial transcription to different free radical species. Free Rad Biol Med 1994, 16: 323–329.

    Article  PubMed  CAS  Google Scholar 

  47. LeBel CP, Ali SF, McKee M, Bondy SC. Organometal-induced increases in oxygen reactive species: The potential of 2′, 7′ dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol 1990, 104: 17–24.

    Article  PubMed  CAS  Google Scholar 

  48. Nohl H, Stolze K, Napetschnig S, Ishikawa T. Is oxidative stress primarily involved in reperfusion injury of the ischemie heart? Free Rad Biol Med 1991, 11: 581–588.

    Article  PubMed  CAS  Google Scholar 

  49. Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Rad Biol Med 1995, 18: 321–336.

    Article  PubMed  CAS  Google Scholar 

  50. Sohal RS, Sohal BH. Hydrogen peroxide release by mitochondria increases during aging. Mech Ageing Dev 1991, 7: 187–202.

    Article  Google Scholar 

  51. Bowling AC, Mutisya EM, Walker LC, Price DL, Cork LC, Beal MF. Age-dependent impairment of mitochondrial function in primate brain. J Neurochem 1993b, 60: 1964–1967.

    Article  PubMed  CAS  Google Scholar 

  52. Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 1993, 34: 609–616.

    Article  PubMed  CAS  Google Scholar 

  53. Johnson EM Jr., Deckwerth TL, Deshmukh M. Neuronal death in developmental models: possible implications in neuropathology. Brain Pathol 1996, 6: 397–409.

    Article  PubMed  Google Scholar 

  54. Schulz JB, Henshaw DR, Siwek D, Jenkins BG, Ferrante RJ, Cipolloni PB, Kowall NW, Rosen BR, Beal MF. Involvement of free radicals in excitotoxicity in vivo. J Neurochem 1995, 64: 2239–2247.

    Article  PubMed  CAS  Google Scholar 

  55. Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB. Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 1986, 321: 168–171.

    Article  PubMed  CAS  Google Scholar 

  56. Reynolds IJ, Hastings TG. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci 1995, bd5: 3318–3327.

    Google Scholar 

  57. Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J. NMDA-dependent Superoxide production and neurotoxicity. Nature 1993, 364: 535–537.

    Article  PubMed  CAS  Google Scholar 

  58. Nicklas WK. Alteration by kainate of energy stores and neuronal-glia metabolism of glutamate in vitro, in Excitotoxins (Fuxe K, Roberts P, Schwarcz R, eds.), Plenum Press, New York, 1984, pp. 55–65.

    Google Scholar 

  59. Markley HG, Faillace LA, Mezey E. Xanthine oxidase activity in rat brain. Biochem Biophys Acta 1973, 309: 23–31.

    Article  PubMed  CAS  Google Scholar 

  60. Martz D, Rayos G, Schielke, GP, Betz AL. Allopurinol and dimethylthiourea reduce brain infarction following middle artery occlusion in rats. Stroke 1989, 20: 488–494.

    Article  PubMed  CAS  Google Scholar 

  61. Phillis JW, Sen S. Oxypurinol attenuates hydroxyl radical production during ischemia-reperfusion injury of the rat cerebral cortex; an ESR study. Brain Res 1993, 628: 309–312.

    Article  PubMed  CAS  Google Scholar 

  62. Facchinetti F, Virgili M, Contestabile A, Barnabei O. Antagonists of the NMDA receptor and allopurinol protect the olfactory cortex but not the striatum after intracerebral injection of kainic acid. Brain Res 1992, 585: 330–334.

    Article  PubMed  CAS  Google Scholar 

  63. Moorhouse PC, Grootveld M, Halliwell B, Quinlan JG, Gutteridge JM. Allopurinol and oxypurinol are hydroxyl radical scavengers. Fed Eur Biochem 1987, 213: 23–28.

    Article  CAS  Google Scholar 

  64. Dykens JA. Isolated cerebellar and cerebral mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: Implications for neurodegeneration. J. Neurochemistry, 1994, 63: 584–591.

    Article  CAS  Google Scholar 

  65. Dykens JA. Mitochondrial radical production and mechanisms of oxidative excitotoxicity, in The Oxygen Paradox (Davies KJA, Ursini F, eds.), Padova, CLEUP Press, 1995, pp. 453–468.

    Google Scholar 

  66. Dykens JA. Mitochondrial free radical production and the etiology of neurodegenerative disease, in Neurodegenerative Diseases: Mitochondria and Free Radicals in Pathogenesis (Beal MF, Bodis-Wollner I, and Howell N, eds.), John Wiley, 1997, 29–55.

