Skip to main content

Empirical Process Techniques for Dependent Data

  • Chapter

Abstract

Let (X k) k≥1 be a sequence of random variables with common distribution function F(x) = P(X 1x). Define the empirical distribution function

$$ {{F}_{n}}(x) = \frac{1}{n}\# \{ 1 \leqslant i \leqslant n:{{X}_{1}} \leqslant x\} , $$

and the empirical process by \( \sqrt {n} ({{F}_{n}}(x) - F(x)) \) In this chapter we provide a survey of classical as well as modern techniques in the study of empirical processes of dependent data. We begin with a sketch of the early roots of the field in the theory of uniform distribution mod 1, of sequences defined by X k = {n k ω}, ω ∈ [0, 1], dating back to Weyl’s celebrated 1916 paper. In the second section we provide the essential tools of empirical process theory, and we prove Donsker’s classical empirical process invariance principle for i.i.d. processes. The third section provides an introduction to the subject of weakly dependent random variables. We introduce a variety of mixing concepts, provide necessary technical tools like correlation and moment inequalities, and prove central limit theorems for partial sums. The empirical process of weakly dependent data is investigated in the fourth section, where we put special emphasis on almost sure approximation techniques. The fifth section is devoted to the empirical distribution of U-statistics, defined as

$$ Un(x) = {{\left( {\begin{array}{*{20}{c}} n \\ 2 \\ \end{array} } \right)}^{{ - 1}}}\# \{ 1 \leqslant i < j \leqslant n:h({{X}_{i}},{{X}_{j}}) \leqslant x\} $$

for some symmetric kernel h. We give some applications, e.g., to dimension estimation in the analysis of time series, and prove weak convergence of the corresponding empirical process. Empirical processes of long-range dependent data are the topic of the sixth section. We give an introduction to the area of long-range dependent processes, provide important technical tools for the study of their partial sums and investigate the limit behavior of the empirical process. It turns out that the limit process is of a completely different type as in the case of independent or weakly dependent data, and that this has important consequences for various functionals of the empirical process. The final section is devoted to pair correlations, i.e., U-statistics empirical processes over short intervals associated with the kernel h(x, y) = |x − y|

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Aaronson, R.M. Burton, H.G. Dehling, D. Gilat, T. Hill and B. Weiss: Strong laws for L- and U-statistics. Transactions of the American Mathematical Society 348 (1996), 2845–2865.

    Article  MathSciNet  MATH  Google Scholar 

  2. M.A. Arcones and B. Yu: Central limit theorems for empirical processes and U-processes of stationary mixing sequences. Journal of Theoretical Probability 7 (1994), 47–71.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Avram and M.S. Taqqu: Noncentral limit theorems and Appell polynomials. Annals of Probability 15 (1987), 767–775.

    Article  MathSciNet  MATH  Google Scholar 

  4. R.C. Baker: Metric number theory and the large sieve. Journal of the London Mathematical Society 24 (1981), 34–40.

    Article  MATH  Google Scholar 

  5. J. Beran: Statistical methods for data with long-range dependence (with discussions). Statistical Science 7 (1992), 404–427.

    Article  Google Scholar 

  6. H.C.R Berbee: Random Walks with Stationary Increments and Renewal Theory. Mathematical Centre Tracts 112, Mathematisch Centrum, Amsterdam, 1979.

    MATH  Google Scholar 

  7. R.H. Berk: Limit behavior of posterior distributions when the model is incorrect. Annals of Mathematical Statistics 37 (1966), 51–58.

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Berkes and W. Philipp: An almost sure invariance principle for the empirical distribution function of mixing random variables. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 41 (1977), 115–137.

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Berkes and W. Philipp: Approximation theorems for independent and weakly dependent random vectors. Annals of Probability 7 (1979), 29–54.

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Berkes and W. Philipp: The size of trigonometric and Walsh series and uniform distribution mod 1. Journal of the London Mathematical Society 50 (1994), 454–464.

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Berkes, W. Philipp and R. Tichy: The pair correlation for independent and weakly depedent random variables. Illinois Journal of Mathematics 45 (2001), 559–580.

    MathSciNet  MATH  Google Scholar 

  12. P. Billingsley: Convergence of Probability Measures. John Wiley & Sons, New York, 1968 (2nd edition: J. Wiley, New York, 1999).

    MATH  Google Scholar 

  13. P. Billingsley: Probability and Measure. 3rd edition, John Wiley & Sons, New York, 1995.

    MATH  Google Scholar 

  14. N.H. Bingham, C.M. Goldie and J.L. Teugels: Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

  15. J.R. Blum, D.L. Hanson and L.H. Koopmans: On the strong law of large numbers for a class of stochastic processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 2 (1963), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  16. S.A. Borovkova: Weak convergence of the empirical process of U-statistics structure for dependent observations. Theory of Stochastic Processes 18 (1995), 115–124.

    Google Scholar 

  17. S.A. Borovkova, R.M. Burton and H.G. Dehling: Consistency of the Takens estimator for the correlation dimension. Annals of Applied Probability 9 (1999), 376–390.

    Article  MathSciNet  MATH  Google Scholar 

  18. S.A. Borovkova, R.M. Burton and H.G. Dehling: Limit theorems for functionals of mixing processes with applications to U-statistics and dimension estimation. Transactions of the American Mathematical Society 353 (2001), 4261–4318.

    Article  MathSciNet  MATH  Google Scholar 

  19. S.A. Borovkova, R.M. Burton and H.G. Dehling: From Dimension Estimation to Asymptotics of Dependent U-Statistics. Bolyai Society Mathematical Studies X, Limit Theorems, Balatonlelle, Budapest 2001, 1–34.

    Google Scholar 

  20. R.C. Bradley: Introduction to Strong Mixing Conditions, vol. I. Technical Report, Department of Mathematics, Indiana University, Bloomington, 2001.

    Google Scholar 

  21. L. Breiman: Probability. Addison Wesley, Reading, MA, 1968.

    MATH  Google Scholar 

  22. D. L. Burkholder: Distribution function inequalities for martingales. Annals of Probability 1 (1973), 19–42.

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Carleson: On convergence and growth of partial sums of Fourier series. Acta Mathematica 116 (1966), 135–157.

    Article  MathSciNet  MATH  Google Scholar 

  24. J.W.S. Cassels: Some metrical theorems of Diophantine approximation III. Proceedings of the Cambridge Philosophical Society 46 (1950), 219–225.

    Article  MathSciNet  Google Scholar 

  25. J. W. S. Cassels: An extension of the law of the iterated logarithm. Proceedings of the Cambridge Philosophical Society 47 (1951), 55–64.

    Article  MathSciNet  MATH  Google Scholar 

  26. K. L. Chung: An estimate concerning the Kolmogorov limit distribution. Transactions of the American Mathematical Society 67 (1949), 36–50.

    MathSciNet  MATH  Google Scholar 

  27. M. Csörgő and P. Revész: A new method to prove Strassen type laws of invariance principle II. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 31 (1975), 261–269.

    Article  Google Scholar 

  28. A.R. Dabrowski and H.G. Dehling: Estimating conditional occupation time distributions for dependent sequences. The Canadian Journal of Statistics 24 (1996), 55–65.

    Article  MathSciNet  MATH  Google Scholar 

  29. A.R. Dabrowski, H.G. Dehling, T. Mikosch and O. Sharipov: Poisson limits for U-statistics. Stochastic Processes and Their Applications 99 (2002), 137–157.

    Article  MathSciNet  MATH  Google Scholar 

  30. Yu.A. Davydov: The invariance principle for stationary processes. Theory of Probability and Its Applications 15 (1970), 487–498.

    Article  Google Scholar 

  31. H.G. Dehling: Grenzwertsätze für Summen schwach abhängiger vektor-wertiger Zufallsvariablen. Dissertation, Georg-August-Universität Göttingen, 1981.

    MATH  Google Scholar 

  32. H.G. Dehling: Limit theorems for sums of weakly dependent Banach space valued random variables. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 63 (1983), 393–432.

    Article  MathSciNet  MATH  Google Scholar 

  33. H.G. Dehling: The functional law of the iterated logarithm for von-Mises functionals and multiple Wiener integrals. Journal of Multivariate Analysis 28 (1989), 177–189.

    Article  MathSciNet  MATH  Google Scholar 

  34. H.G. Dehling: Complete convergence of triangular arrays and the law of the iterated logarithm for U-statistics. Statistics and Probability Letters 7 (1989), 319–321.

    Article  MathSciNet  MATH  Google Scholar 

  35. H.G. Dehling and W. Philipp: Almost sure invariance principles for weakly dependent vector-valued random variables. Annals of Probability 10 (1982), 689–701.

    Article  MathSciNet  MATH  Google Scholar 

  36. H.G. Dehling, M. Denker and W. Philipp: Invariance principles for von Mises and U-statistics. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 67 (1984), 139–167.

    Article  MathSciNet  MATH  Google Scholar 

  37. H.G. Dehling, M. Denker and W. Philipp: A bounded law of the iterated logarithm for Hilbert space valued martingales and its application to U-statistics. Probability Theory and Related Fields 72 (1986), 111–131.

    Article  MathSciNet  MATH  Google Scholar 

  38. H.G. Dehling, M. Denker and W. Philipp: The almost sure invariance principle for the empirical process of U-statistic structure. Annales de l’Institut Henri Poincare 23 (1987), 121–134.

    MathSciNet  MATH  Google Scholar 

  39. H.G. Dehling and M.S. Taqqu: The limit behavior of empirical processes and symmetric statistics. Bulletin of the International Statistical Institute 52 (1987), volume 4, 217–234.

    MathSciNet  Google Scholar 

  40. H.G. Dehling and M.S. Taqqu: The empirical process of some long-range dependent sequences with an application to U-statistics. Annals of Statistics 17 (1989), 1767–1783.

    Article  MathSciNet  MATH  Google Scholar 

  41. H.G. Dehling and M.S. Taqqu: Bivariate symmetric statistics of long-range dependent observations. Journal of Statistical Planning and Inference 28 (1991), 153–165.

    Article  MathSciNet  MATH  Google Scholar 

  42. H.G. Dehling and M.S. Taqqu: Continuous functions whose level sets are orthogonal to all polynomials of a given degree. Acta Mathematica Hungarica 60 (1992), 217–224.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Denker: Asymptotic Distribution Theory in Nonparametric Statistics. Vieweg Verlag, Braunschweig, 1985.

    MATH  Google Scholar 

  44. M. Denker and G. Keller: On U-statistics and von Mises statistics for weakly dependent processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 64 (1983), 505–522.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Denker and G. Keller: Rigorous statistical procedures for data from dynamical systems. Journal of Statistical Physics 44 (1986), 67–93.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Denker, Chr. Grillenberger and K. Siegmund: Ergodic Theory on Compact spaces. Lecture Notes in Mathematics 527, Springer Verlag, Berlin, 1976.

    MATH  Google Scholar 

  47. M. Denker, C. Grillenberger and G. Keller: A note on invariance principles for von Mises statistics. Metrika 32 (1985), 197–214.

    Article  MathSciNet  MATH  Google Scholar 

  48. C.M. Deo: A note on empirical processes of strong-mixing sequences. Annals of Probability 1 (1973), 870–875.

    Article  MathSciNet  MATH  Google Scholar 

  49. R.L. Dobrushin and P. Major: Non-central limit theorems for non-linear functionals of Gaussian fields. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 50 (1979), 27–52.

    Article  MathSciNet  MATH  Google Scholar 

  50. M.D. Donsker: An invariance principle for certain probability limit theorems. Memoirs of the American Mathematical Society 6 (1951).

    Google Scholar 

  51. M.D. Donsker: Justification and extension of Doob’s heuristic approach to the Kolmogorov-Smirnov theorems. Annals of Mathematical Statistics 23 (1952), 277–281.

    Article  MathSciNet  MATH  Google Scholar 

  52. J.L. Doob: Heuristic approach to the Kolmogorov-Smirnov theorems. Annals of Mathematical Statistics 20 (1949), 393–403.

    Article  MathSciNet  MATH  Google Scholar 

  53. J.L. Doob: Stochastic Processes. J. Wiley & Sons, New York, 1953.

    MATH  Google Scholar 

  54. P. Doukhan: Mixing: Properties and Examples. Lecture Notes in Statistics 85, Springer Verlag, 1994.

    MATH  Google Scholar 

  55. P. Doukhan and F. Portal: Principe d’invariance faible avec vitesse pour un processus empirique dans un cadre multidimensionnel et fortement melangeant. Comptes Rendus Academie des Sciences Paris, Série I 297 (1983), 505–508.

    MathSciNet  MATH  Google Scholar 

  56. P. Doukhan and F. Portal: Principe d’invariance faible pour la fonction de repartition empirique dans un cadre multidimensionnel et melangeant. Probability and Mathematical Statistics 8 (1987), 117–132.

    MathSciNet  MATH  Google Scholar 

  57. M. Drmota and R.F. Tichy: Sequences, Discrepancies and Applications. Springer Lecture Notes in Mathematics 1651, 1997.

    MATH  Google Scholar 

  58. R.M. Dudley Real Analysis and Probability. Wadsworth, Belmont, California, 1989.

    MATH  Google Scholar 

  59. R.M. Dudley and W. Philipp: Invariance principles for sums of Banach space valued random elements and empirical processes. Zeitschrift für Wahrscheinlichkeitstheorie verwandte Gebiete 62 (1983), 509–552.

    Article  MathSciNet  MATH  Google Scholar 

  60. A. Dvoretzky: Asymptotic normality for sums of dependent random variables. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability Theory (1970), vol. II, 513–535.

    Google Scholar 

  61. V. Eastwood and L. Horváth: Limit theorems for short distances in ℝm. Statistics and Probability Letters 45 (1999), 261–268.

    Article  MathSciNet  MATH  Google Scholar 

  62. P. Erdős: Problems and results in diophantine approximations. Compositio Mathematica 16 (1964), 52–65.

    MathSciNet  Google Scholar 

  63. P. Erdős and LS. Gál: On the law of the iterated logarithm, I-H. Indagationes Mathematicae 17 (1955), 65–76, 77–84.

    Google Scholar 

  64. P. Erdős and M. Kac: On certain limit theorems in the theory of probability. Bulletin of the American Mathematical Society 52 (1946), 292–302.

    Article  MathSciNet  Google Scholar 

  65. P. Erdős and J.F. Koksma: On the uniform distribution modulo 1 of sequences (f (n, θ)). Indagationes Mathematicae 11 (1949), 299–302.

    Google Scholar 

  66. P. Erdős and P. Turán: On a problem in the theory of uniform distribution I. Indagationes Mathematicae 10 (1948), 370–378.

    Google Scholar 

  67. J. Esary, F. Proschan and D. Walkup: Association of random variables with applications. Annals of Mathematical Statistics 38 (1967), 1466–1474.

    Article  MathSciNet  MATH  Google Scholar 

  68. H. Fiedler, W. Jurkat and O. Körner: Asymptotic expansions of certain theta series. Acta Arithmetica 32 (1977), 129–146.

    MathSciNet  MATH  Google Scholar 

  69. A.A. Filippova: Mises’s theorem on the asymptotic behavior of functionals of empirical distribution functions and its statistical applications. Theory of Probability and Its Applications 7 (1961), 24–57.

    Article  Google Scholar 

  70. H. Finkelstein: The law of the iterated logarithm for empirical distributions. Annals of Mathematical Statistics 42 (1971), 607–615.

    Article  MathSciNet  MATH  Google Scholar 

  71. I. S. Gál and J.F. Koksma: Sur l’ordre de grandeur des fonctions sommables. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen 53 (1950), 638–653.

    MATH  Google Scholar 

  72. L. Giraitis and D. Surgailis: Central limit theorem for the empirical process of a linear sequence with long memory. Journal of Statistical Planning and Inference 80 (1999), 81–93.

    Article  MathSciNet  MATH  Google Scholar 

  73. P. Grassberger and I. Procaccia: Characterization of strange attractors. Physical Review Letters 50 (1983), 346–349.

    Article  MathSciNet  Google Scholar 

  74. Y. Guivarc’h, M. Keane and B. Roynette: Marches aléatoires sur les groupes de Lie. Lecture Notes in Mathematics 624, Springer Verlag, Berlin, 1977.

    MATH  Google Scholar 

  75. P. Halmos: The theory of unbiased estimation. Annals of Mathematical Statistics 17 (1946), 34–43.

    Article  MathSciNet  MATH  Google Scholar 

  76. R. Helmers, P. Janssen and R. Serfling: Glivenko-Cantelli properties of some generalized empirical DFs and strong convergence of generalized L-statistics. Probability Theory and Related Fields 79 (1988), 75–93.

    Article  MathSciNet  MATH  Google Scholar 

  77. H.-C. Ho and T. Hsing: On the asymptotic expansion of the empirical process of long-memory moving averages. Annals of Statistics 24 (1996), 992–1024.

    Article  MathSciNet  MATH  Google Scholar 

  78. W. Hoeffding: A class of statistics with asymptotically normal distribution. Annals of Mathematical Statistics 19 (1948), 293–325.

    Article  MathSciNet  MATH  Google Scholar 

  79. W. Hoeffding: The strong law of large numbers for U-statistics. University of North Carolina Mimeo Report No. 302, 1961.

    Google Scholar 

  80. J. Hoffmann-Jørgensen: Stochastic Processes on Polish Spaces. Various Publication Series 39, Aarhus Universitet, Aarhus, Denmark, 1991.

    Google Scholar 

  81. L. Horváth: Short distances on the line. Stochastic Processes and Their Applications 39 (1991), 65–80.

    Article  MathSciNet  MATH  Google Scholar 

  82. R.A. Hunt: On the convergence of Fourier series, orthogonal expansions and their continuous analogues. Southern Illinois University Press (1968), 235–255.

    Google Scholar 

  83. H.E. Hurst: Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers 116 (1951), 770–808.

    Google Scholar 

  84. I.A. Ibragimov: Some limit theorems for stochastic processes stationary in the strict sense. Doklady Akademii Nauk SSSR 125 (1959), 711–714.

    MathSciNet  MATH  Google Scholar 

  85. I.A. Ibragimov: Some limit theorems for stationary processes. Theory of Probability and Its Applications 7 (1962), 349–382.

    Article  Google Scholar 

  86. I.A. Ibragimov and Yu.V. Linnik: Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff Publishing, Groningen, 1971.

    MATH  Google Scholar 

  87. M. Iosifescu: A very simple proof of a generalization of the Gauss-Kuzmin-Lévy theorem on continued fractions and related questions. Revue Roumaine Mathematiques Pures et Appliques 37 (1992), 901–914.

    MathSciNet  MATH  Google Scholar 

  88. V. Isham: Statistical aspects of chaos: a review. In: Networks and Chaos — Statistical and Probabilistic Aspects (O.E. Barndorff-Nielsen, J.L. Jensen and W.S. Kendall, eds.). Chapman & Hall, London, 1993.

    Google Scholar 

  89. J. Kiefer: Skorohod embedding of multivariate rv’s and the sample df. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 24 (1972), 1–35.

    Article  MATH  Google Scholar 

  90. A. Kolmogoroff and G. Seliverstoff: Sur la convergence de series de Fourier. Atti Accad. Naz. Lincei Ser.6 3 (1926), 307–310.

    MATH  Google Scholar 

  91. A.N. Kolmogorov and Yu.A. Rozanov: On strong mixing conditions for stationary Gaussian processes. Theory of Probability and Its Applications 5 (1960), 204–208.

    Article  MathSciNet  Google Scholar 

  92. J. Komlós, P. Major and G. Tusnady: An approximation of partial sums of independent RV’s and the sample DF. I. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 32 (1975), 111–131.

    Article  MATH  Google Scholar 

  93. J. Komlós, P. Major and G. Tusnady: An approximation of partial sums of independent RV’s and the sample DF. II. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 34 (1975), 33–58.

    Article  Google Scholar 

  94. H. Koul and D. Surgailis: Asymptotic expansion of the empirical process of long memory moving averages. In: Empirical Processes for Dependent Data, (H.G. Dehling, T. Mikosch and M. Sørensen, eds.). Birkhäuser, Boston (2002).

    Google Scholar 

  95. J. Kuelbs: Kolmogorov’s law of the iterated logarithm for Banach space valued random variables. Illinois Journal of Mathematics 21 (1977), 784–800.

    MathSciNet  MATH  Google Scholar 

  96. J. Kuelbs and W. Philipp: Almost sure invariance principles for partial sums of mixing B-valued random variables. The Annals of Probability 8 (1980), 1003–1036.

    Article  MathSciNet  MATH  Google Scholar 

  97. L. Kuipers and H. Niederreiter: Uniform Distribution of Sequences. John Wiley, New York, 1974.

    MATH  Google Scholar 

  98. T.L. Lai: Reproducing kernel Hilbert spaces and the law of the iterated logarithm for Gaussian processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 29 (1974), 7–19.

    Article  MATH  Google Scholar 

  99. P. Major: Multiple Wiener-Itô Integrals. Lecture Notes in Mathematics 849, Springer Verlag, Berlin, 1981.

    MATH  Google Scholar 

  100. A. Mandelbaum and M.S. Taqqu: Invariance principle for symmetric statistics. Annals of Statistics 12 (1984), 483–496.

    Article  MathSciNet  MATH  Google Scholar 

  101. B.B. Mandelbrot: The Fractal Geometry of Nature. W.H.Freeman and Company, New York, 1982.

    MATH  Google Scholar 

  102. B.B. Mandelbrot and J.W. van Ness: Fractional Brownian motion, fractional noises and applications. SIAM Review 10 (1968), 909–918.

    Article  Google Scholar 

  103. D. Monrad and W. Philipp: Nearby variables with nearby conditional laws and a strong approximation theorem for Hilbert space valued martingales. Probability Theory and Related Fields 88 (1991), 381–404.

    Article  MathSciNet  MATH  Google Scholar 

  104. D. Nolan and D. Pollard: Functional limit theorems for U-processes. Annals of Probability 16 (1988), 1291–1298.

    Article  MathSciNet  MATH  Google Scholar 

  105. W. Philipp: The central limit problem for mixing sequences of random variables. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 12 (1969), 155–171.

    Article  MathSciNet  MATH  Google Scholar 

  106. W. Philipp: Mixing sequences of random variables and probabilistic number theory. Memoirs of the American Mathematical Society 114 (1971).

    Google Scholar 

  107. W. Philipp: Empirical distribution functions and uniform distribution mod 1. In: Diophantine Approximation and Its Applications. (C. Osgood, ed.), Academic Press, New York (1973), 211–234.

    Google Scholar 

  108. W. Philipp: Limit theorems for lacunary series and uniform distribution mod 1. Acta Arithmetica 26 (1974), 241–251.

    MathSciNet  Google Scholar 

  109. W. Philipp: A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables. Annals of Probability 5 (1977), 319–350.

    Article  MathSciNet  MATH  Google Scholar 

  110. W. Philipp: Invariance principles for sums of mixing random elements and the multivariate empirical process. In: Colloquium Mathematicae Societatis Janos Bolyái: Limit Theorems in Probability and Statistics, Veszprem (1982).

    Google Scholar 

  111. W. Philipp: Invariance principles for independent and weakly dependent random variables. In: Dependence in Probability and Statistics. (Eberlein, E., Taqqu, M.S., eds.) Progress in Probability and Statistics 11 (1986), Birkhäuser, Boston, 225–269.

    Google Scholar 

  112. W. Philipp: Empirical distribution functions and strong approximation theorems for dependent random variables. A problem of Baker in probabilistic number theory. Transactions of the American Mathematical Society 345 (1994), 705–727.

    Article  MathSciNet  MATH  Google Scholar 

  113. W. Philipp and W.F. Stout: Almost sure invariance principles for partial sums of weakly dependent random variables. Memoirs of the American Mathematical Society 161 (1915).

    Google Scholar 

  114. A. Plessner: Über Konvergenz von trigonometrischen Reihen. Journal für reine und angewandte Mathematik 155 (1926), 15–25.

    Google Scholar 

  115. D. Pollard: Convergence of Stochastic Processes. Springer Verlag, New York, 1984.

    Book  MATH  Google Scholar 

  116. P. Revész: The Laws of Large Numbers. Academic Press, New York, London, 1968.

    MATH  Google Scholar 

  117. E. Rio: Covariance inequalities for strongly mixing processes. Annales de l’Institut Henri Poincaré Probability and Statistics 29 (1993), 587–597.

    MathSciNet  MATH  Google Scholar 

  118. E. Rio: About the Lindeberg method for strongly mixing sequences. ESAIM: Probaba-bility and Statistics 1 (1995), 35–61.

    Article  MathSciNet  MATH  Google Scholar 

  119. E. Rio: Théorie asymptotique des processus aléatoires faiblement dépendants. Mathé-matiques et applications 31, Springer Verlag, 2000.

    MATH  Google Scholar 

  120. M. Römersperger: A note on nearby variables with nearby conditional laws. Probability Theory and Related Fields 106 (1996), 371–377.

    Article  MathSciNet  MATH  Google Scholar 

  121. M. Rosenblatt: A central limit theorem and a strong mixing condition. Proceedings of the National Academy of Sciences USA 42 (1956), 43–47.

    Article  MathSciNet  MATH  Google Scholar 

  122. W. Rudin: Principles of Mathematical Analysis. McGraw-Hill, 1976.

    MATH  Google Scholar 

  123. Z. Rudnick and P. Sarnak: The pair correlation function of fractional parts of polynomials. Communications in Mathematical Physics 194 (1998), 61–70.

    Article  MathSciNet  MATH  Google Scholar 

  124. Z. Rudnick and A. Zaharescu: A metric result on the pair correlation of fractional parts of sequences. Acta Arithmetica 89 (1999), 283–293.

    MathSciNet  MATH  Google Scholar 

  125. R. Salem and A. Zygmund: On lacunary trigonometric series. Proceedings of the National Academy of Sciences USA 33 (1947), 333–338.

    Article  MathSciNet  MATH  Google Scholar 

  126. R. Salem and A. Zygmund: La loi du logarithme itéré pour les séries trigonométriques lacunaires. Bulletin des Sciences Mathématiques (2) 74 (1950), 220–224.

    MathSciNet  Google Scholar 

  127. P.K. Sen: Anote on weak convergence of empirical processes for sequences of ∅-mixing random variables. Annals of Mathematical Statistics 42 (1971), 2131–2133.

    Article  MathSciNet  MATH  Google Scholar 

  128. P.K. Sen: Almost sure behavior of U-statistics and von Mises’ differentiable statistical functionals. Annals of Statistics 2 (1974), 387–395.

    Article  MathSciNet  MATH  Google Scholar 

  129. R.J. Serfling: Approximation Theorems of Mathematical Statistics. John Wiley & Sons, New York, 1980.

    Book  MATH  Google Scholar 

  130. R. Serfling: Generalized L-, M- and R-statistics. Annals of Statistics 12 (1984), 76–86.

    Article  MathSciNet  MATH  Google Scholar 

  131. B.W. Silverman: Limit theorems for dissociated random variables. Advances in Applied Probability 8 (1976), 806–819.

    Article  MathSciNet  MATH  Google Scholar 

  132. B.W. Silverman: Convergence of a class of empirical distribution functions of dependent random variables. Annals of Probability 11 (1983), 745–751.

    Article  MathSciNet  MATH  Google Scholar 

  133. B.W. Silverman and T. Brown: Short distances, flat triangles and Poisson limits. Journal of Applied Probability 15 (1978), 815–825.

    Article  MathSciNet  MATH  Google Scholar 

  134. A.V. Skorohod: On a representation of random variables. Theory of Probability and Its Applications 21 (1976), 628–632.

    Article  Google Scholar 

  135. D.A. Sotres and M. Ghosh: Strong convergence of linear rank statistics for mixing processes. Sankya, Series B 39 (1977), 1–11.

    MathSciNet  Google Scholar 

  136. W.F. Stout: Almost Sure Convergence. Academic Press, New York-London, 1974.

    MATH  Google Scholar 

  137. V. Strassen and R.M. Dudley: The central limit theorem and ɛ-entropy. In: Lecture Notes in Mathematics 89, Springer-Verlag, 1969, 224–231.

    Google Scholar 

  138. D. Surgailis: Zones of attraction of self-similar multiple integrals. Lithuanian Mathematical Journal 22 (1983), 327–340.

    Article  MATH  Google Scholar 

  139. F. Takens: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence. Lecture Notes in Mathematics 898, Springer-Verlag, 1981, 336–381.

    Google Scholar 

  140. F. Takens: On the numerical determination of the dimension of the attractor. In: Dynamical Systems and Bifurcations. Lecture Notes in Mathematics 1125, Springer-Verlag, 1985, 99–106.

    Chapter  Google Scholar 

  141. M.S. Taqqu: Weak convergence to fractional Brownian motion and to the Rosenblatt process. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 31 (1975), 287–302.

    Article  MathSciNet  MATH  Google Scholar 

  142. M.S. Taqqu: Convergence of integrated processes of arbitrary Hermite rank. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 50 (1979), 53–83.

    Article  MathSciNet  MATH  Google Scholar 

  143. VA. Volkonskii and Yu.A. Rozanov: Some limit theorems for random functions I. Theory of Probability and Its Applications 4 (1959), 178–197.

    Article  MathSciNet  Google Scholar 

  144. A. Walfisz: Ein metrischer Satz über Diophantische Approximationen. Fundamenta Mathematicae 16 (1930), 361–385.

    MATH  Google Scholar 

  145. H. Weyl: Über die Gleichverteilung von Zahlen mod eins. Mathematische Annalen 77 (1916), 313–352.

    Article  MathSciNet  MATH  Google Scholar 

  146. CS. Withers: Convergence of empirical processes of mixing random variables. Annals of Statistics 3 (1975), 1101–1108.

    Article  MathSciNet  MATH  Google Scholar 

  147. K. Yoshihara: Limiting behaviour of U-statistics for stationary, absolutely regular processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 35 (1976), 237–252.

    Article  MathSciNet  MATH  Google Scholar 

  148. H. Yu: A Glivenko-Cantelli lemma and weak convergence for empirical processes of associated sequences. Probability Theory and Related Fields 95 (1993), 357–370.

    Article  MathSciNet  MATH  Google Scholar 

  149. V.V. Yurinskii: On the error of the Gaussian approximation for convolutions. Theory of Probability and Its Applications 22 (1977), 236–247.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dehling, H., Philipp, W. (2002). Empirical Process Techniques for Dependent Data. In: Dehling, H., Mikosch, T., Sørensen, M. (eds) Empirical Process Techniques for Dependent Data. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0099-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0099-4_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6611-2

  • Online ISBN: 978-1-4612-0099-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics