Skip to main content

A Tutorial on EEG Signal-processing Techniques for Mental-state Recognition in Brain–Computer Interfaces

  • Chapter
  • First Online:
Guide to Brain-Computer Music Interfacing

Abstract

This chapter presents an introductory overview and a tutorial of signal-processing techniques that can be used to recognize mental states from electroencephalographic (EEG) signals in brain–computer interfaces. More particularly, this chapter presents how to extract relevant and robust spectral, spatial, and temporal information from noisy EEG signals (e.g., band-power features, spatial filters such as common spatial patterns or xDAWN, etc.), as well as a few classification algorithms (e.g., linear discriminant analysis) used to classify this information into a class of mental state. It also briefly touches on alternative, but currently less used approaches. The overall objective of this chapter is to provide the reader with practical knowledge about how to analyze EEG signals as well as to stress the key points to understand when performing such an analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that this was estimated before SVM were invented and that SVM are generally less sensitive—although not completely immune—to this curse-of-dimensionality.

  2. 2.

    BCI competitions are contests to evaluate the best signal processing and classification algorithms on given brain signals data sets. See http://www.bbci.de/competition/ for more info.

References

  • Ang K, Chin Z, Wang C, Guan C, Zhang H (2012) Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci 6. doi:10.3389/fnins.2012.00039

  • Arvaneh M, Guan C, Ang K, Quek H (2011) Optimizing the channel selection and classification accuracy in eeg-based BCI. IEEE Trans Biomed Eng 58:1865–1873

    Article  Google Scholar 

  • Baillet S, Mosher J, Leahy R (2001) Electromagnetic brain mapping. IEEE Signal Process Mag 18(6):14–30

    Article  Google Scholar 

  • Balli T, Palaniappan R (2010) Classification of biological signals using linear and nonlinear features. Physiol Meas 31(7):903

    Article  Google Scholar 

  • Bashashati A, Fatourechi M, Ward RK, Birch GE (2007) A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J Neural Eng 4(2):R35–R57

    Article  Google Scholar 

  • Bennett KP, Campbell C (2000) Support vector machines: hype or hallelujah? ACM SIGKDD Explor Newslett 2(2):1–13

    Article  Google Scholar 

  • Besserve M, Martinerie J, Garnero L (2011) Improving quantification of functional networks with eeg inverse problem: evidence from a decoding point of view. Neuroimage 55(4):1536–1547

    Google Scholar 

  • Blankertz B, Kawanabe M, Tomioka R, Hohlefeld F, Nikulin V, Müller KR (2008a) Invariant common spatial patterns: alleviating nonstationarities in brain-computer interfacing. In: Advances in neural information processing systems, vol 20. MIT Press, Cambridge

    Google Scholar 

  • Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller KR (2008b) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Proc Mag 25(1):41–56

    Article  Google Scholar 

  • Blankertz B, Lemm S, Treder M, Haufe S, Müller KR (2010) Single-trial analysis and classification of ERP components—a tutorial. Neuroimage 51(4):1303–1309

    Google Scholar 

  • Boostani R, Moradi MH (2004) A new approach in the BCI research based on fractal dimension as feature and adaboost as classifier. J Neural Eng 1(4):212–217

    Article  Google Scholar 

  • Brodu N, Lotte F, Lécuyer A (2011) Comparative study of band-power extraction techniques for motor imagery classification. In: IEEE symposium on computational intelligence, cognitive algorithms, mind, and brain (CCMB) 2011, IEEE, pp 1–6

    Google Scholar 

  • Brodu N, Lotte F, Lécuyer A (2012) Exploring two novel features for EEG-based brain-computer interfaces: Multifractal cumulants and predictive complexity. Neurocomputing 79(1):87–94

    Article  Google Scholar 

  • Browne MW (2000) Cross-validation methods. J Math Psychol 44(1):108–132

    Article  MathSciNet  MATH  Google Scholar 

  • Brunner C, Naeem M, Leeb R, Graimann B, Pfurtscheller G (2007) Spatial filtering and selection of optimized components in four class motor imagery EEG data using independent components analysis. Pattern Recogn Lett 28(8):957–964. doi:10.1016/j.patrec.2007.01.002. http://www.sciencedirect.com/science/article/B6V15-4MV74WJ-1/2/525b7adff6f9a8a71984d1a2e083e365

  • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Knowledge Discovery and Data Mining 2:121–167

    Article  Google Scholar 

  • Caramia N, Ramat S, Lotte F (2014) Optimizing spatial filter pairs for EEG classification based on phase synchronization. In: International conference on audio, speech and signal processing (ICASSP’2014)

    Google Scholar 

  • Congedo M, Lotte F, Lécuyer A (2006) Classification of movement intention by spatially filtered electromagnetic inverse solutions. Phys Med Biol 51(8):1971–1989

    Article  Google Scholar 

  • Devlaminck D (2011) Optimization of brain-computer interfaces. PhD thesis, University of Ghent

    Google Scholar 

  • Dornhege G, Blankertz B, Curio G, Müller K (2004) Boosting bit rates in non-invasive EEG single-trial classifications by feature combination and multi-class paradigms. IEEE Trans Biomed Eng 51(6):993–1002

    Article  Google Scholar 

  • Dornhege G, Blankertz B, Krauledat M, Losch F, Curio G, Müller KR (2006) Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans Biomed Eng 53(11):2274–2281

    Article  Google Scholar 

  • Duda RO, Hart PE, Stork DG (2001) Pattern recognition, 2nd edn. Wiley, New York

    Google Scholar 

  • Farquhar J, Hill N, Lal T, Schölkopf B (2006) Regularised CSP for sensor selection in BCI. In: Proceedings of the 3rd international BCI workshop

    Google Scholar 

  • Fatourechi M, Bashashati A, Ward R, Birch G (2007) EMG and EOG artifacts in brain computer interface systems: a survey. Clin Neurophysiol 118(3):480–494

    Article  Google Scholar 

  • Fazel-Rezai R, Allison B, Guger C, Sellers E, Kleih S, Kübler A (2012) P300 brain computer interface: current challenges and emerging trends. Frontiers Neuroeng 5(14). doi:10.3389/fneng.2012.00014

  • Friedman JHK (1997) On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Min Knowl Disc 1(1):55–77

    Article  Google Scholar 

  • Friedrich E, Scherer R, Neuper C (2012) The effect of distinct mental strategies on classification performance for brain-computer interfaces. Int J Psychophysiol. doi:10.1016/j.ijpsycho.2012.01.014. http://www.sciencedirect.com/science/article/pii/S0167876012000165

  • Fukunaga K (1990) Statistical pattern recognition, 2nd edn. Academic Press Inc., San Diego

    Google Scholar 

  • Garrett D, Peterson DA, Anderson CW, Thaut MH (2003) Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans Neural Syst Rehabil Eng 11:141–144

    Article  Google Scholar 

  • Gouy-Pailler C, Achard S, Rivet B, Jutten C, Maby E, Souloumiac A, Congedo M (2007) Topographical dynamics of brain connections for the design of asynchronous brain-computer interfaces. In: Proceedings of the international conference on IEEE engineering in medicine and biology society (IEEE EMBC), pp 2520–2523

    Google Scholar 

  • Grosse-Wentrup M (2009) Understanding brain connectivity patterns during motor imagery for brain-computer interfacing. In: Advances in neural information processing systems (NIPS), vol 21. MIT Press, Cambridge

    Google Scholar 

  • Grosse-Wentrup M, Buss M (2008) Multi-class common spatial pattern and information theoretic feature extraction. IEEE Trans Biomed Eng 55(8):1991–2000

    Article  Google Scholar 

  • Grosse-Wentrup M, Gramann K, Wascher E, Buss M (2005) EEG source localization for brain-computer-interfaces. In: 2nd International IEEE EMBS conference on neural engineering, pp 128–131

    Google Scholar 

  • Grosse-Wentrup M, Liefhold C, Gramann K, Buss M (2009) Beamforming in non invasive brain computer interfaces. IEEE Trans Biomed Eng 56(4):1209–1219

    Article  Google Scholar 

  • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  • Hall M (2000) Correlation-based feature selection for discrete and numeric class machine learning. In: Proceedings of the 17th international conference on machine learning, pp 359–366

    Google Scholar 

  • Haufe S, Meinecke F, Görgen K, Dähne S, Haynes JD, Blankertz B, Bießmann F (2014) On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage 87:96–110

    Article  Google Scholar 

  • Herman P, Prasad G, McGinnity T, Coyle D (2008) Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 16(4):317–326

    Article  Google Scholar 

  • Hoffmann U, Vesin J, Ebrahimi T (2006) Spatial filters for the classification of event-related potentials. In: European symposium on artificial neural networks (ESANN 2006)

    Google Scholar 

  • Hoffmann U, Vesin JM, Ebrahimi T, Diserens K (2008) An efficient P300-based brain-computer interface for disabled subjects. J Neurosci Methods 167:115–125

    Article  Google Scholar 

  • Jain A, Zongker D (1997) Feature selection: evaluation, application, and small sample performance. IEEE Trans Pattern Anal Mach Intell 19(2):153–158

    Article  Google Scholar 

  • Jain A, Duin R, Mao J (2000) Statistical pattern recognition : a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Article  Google Scholar 

  • Kachenoura A, Albera L, Senhadji L, Comon P (2008) ICA: a potential tool for BCI systems. IEEE Signal Process Mag 25(1):57–68

    Article  Google Scholar 

  • Kamousi B, Liu Z, He B (2005) Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis. IEEE Trans Neural Syst Rehabil Eng 13(2):166–171

    Article  Google Scholar 

  • Krusienski D, Sellers E, Cabestaing F, Bayoudh S, McFarland D, Vaughan T, Wolpaw J (2006) A comparison of classification techniques for the P300 speller. J Neural Eng 3:299–305

    Article  Google Scholar 

  • Krusienski D, McFarland D, Wolpaw J (2012) Value of amplitude, phase, and coherence features for a sensorimotor rhythm-based brain–computer interface. Brain Res Bull 87(1):130–134

    Article  Google Scholar 

  • Lal T, Schröder M, Hinterberger T, Weston J, Bogdan M, Birbaumer N, Schölkopf B (2004) Support vector channel selection in BCI. IEEE TBME 51(6):1003–1010

    Google Scholar 

  • Lan T, Erdogmus D, Adami A, Mathan S, Pavel M (2007) Channel selection and feature projection for cognitive load estimation using ambulatory EEG. Comput Intell Neurosci 2007(74895):12. doi:10.1155/2007/74895

  • Ledoit O, Wolf M (2004) A well-conditioned estimator for large-dimensional covariance matrices. J Multivar Anal 88(2):365–411

    Article  MathSciNet  MATH  Google Scholar 

  • Lemm S, Blankertz B, Curio G, Müller KR (2005) Spatio-spectral filters for improving classification of single trial EEG. IEEE Trans Biomed Eng 52(9):1541–1548

    Article  Google Scholar 

  • Lotte F (2012) A new feature and