    Google Scholar 

  67. White RJ, Reynolds IJ. Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J Neurosci 1996, 16: 5688–5697.

    PubMed  CAS  Google Scholar 

  68. Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 1973, 134: 707–716.

    PubMed  CAS  Google Scholar 

  69. Loschen G, Azzi A, Richter C, Flohe L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett 1974, 42: 68–72.

    Article  PubMed  CAS  Google Scholar 

  70. Sanders SP, Squire JL, Kuppusamy P, Harrison SJ, Bassett DJ, Gabrielson EW, Sylvester JT. Hyperoxic sheep pulmonary microvascular endothelial cells generate free radicals via mitochondrial electron transport. J Clin Invest 1993, 91: 46–52.

    Article  PubMed  CAS  Google Scholar 

  71. Ueta H, Ogura R, Sugiyama M, Kagiyama A, Shin G. Spin trapping of cardiac submito-chondrial particles isolated from ischemic and non-ischemic myocardium. J Mol Cell Cardiol 1990, 22: 893–899.

    Article  PubMed  CAS  Google Scholar 

  72. Turrens JF, Beconi M, Barilla J, Chavez UB, McCord JM. Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues. Free Rad Res Commun 1991, 12–13: 681–689.

    Article  Google Scholar 

  73. Paraidathathu T, de Groot H, Kehrer JP. Production of reactive oxygen by mitochondria from normoxic and hypoxic rat heart tissue. Free Rad Biol Med 1992, 13: 289–297.

    Article  PubMed  CAS  Google Scholar 

  74. Paraidathathu T, Palamanda J, Kehrer JP. Modulation of rat heart mitochondrial function and the production of reactive oxygen by vitamin E deficiency. Toxicology 1994, 90: 103–114.

    Article  PubMed  CAS  Google Scholar 

  75. Boveris A, Cadenas E. Production of Superoxide radicals and hydrogen peroxide in mitochondria, in Superoxide Dismutase, Vol. II (Oberley LW, ed.), Boca Raton FL, CRC Press, 1982, pp. 15–30.

    Google Scholar 

  76. Ambrosio G, Zweier JL, Duilio C, Kuppusamy P, Santoro G, Glia PP, Tritto I, Cirillo P, Condorelli M, Chiariello M. Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 1993, 25; 18,532–18,541.

    Google Scholar 

  77. Nohl H. Generation of Superoxide radicals as byproduct of cellular respiration. Ann Biol Clin Paris 1994, 52: 199–204.

    PubMed  CAS  Google Scholar 

  78. Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem 1992, 267: 5317–5323.

    PubMed  CAS  Google Scholar 

  79. Nohl H, Hegner D, Summer KH. The mechanisms of toxic action of hyperbaric oxygenation on the mitochondria of rat heart cells. Biochem Pharm 1981, 30: 1753–1757.

    Article  PubMed  CAS  Google Scholar 

  80. De Jong AM, Albracht SP. Ubisemiquinones as obligatory intermediates in the electron transfer from NADH to ubiquinone. Eur J Biochem 1994, 222: 975–982.

    Article  PubMed  Google Scholar 

  81. Miki T, Yu L, Yu CA. Characterization of ubisemiquinone radicals in succinate-ubiquinone reductase. Arch Biochem Biophys 1992, 293: 61–66.

    Article  PubMed  CAS  Google Scholar 

  82. Nohl H, Stolze K. Ubisemiquinones of the mitochondrial respiratory chain do not interact with molecular oxygen. Free Rad Res Commun 1992, 16: 409–419.

    Article  CAS  Google Scholar 

  83. Nohl H. Ischemia/reperfusion impairs mitochondrial energy conservation and triggers O2-release as a byproduct of respiration. Free Rad Res Commun 1993, 18: 127–137.

    Article  CAS  Google Scholar 

  84. Nohl H, Gille L, Schönheit K, Liu Y. Conditions allowing redox-cycling ubisemiquinone in mitochondria to establish a direct redox couple with molecular oxygen. Free Rad Biol Med 1996, 20: 207–213.

    Article  PubMed  CAS  Google Scholar 

  85. Beyer RE. An analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochem Cell Biol 1992, 70: 390–403.

    Article  PubMed  CAS  Google Scholar 

  86. Finel M. The proton-translocating NADH:ubiquinone oxidoreductase: a discussion of selected topics. J Bioenerg Biomemnr 1993, 25: 357–366.

    Article  CAS  Google Scholar 

  87. Degli-Espoti M, Ghelli A. The mechanism of proton and electron transport in mitochondrial complex I. Biochim Biophys Acta 1994, 1187: 116–120.

    Article  Google Scholar 

  88. Sled VD, Rudnitzky NI, Hatefi Y, Ohnishi T. Thermodynamic analysis of flavin in mitochondrial NADH. Biochemistry 1994, 33: 10,069–10,075.

    Article  PubMed  CAS  Google Scholar 

  89. Giulivi C, Boveris A, Cadenas E. Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydeoxyguanosine in mitochondrial DNA. Arch Biochem Biophys 1995, 316: 909–916.

    Article  PubMed  CAS  Google Scholar 

  90. Fukushima T, Yamada K, Isobe A, Shiwaku K, Yamane Y. Mechanism of cytotoxicity of paraquat I. NADH oxidation and paraquat radical formation via complex I. Exp Toxicol Pathol 1993, 45: 345–349.

    Article  PubMed  CAS  Google Scholar 

  91. Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD. Mitochondrial complex 1 deficiency in Parkinson’s disease. J Neurochem 1990, 54: 823–827.

    Article  PubMed  CAS  Google Scholar 

  92. Sanchez-Ramos JR, Övervik E, Ames BN. A marker of oxyradical-mediated DNA damage (8-hydroxy-2′deoxyguanosine) is increased in nigro-striatum of Parkinson’s disease brain. Neurodegen 1994, 3: 197–204.

    Google Scholar 

  93. Randall RD, Thayer SA. Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci 1992, 12: 1882–1895.

    PubMed  CAS  Google Scholar 

  94. Crompton M, Andreeva L. On the involvement of a mitochondrial pore in reperfusion injury. Basic Res Cardiol 1993, 88: 513–523.

    Article  PubMed  CAS  Google Scholar 

  95. Kapus A, Szaszi K, Kaldi K, Ligeti E, Fonyo A. Is the mitochondrial Ca uniporter a voltage-modulated transport pathway? FEBS Lett 1991, 282: 61–64.

    Article  PubMed  CAS  Google Scholar 

  96. Ferrari R, Pedersini P, Bongrazio M, Gaia G, Bernocchi P, Di Lisa F, Visioli O. Mitochondrial energy production and cation control in myocardial ischemia and reperfusion. Basic Res Cardiol 1993, 88: 495–512.

    Article  PubMed  CAS  Google Scholar 

  97. Chacon E, Acosta D. Mitochondrial regulation of Superoxide by Ca2+: an alternate mechanism for the cardiotoxicity of doxorubicin. Toxicol Appl Pharmacol 1991, 107: 117–128.

    Article  PubMed  CAS  Google Scholar 

  98. Duchen MR, McGuinness O, Brown LA, Crompton M. On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury. Cardiovasc Res 1993, 27: 1790–1794.

    Article  PubMed  CAS  Google Scholar 

  99. Mehendale HM, Roth RA, Gandolfi AJ, Klaunig JE, Lemasters, JJ, Curtis, LR. Novel mechanisms in chemically induced hepatotoxicity. FASEB J 1994, 8: 1285–1295.

    PubMed  CAS  Google Scholar 

  100. Crompton M. The role of Ca2+ in the function and dysfunction of heart mitochondria, in Calcium and the Heart (Langer GA, ed.), Raven Press, New York, 1990, pp. 167–197.

    Google Scholar 

  101. Novgorodov SA, Gudz TI, Kushnareva YE, Roginsky VA, Kudrjashov YB. Mechanism accounting for the induction of nonspecific permeability of the inner mitochondrial membrane by hydroperoxides. Biochem Biophys Acta 1991, 1058: 242–248.

    Article  PubMed  CAS  Google Scholar 

  102. Takeyama N, Matusuo N, Tanaka T. Oxidative damage to mitochondria is mediated by the Ca(2+)-dependent inner-membrane permeability transition. Biochem J 1993, 294: 719–725.

    PubMed  CAS  Google Scholar 

  103. Guidox R, Lambelet P, Phoenix J. Effects of oxygen and antioxidants on the mitochondrial Ca-retention capacity. Arch Biochem Biophys 1993, 306: 139–147.

    Article  Google Scholar 

  104. Kora S, Sado M, Koike H, Terada H. Are free radicals involved in Ca(2+)-induced membrane damage of mitochondria? J Pharmacobiodyn 1992, 15: 333–338.

    Article  PubMed  CAS  Google Scholar 

  105. Darley-Usmar VM, Stone D, Smith D, Martin JF. Mitochondria, oxygen and reperfusion damage. Ann Med 1991, 23: 583–588.

    Article  PubMed  CAS  Google Scholar 

  106. Jurkowitz-Alexander MS, Altschuld RA, Hohl CM, Johnson JD, McDonald JS, Simmons TD, Horrocks LA. Cell swelling, blebbing and death are dependent on ATP depletion and independent of calcium during chemical hypoxia in a glial cell line (RPC-1). J Neurochem 1992, 59: 344–

    Article  PubMed  CAS  Google Scholar 

  107. Marklund SL, Westman NG, Lundgren E, Roos G. Copper-and zinc-containing superoxide dismutase, manganese-containing Superoxide dismutase, catalase, and glutathione per-oxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res 1982, 42: 1955–1961.

    PubMed  CAS  Google Scholar 

  108. Zhang Y, Marcillat O, Giulivi C, Ernster L, Davies KJ. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 1990, 265: 16,330–16,336.

    PubMed  CAS  Google Scholar 

  109. Vroegop SM, Decker DE, Buxser SE. Localization of damage induced by reactive oxygen species in cultured cells. Free Rad Biol Med 1995, 18: 141–151.

    Article  PubMed  CAS  Google Scholar 

  110. Zwinzinski CW, Schmid HH. Peroxidative damage to cardiac mitochondria: Identification and purification of modified adenine nucleotide translocase. Arch Biochem Biophys 1992, 294: 178–183.

    Article  Google Scholar 

  111. Giron-Calle J, Zwinzinski CW, Schmid HH. Peroxidative damage to cardiac mitochondria. Arch Biochem Biophys 1994, 315: 1–7.

    Article  PubMed  CAS  Google Scholar 

  112. Guierrieri F, Yagi T, Papa S. On the mechanism of H+ translocation by mitochondrial H+-ATPase. Studies with chemical modifier of tyrosine residues. J Bioenerg Biomembr 1984, 16: 251–262.112.

    Article  Google Scholar 

  113. Mehrotra S, Kakkar P, Viswanathan PN. Mitochondrial damage by active oxygen species in vitro. Free Rad Biol Med 1991, 10: 277–285.

    Article  PubMed  CAS  Google Scholar 

  114. Sun D, Gilboe DD. Ischemia-induced changes in cerebral mitochondrial free fatty acids, phospholipids, and respiration in the rat. J Neurochem 1994, 62: 1921–1928.

    Article  PubMed  CAS  Google Scholar 

  115. Ardelt BK, Borowitz JL, Maduh EU, Swain SL, Isom GE. Cyanide-induced lipid peroxidation in different organs: Subcellular distribution and hydroperoxide generation in neuronal cells. Toxicology 1994, 89: 127–137.

    Article  PubMed  CAS  Google Scholar 

  116. Hackenbrock, CR. Lateral diffusion and electron transfer in the mitochondrial inner membrane. Trends Biochem Sci 1981, 6: 151–154.

    Article  CAS  Google Scholar 

  117. Bates TE, Heales SJ, Davies SE, Boakye P, Clark JB. Effects of 1-methyl-4-phenylpyridinium on isolated rat brain mitochondria: Evidence for a primary involvement of energy depletion. J Neurochem 1994, 63: 640–648.

    Article  PubMed  CAS  Google Scholar 

  118. Cleeter MW, Cooper JM, Schapira AH. Irreversible inhibition of mitochondrial complex I by l-methyl-4-phenylpyridinium: Evidence for free radical involvement. J Neurochem 1992, 58: 786–789.

    Article  PubMed  CAS  Google Scholar 

  119. Storey E, Hyman BT, Jenkins B, Brouillet E. 1-Methyl-4-phenylpyridinium produces excitotoxic lesions in rat striatum as a result of impairment of oxidative metabolism. J Neurochem 1992, 58: 1975–1978.

    Article  PubMed  CAS  Google Scholar 

  120. Kennedy CH, Church DF, Winston GW, Pryor WA. Tert-butyl hydroperoxide-induced radical production in rat liver mitochondria. Free Rad Biol Med 1992, 12: 381–387.

    Article  PubMed  CAS  Google Scholar 

  121. Corbisier P, Raes M, Michiels C, Pigeolet E, Houbion A, Delaive E, Remacle J. Respiratory activity of isolated rat liver mitochondria following in vitro exposure to oxygen species. Mech Ageing Dev 1990, 51: 249–263.

    Article  PubMed  CAS  Google Scholar 

  122. Salganik RI, Shabalina IG, Solovyova NA, Kolosova NG, Solovyov VN, Kolpakov AR. Impairment of respiratory functions in mitochondria of rats with an inherited hyper production of free radicals. Biochem Biophys Res Commun 1994, 205: 180–185.

    Article  PubMed  CAS  Google Scholar 

  123. Harmon HJ, Nank S, Floyd RA. Age-dependent changes in rat mitochondria of synaptic and non-synaptic origins. Mech Ageing & Devel 1987, 38: 167–177.

    Article  CAS  Google Scholar 

  124. Parker WD, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 1989, 26: 719–723.

    Article  PubMed  Google Scholar 

  125. Di Monte DA, Sandy MS, Jewell SA, Adornato B, Tanner CM, Langston JW. Oxidative phosphorylation by intact muscle mitochondria in Parkinson’s disease. Neurodegen 1993, 2: 275–281.

    Google Scholar 

  126. Parker WD, Boyson SJ, Luder AS, Parks JK. Evidence for a defect in NADH:ubiquinone oxidoreductase (complex 1) in Huntington’s disease. Neurology 1990, 40: 1231–1234.

    Article  PubMed  Google Scholar 

  127. Sims NR, Finegan JM, Blass JP, Bowen D, Neary D. Mitochondrial function in brain tissue in primary degenerative dementia. Brain Res 1987b, 436: 30–38.

    Article  PubMed  CAS  Google Scholar 

  128. Parker WD, Mahr NJ, Filley CM, Parke JK, Hughes D, Young DA, Cullum CM. Reduced platelet cytochrome c oxidase activity in Alzheimer’s disease. Neurology 1994, 44: 1086–1090.

    Article  PubMed  Google Scholar 

  129. Mutisya EM, Bowling AC, Beal MF. Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease. J Neurochem 1994, 63: 2179–2184.

    Article  PubMed  CAS  Google Scholar 

  130. Kumar U, Dunlop DM, Richardson JS. Mitochondria from Alzheimer’s fibroblasts show decreased uptake of calcium and increased sensitivity to free radicals. Life Sci 1994, 54: 1855–1860.

    Article  PubMed  CAS  Google Scholar 

  131. Sims NR, Blass JP, Murphy C, Bowen DM, Neary D. Phosphofructokinase activity in the brain in Alzheimer’s disease. Ann Neurol 1987a, 21: 509–510.

    Article  PubMed  CAS  Google Scholar 

  132. Corral DM, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC. Mitochondrial DNA deletions in human brain: regional variability and increase with advancing age. Nat Genet 1992, 2: 324–329.

    Article  Google Scholar 

  133. Ferrándiz ML, Martinez M, DeJuan E, Diez A, Bustos G, Miguel J. Impairment of mitochondrial oxidative phosphorylation in the brain of aged mice. Brain Res 1994, 644: 335–338.

    Article  PubMed  Google Scholar 

  134. Pettegrew JW, Klunk WE, Panchalingham K, Kanfer JN, McClure RJ. Alterations of cerebral metabolism in probable Alzheimer’s disease. Neurobiol Aging 1994, 15: 117–132.

    Article  PubMed  CAS  Google Scholar 

  135. Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR. Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 1993, 43: 2689–2695.

    Article  PubMed  CAS  Google Scholar 

  136. Marklund, SL, Westman, NG, Lundgren, E, Roos G. Copper-and zinc-containing super-oxide dismutase, maganese-containing Superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell line and normal human tissues. Cancer Res 1982, 42: 1955–1961.

    PubMed  CAS  Google Scholar 

  137. Savolainen H. Superoxide dismutase and glutathione peroxidase activity in rat brain. Res Commun Chem Pathol Pharmacol 1978, 21: 173–176.

    PubMed  CAS  Google Scholar 

  138. Ben-Yoseph O, Boxer P, Ross BD. Oxidative stress in the central nervous system: monitoring the metabolic response using the pentose phosphate pathway. Dev Neurosci 1995, 16: 328–336.

    Article  Google Scholar 

  139. Ribiere C, Hininger I, Saffar-Boccara C, Sabourault D, Nordmann R. Mitochondrial respiratory activity and Superoxide radical generation in the liver, brain and heart after chronic ethanol intake. Biochem Pharmacol 1994, 47: 1827–1833.

    Article  PubMed  CAS  Google Scholar 

  140. Ding H, Robertson DE, Daldal F, Dutton PL. Cytochrome be1 complex [2Fe-2S] cluster and its interaction with ubiquinone and ubihydroquinone at the Qo site: a double-occupancy site model. Biochemistry 1992, 31: 3144–3158.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dykens, J.A. (1999). Free Radicals and Mitochondria Dysfunction in Excitotoxicity and Neurodegenerative Disease. In: Koliatsos, V.E., Ratan, R.R. (eds) Cell Death and Diseases of the Nervous System. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1602-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1602-5_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7213-7

  • Online ISBN: 978-1-4612-1602-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics