Skip to main content

Nutrient Manipulations in Terrestrial Ecosystems

  • Chapter
Methods in Ecosystem Science

Abstract

Nutrient addition experiments are the ecosystem manipulations that are undertaken most frequently, because they are relatively easy and inexpensive to perform. In addition, because of the widespread nature of nutrient limitation in terrestrial ecosystems (Vitousek and Howarth 1991), these experiments almost always show dramatic results. As with much of ecology, the roots of nutrient manipulation experiments come from agriculture, where fertilizer trials are regularly used to determine which nutrients most strongly limit plant growth and what the biological and economic returns are for different levels of nutrient addition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J.D.; Magill, A.; Boone, R.; Melillo, H.M.; Steudler, P.; Bowden, R. Plant and soil responses to chronic nitrogen additions at the Harvard Forest, Massachusetts. Ecol. Applic. 3:156–166; 1993.

    Google Scholar 

  • Aerts, R.; Wallen, B.; Malmer, N. Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J. Ecol. 80:131–140; 1992.

    Google Scholar 

  • Aerts, R.; Berendse, F. The effect of increased nutrient availability on vegetation dynamics in wet health-lands. Vegetatio 76:63–69; 1988.

    Google Scholar 

  • Arnolds, E. Former and present distribution of stipitate hydnaceous fungi (Basidiomycetes) in the Netherlands. Nova Hedwigia 48:107–142; 1989.

    Google Scholar 

  • Beaton, J.C.; Fox, R.L.; Jones, M.B. Production, marketing, and use of sulfur products. In: Engelstad, O.P., ed. Fertilizer Technology and Use. 3rd ed. Madison, WI: Soil Science Society of America; 1985:416–454.

    Google Scholar 

  • Berendse, F.; Elberse, W.T.H.; Geerts, R.H.M.E. Competition and nitrogen loss from plants in grassland ecosystems. Ecology 73:46–53; 1992.

    Google Scholar 

  • Bilbrough, C.J.; Caldwell, M.M. Exploitation of springtime ephemeral N pulses by six Great Basin plant species. Ecology 78:231–243; 1997.

    Google Scholar 

  • Bobbink, R. Effects of nutrient enrichment in Dutch chalk grassland. J. Appl. Ecol. 28:28–41; 1991.

    Google Scholar 

  • Bolland, M.D.A.; Weatherly, A.J.; Gilkes, R.J. The long-term residual value of rock phosphate and superphosphate fertilizers for various plant species under field conditions. Fertil. Res. 20:89–100; 1989.

    CAS  Google Scholar 

  • Boswell, F.C. Production marketing and use of nitrogen fertilizers. In: Engelstad, O.P., ed. Fertilizer Technology and Use. 3rd ed. Madison, WI: Soil Science Society of America; 1985:229–292.

    Google Scholar 

  • Bouchard, D.C.; Williams, M.K.; Surampalli, R.Y. Nitrate contamination of groundwater: Sources and potential health effects. Am. Water Works Assoc. J. 84:85–90; 1992.

    CAS  Google Scholar 

  • Bowman, W.D.; Theodose, T.A.; Schardt, J.C.; Conant, R.T. Constraints of nutrient availability on primary production in two alpine tundra communities. Ecology 74:2085–2097; 1993.

    Google Scholar 

  • Bramley, R.G.V.; Barrow, N.J. The reaction between phosphate and dry soil. II. The effect of time, temperature and moisture status during incubation on the amount of plant available P. J. Soil Sci. 43:759–766; 1992.

    CAS  Google Scholar 

  • Bremer, E.; Kuikman, P. Influence of competition for nitrogen in soil on net mineralization of nitrogen. Plant Soil 190:119–126; 1997.

    CAS  Google Scholar 

  • Bremner, J.M. Recent research on problems in the use of urea as a nitrogen fertilizer. Fertil. Res. 42:321–329; 1995.

    CAS  Google Scholar 

  • Bristow, A.W.; Ryden, J.C., Whitehead, D.C. The fate at several time intervals of 15N-labeled ammonium nitrate applied to an established grass sward. J. Soil Sci. 38:245–254; 1987.

    CAS  Google Scholar 

  • Buchmann, N.; Gebauer, G.; Schulze, E.-D. Partitioning of 15N-labeled ammonium and nitrate among soil, litter, below-and above-ground biomass of trees and understory in a 15-year-old Picea abies plantation. Biogeochemistry 33:1–23; 1996.

    Google Scholar 

  • Chabrol, M.; Powlson, D.S.; Hornby, D. Uptake by maize (Zea mays L.) of nitrogen from 15N-labeled dazomet, 15N-labeled fertilizer and from the soil microbial biomass. Soil Biol. Biochem. 20:517–523; 1988.

    CAS  Google Scholar 

  • Chang, S.X.; Preston, C.M.; McCullough, K.; Weetman, G.F.; Barker, J. Effect of understory competition on distribution and recovery of 15N applied to a western red cedar-western hemlock clear-cut site. Can. J. For. Res. 26:313–321; 1996.

    Google Scholar 

  • Chapin, F.S., III. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11:233–260; 1980.

    CAS  Google Scholar 

  • Chapin, F.S., III, Vitousek, PM, Van Cleve, K. The nature of nutrient limitation in plant communities. Am. Naturalist 127:48–58; 1986.

    Google Scholar 

  • Chapin, F.S., III; Bloom, A.J.; Field, C.B.; Waring, R.H. Plant responses to multiple environmental factors. BioScience 37:49–57; 1987.

    Google Scholar 

  • Chapin, F.S., III; Walker, L.R.; Fastie, C.L.; Sharman, L.C. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol. Monog. 64:149–175; 1994.

    Google Scholar 

  • Chapin, F.S., III; Shaver, G.R.; Giblin, A.E.; Nadelhoffer, K.G.; Laundre, J.A. Response of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711; 1995.

    Google Scholar 

  • Clarholm, M. Microbial biomass P, labile P, and acid phosphatase activity in the humus layer of a spruce forest, after repeated additions of fertilizers. Biol. Fertil. Soils 16:287–292; 1993.

    CAS  Google Scholar 

  • Clinton, P.W.; Mead, D.J. Competition for nitrogen between Pinus radiata and pasture. II. Trends in plant and soil processes. Can. J. For. Res. 24:889–896; 1994.

    CAS  Google Scholar 

  • Crabtree, R.C.; Bazzaz, F.A. Seedling response of four birch species to simulated nitrogen deposition: ammonium vs. nitrate. Ecol. Applic. 3:315–321; 1993.

    Google Scholar 

  • Cui, M.; Caldwell, M.M. A large ephemeral release of nitrogen upon wetting of dry soil and corresponding root responses in the field. Plant Soil 191:291–299; 1997.

    CAS  Google Scholar 

  • Daniels, R.B.; Gilliam, J.W. Sediment and chemical load reduction by grass and riparian filters. Soil Sci. Soc. Am. J. 60:246–251; 1996.

    CAS  Google Scholar 

  • Davidson, E.A.; Hart, S.C.; Shanks, C.A.; Firestone, M.K. Measuring gross nitrogen mineralization, immobilization, and nitrification by 15N isotopic pool dilution in intact soil cores. J. Soil Sci. 42:335–349; 1991.

    CAS  Google Scholar 

  • Di, H.J.; Condron, L.M.; Fossard, E. Isotope techniques to study phosphorus cycling in agricultural and forest soils: a review. Biol. Fertil. Soils 24:1–12; 1997.

    CAS  Google Scholar 

  • Drury, C.F.; Beauchamp, E.G. Ammonium fixation, release, nitrification, and immobilization in high-fixing and low-fixing soils. Soil Sci. Soc. Am. J. 55:125–129; 1991.

    CAS  Google Scholar 

  • Eriksen, J. Incorporation of S into soil organic matter in the field as determined by the natural abundance of stable S isotopes. Biol. Fertil. Soils 22:149–155; 1996.

    Google Scholar 

  • Fan, A.M.; Steinberg, V.E. Health implications of nitrate and nitrite in drinking water: An update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regul. Toxicol. Pharmacol. 23:35–43; 1996.

    PubMed  CAS  Google Scholar 

  • Feijtel, T.C.; Salingar, Y.; Hordijk, C.A.; Sweerts, J.P.R.A.; van Breemen, N.; Cappenberg, T.H.E. Sulfur cycling in a Dutch moorland pool under elevated atmospheric S-deposition. Water Air Soil Pollut 44:215–234; 1989.

    CAS  Google Scholar 

  • Fernandez, I.J.; Rustad, L.E. Soil response to sulfur and nitrogen treatments in a northern New England (USA) low elevation coniferous forest. Water Air Soil Pollut. 52:23–40; 1990.

    CAS  Google Scholar 

  • [FAO] Food and Agricultural Organization of the United Nations. Fertilizer Strategies. Rome: FAO; 1987.

    Google Scholar 

  • Forsius, M.; Kleemola, S.; Starr, M.; Ruoho-Airola, T. Ion mass budgets for small forested catchments in Finland. Water Air Soil Poll. 79:19–38; 1995.

    CAS  Google Scholar 

  • Foster, N.W.; Beauchamp, E.G.; Corke, C.T. Immobilization of nitrogen-15-labeled urea in a Jack Pine forest floor. Soil Sci. Soc. Am. J. 49:448–452; 1985.

    CAS  Google Scholar 

  • Friedland, A.J.; Miller, E.K.; Battles, J.J.; Thorne, J.F. Nitrogen deposition, distribution and cycling in a sub-alpine spruce-fir forest in the Adirondacks, New York, USA. Biogeochemistry 14:31–55; 1991.

    CAS  Google Scholar 

  • Ghani, A.; McLaren, R.G.; Swift, R.S. The incorporation and transformation of 35S in soil: Effects of soil conditioning and glucose or sulphate additions. Soil Biol. Biochem. 25:327–335; 1993.

    CAS  Google Scholar 

  • Goodman, G.T.; Perkins, D.F. The role of mineral nutrients in Eriophorum communities. III. Growth response to added inorganic elements in two Eriophorum vaginatum communities. J. Ecol. 56:667–683; 1968.

    Google Scholar 

  • Gunn, J.M. Restoration and recovery of an industrial region: Progress in restoring the smelter-damaged landscape near Sudbury, Canada. New York: Springer-Verlag; 1995.

    Google Scholar 

  • Hart, P.B.S.; Rayner, J.H.; Jenkinson, D.S. Influence of pool substitution on the interpretation of fertilizer experiments with 15N. J. Soil Sci. 37:389–403; 1986.

    CAS  Google Scholar 

  • Hart, S.C.; Firestone, M.K.; Paul, E.A.; Smith, J.L. Flow and fate of soil nitrogen in an annual grassland and a young mixed-conifer forest. Soil Biol. Biochem. 25:431–442; 1993.

    Google Scholar 

  • Hart, S.C.; Nason, G.E.; Myrold, D.D.; Perry, D.A. Dynamics of gross nitrogen transformations in an old-growth forest: The carbon connection. Ecology 75:880–891; 1994.

    Google Scholar 

  • Hauck, R. Slow-release and bioinhibitor-amended nitrogen fertilizers. In: Engelstad, O.P., ed. Fertilizer Technology and Use. 3rd ed. Madison, WI: Soil Science Society of America; 1985:294–322.

    Google Scholar 

  • Hauck, R.D.; Meisinger, J.J.; Mulvaney, R.L. Practical considerations in the use of nitrogen tracers in agricultural and environmental research. In: Weaver, R.W.; Angle, J.S.; Bottomley, P.S., eds. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Madison, WI: Soil Science Society of America; 1994:907–950.

    Google Scholar 

  • He, Z.L.; Zhu, J. Transformation kinetics and potential availability of specifically-sorbed phosphate in soils. Nutr. Cycl. Agroecosyst. 51:209–215; 1998.

    CAS  Google Scholar 

  • Hobbie, S.E.; Chapin, F.S., III. The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to temperature manipulation. Ecology 79:1526–1544; 1998.

    Google Scholar 

  • Hogg, P.; Squires, P.; Fitter, A.H. Acidification, nitrogen deposition and rapid Vegetational change in a small valley mire in Yorkshire. Biol. Conserv. 71:143–153; 1995.

    Google Scholar 

  • Hungate, B.A.; Chapin, ES., III; Zhong, H.; Holland, E.A.; Field, C.B. Stimulation of grassland nitrogen cycling under carbon dioxide enrichment. Oecologia 109:149–153; 1997.

    Google Scholar 

  • Imo, M.; Timmer, V.R. Growth nutrient allocation and water relations of mesquite Prosopis-Chilensis seedlings at differing fertilization schedules. For. Ecol. Manage. 55:279–294; 1992.

    Google Scholar 

  • Ingestad, T. Nitrogen stress in birch seedlings. II. N, K, P, Ca, and Mg nutrition. Physiol. Planta 45:149–157; 1979.

    CAS  Google Scholar 

  • Jackson, L.E.; Schimel, J.P; Firestone, M.K. Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biol. Biochem. 21:409–415; 1989.

    Google Scholar 

  • Jenkinson, D.S.; Fox, R.H.; Rayner, J.H. Interactions between fertilizer nitrogen and soil nitrogen, the so-called “priming” effect. J. Soil Sci. 36:425–444; 1995.

    Google Scholar 

  • Jenssen, P.D.; Maehlum, T.; Roseth, R.; Braskerud, B.; Syversen, N.; Njos, A.; Krogstad, T. The potential of natural ecosystem self-purifying measures for controlling nutrient inputs. Mar. Pollut. Bull. 29:420–425; 1994.

    CAS  Google Scholar 

  • Jonasson, S.; Vestergaard, P.; Jensen, M.; Michelsen, A. Effects of carbohydrate amendments on nutrient partitioning, plant and microbial performance of a grassland-shrub ecosystem. Oikos 75:220–226; 1996.

    Google Scholar 

  • Jones, M.B.; Martin, W.E. Sulfate-sulfur concentration as an indicator of sulfur status in various California dryland pasture species. Soil Sci. Soc. Am. Proc. 28:539–541; 1964.

    Google Scholar 

  • Jones, M.B.; Lawler, P.W.; Ruckman, J.E. Differences in annual clover response to phosphorus and sulfur. Agron. J. 62:439–442; 1970.

    Google Scholar 

  • Jones, M.B.; Williams, W.A.; Vaughn, C.E. Soil characteristics related to production on subclover-grass range. J. Range Manage. 36:444–446; 1983.

    Google Scholar 

  • Jones, M.B.; Demmend, M.W.; Vaughn, C.E.; Deo, G.P.; Dally, M.R.; Center, D.M. Effects of phosphorus and sulfur fertilization on subclover-grass pasture production as measured by lamb gain. J. Prod. Agric. 3:534–539; 1990.

    Google Scholar 

  • Kissel, D.E.; Sander, D.H.; Ellis, R., Jr. Fertilizer-plant interactions in alkaline soils. In: Engelstad, O.P., ed. Fertilizer Technology and Use. 3rd ed. Madison, WI: Soil Science Society of America; 1995:153–196.

    Google Scholar 

  • Koerselman, W.; Mueleman, A.F.M. The Vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33:1441–1450; 1996.

    Google Scholar 

  • Koopmans, C.J.; Tietema, A.; Boxman, A.W. The fate of 15N enriched throughfall in two coniferous forest stands at different nitrogen deposition levels. Biogeochemistry 34:19–44; 1996.

    CAS  Google Scholar 

  • Koopmans, C.J.; Van Dam, D.; Tietema, A.; Verstraten, J.M. Natural 15N abundance in two nitrogen saturated forest ecosystems. Oecologia 111:470–480; 1997.

    Google Scholar 

  • Koren’kov, D.A. Nitrogen Fertilizers. New Delhi: Oxonian Press; 1983.

    Google Scholar 

  • Körner, C. The nutritional status of plants from high altitudes. A worldwide comparison. Oecologia 81:379–391; 1989.

    Google Scholar 

  • Korner, C. Towards a better experimental basis for upscaling plant responses to elevated CO2 and climate warming. Plant cell Environ. 18:1101–1110; 1995.

    Google Scholar 

  • Korner, C. Alpine Plant Life. Heidelberg: Springer-Verlag; 1999.

    Google Scholar 

  • Korner, C.; Larcher, W Plant life in cold climates. In: Long, S.F., Woodward, F.I., eds. Plants and Temperature. Cambridge: The Company of Biol Ltd. Symp Soc Exp Biol 42:25–57; 1988.

    Google Scholar 

  • Lawrence, G.B.; David, M.B.; Shortle, W.C. A new mechanism for calcium loss in forest-floor soils. Nature (Lond.) 378:162–165; 1995.

    CAS  Google Scholar 

  • Leon, M.; Laine, P.; Ourry, A.; Boucaud, J. Increased uptake of native soil nitrogen by roots of Lolium multiflorum Lam. after nitrogen fertilization is explained by a stimulation of the uptake process itself. Plant Soil 173:197–203; 1995.

    CAS  Google Scholar 

  • Lovell, R.D.; Hatch, D.J. Stimulation of microbial activity following spring applications of nitrogen. Biol. Fertil. Soils 26:28–30; 1998.

    Google Scholar 

  • Magill, A.H.; Aber, J.D.; Hendricks, J.J.; Bowden, R.D.; Melillo, J.M.; Steudler, P.A. Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecol. Applic. 7:402–415; 1997.

    Google Scholar 

  • Malhi, S.S.; Nyborg, M.; Solberg, E.D. Recovery of 15N-labeled urea as influenced by straw addition and method of placement. Can. J. Soil Sci. 69:543–550; 1989.

    Google Scholar 

  • Marrs, R.H. Techniques for reducing soil fertility for nature conservation purposes: A review in relation to research at Roper’s Heath, Suffolk, England. Biol. Conserv. 34:307–332; 1985.

    Google Scholar 

  • Muller, M.M. The fate of clover-derived nitrogen (15N) during decomposition under field conditions: Effects of soil type. Plant Soil 105:141–147; 1988.

    CAS  Google Scholar 

  • Munzenberger, B.; Schmincke, B.; Strubelt, F.; Huttl, R.F. Reaction of mycorrhizal and non-mycorrhizal scots pine fine roots along a deposition gradient of air pollutants in eastern Germany. Water Air Soil Pollut. 85:1191–1196; 1995.

    Google Scholar 

  • Nadelhoffer, K.J.; Downs, M.R.; Fry, B.; Aber, J.D.; Magill, A.H.; Melillo, J.M. The fate of 15N-labeled nitrate additions to a northern hardwood forest in eastern Maine, USA. Oecologia 103:292–301; 1995.

    Google Scholar 

  • Nannipieri, P.; Ciardi, C.; Palazzi, T. Plant uptake, microbial immobilization, and residual soil fertilizer of urea-nitrogen in a grass-legume association. Soil Sci. Soc. Am. J. 49:452–457; 1985.

    CAS  Google Scholar 

  • Nommik, H.; Pluth, D.J.; Larsson, K.; Mahendrappa, M.K. Isotopic fractionation accompanying fertilizer nitrogen transformations in soil and trees of a Scots pine ecosystem. Plant Soil 158:169–182; 1994.

    CAS  Google Scholar 

  • Norton, J.M.; Firestone, M.K. N dynamics in the rhizosphere of Pinus ponderosa seedlings. Soil Biol. Biochem. 28:351–362; 1996.

    CAS  Google Scholar 

  • Pilbeam, C.J.; McNeill, A.M.; Harris, H.C.; Swift, R.S. Effect of fertilizer rate and form on the recovery of 15N-labeled fertilizer applied to wheat in Syria. J. Agric. Sci. 128:415–424; 1997.

    Google Scholar 

  • Power, J.F.; Wilhelm, W.W; Doran, J.W. Recovery of fertilizer nitrogen by wheat as affected by fallow method. Soil Sci. Soc. Am. J. 50:1499–1503; 1986.

    Google Scholar 

  • Preston, C.M.; Mead, D.J. Growth response and recovery of 15N-fertilizer one and eight growing seasons after application to lodgepole pine in British Columbia. For. Ecol. Manage. 65:219–229; 1994.

    Google Scholar 

  • Randlett, D.L.; Zak, D.R.; Macdonald, N.W Sulfate adsorption and microbial immobilization in northern hardwood forests along an atmospheric deposition gradient. Can. J. For. Res. 22:1843–1850; 1992.

    CAS  Google Scholar 

  • Rastetter, E.B.; Shaver, G.R. A model of multiple element limitation for acclimating Vegetation. Ecology 73(4): 1157–1174; 1992.

    Google Scholar 

  • Recous, S., Machet, J.M.; Mary, R. The partitioning of fertilizer-N between soil and crop: Comparison of ammonium and nitrate applications. Plant Soil 144:101–111; 1992.

    CAS  Google Scholar 

  • Redfield, A.C. The biological control of chemical factors in the environment. Am. Sci. 46:205–221; 1958.

    CAS  Google Scholar 

  • Rogers, K.H.; Breen, P.F.; Chick, AJ. Nitrogen removal in experimental wetland treatment systems: Evidence for the role of aquatic plants. Res. J. Water Pollut. Contr. Fed. 63:934–941; 1991.

    CAS  Google Scholar 

  • Rutherford, P.M.; Juma, N.G. Effect of glucose amendment on microbial biomass, spelling fertilizer 15N-recovery and distribution in a barley-soil-system. Biol. Fertil. Soils 12:228–232; 1992.

    CAS  Google Scholar 

  • Schimel, D.S. Theory and application of Tracers. New York: Academic; 1993.

    Google Scholar 

  • Schlesinger, W.H. Bio geochemistry: An Analysis of Global Change. New York: Academic; 1997.

    Google Scholar 

  • Shaver, G.R.; Chapin, F.S., III. Response to fertilization by various plant growth forms in an Alaskan tundra: Nutrient accumulation and growth. Ecology 61:662–675; 1980.

    CAS  Google Scholar 

  • Shaver, G.R.; Chapin, F.S., III, Gartner, B.L. Factors limiting seasonal growth and peak biomass accumulation in Eriophorum vaginatum in Alaskan tussock tundra. J Ecol. 74:257–278; 1986.

    Google Scholar 

  • Shaver, G.R.; Chapin, F.S., III. Long-term responses to factorial NPK fertilizer treatment by Alaskan wet and moist tundra sedge species. Ecography 18:259–275; 1995.

    Google Scholar 

  • Shock, C.C.; Jones, M.B.; Williams, W.A.; Center, D.M. Effect of sulfur fertilization on three annual range species I. Laughlin soil experiment. Agron. J. 75:515–520; 1983.

    CAS  Google Scholar 

  • Stamford, N.P.; Ortega, A.D.; Temprano, F.; Santos, D.R. Effects of phosphorus fertilization and inoculation of Bradyrhizobium andmycorrhizal fungi on growth of Mimosa caesalpiniaefolia in an acid soil. Soil Biol. Biochem. 29:959–964; 1997.

    CAS  Google Scholar 

  • Tamm, C.O. Some observations on nutrient turnover in a bog community dominated by Eriophorum vaginaturn L. Oikos 5:189–194; 1954.

    Google Scholar 

  • Tanner, E.V.J.; Vitousek, P.M.; Cuevas, E. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22; 1998.

    Google Scholar 

  • Tilman, D. Plant strategies and the dynamics and function of plant communities. Princeton, NJ: Princeton Univ. Pr.; 1988.

    Google Scholar 

  • Tisdale, S.L.; Nelson, W.L.; Beaton, J.D.; Havlin, J.L. Soil fertility and fertilizers. New York: Macmillan; 1993.

    Google Scholar 

  • Vaast, P.; Zasoski, R.J. Effects of Va-mycorrhizae and nitrogen sources on rhizosphere soil characteristics growth and nutrient acquisition of coffee seedlings Coffea arabica L. Plant Soil 147:31–39; 1992.

    CAS  Google Scholar 

  • van Breemen, N.; van Dijk, H.F.G. Ecosystem effects of atmospheric deposition of nitrogen in the Netherlands. Environ. Pollut. 54:249–274; 1988.

    PubMed  Google Scholar 

  • van den Driessche, R. Prediction of mineral nutrient status of trees by foliar analysis. Botan. Rev. 40:347–394; 1974.

    Google Scholar 

  • Vitousek, P.M.; Howarth, R.W. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87–115; 1991.

    Google Scholar 

  • Vitousek, P.M.; Farrington, H. Nutrient limitation and soil development: Experimental test of a biogeochemical theory. Biogeochemistry 37:63–75; 1997.

    CAS  Google Scholar 

  • Vitousek, P.M.; Aber, J.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, G.D. Human alterations of the global nitrogen cycle: Causes and consequences. Issues in Ecology. 1. 1997.

    Google Scholar 

  • Walker, T.W.; Syers, J.K. The fate of phosphorus during pedogenesis. Geoderma 15:1–19; 1976.

    CAS  Google Scholar 

  • Wedin, D.; Tilman, D. Competition among grasses along a nitrogen gradient: Initial conditions and mechanisms of competition. Ecol. Monogr. 63:199–229; 1993.

    Google Scholar 

  • Willems, J.H.; Peet, R.K.; Bik, L. Changes in chalk-grassland structure and species richness resulting from selective nutrient additions. J. Vegetat. Sci. 4:203–212; 1993.

    Google Scholar 

  • Wilson, E.J.; Skeffington, R.A. The effects of excess nitrogen deposition on young Norway spruce trees. I. The soil. Environ. Pollut. 86:141–151; 1994.

    CAS  Google Scholar 

  • Woodin, S.J. Effects of acid deposition on arctic Vegetation. In: Woodin, S.J.; Marquiss, M. eds. Ecology of Arctic Environments. Oxford: Blackwell; 1997:219–239.

    Google Scholar 

  • Yarie, J.; Van Cleve, K. Effects of carbon, fertilizer and drought on foliar nutrient concentrations of taiga tree species in interior Alaska. Ecol. Applic. 6:815–827; 1996.

    Google Scholar 

  • Young, R.D.; Westfall, D.G.; Colliver, G.W. Production, marketing and use of phosphorus fertilizers. In: Engelstad, O.P., ed. Fertilizer Technology and Use. 3rd ed. Madison, WI: Soil Science Society of America; 1985:324–376.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eviner, V.T., Chapin, F.S., Vaughn, C.E. (2000). Nutrient Manipulations in Terrestrial Ecosystems. In: Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W. (eds) Methods in Ecosystem Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1224-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1224-9_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98743-9

  • Online ISBN: 978-1-4612-1224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics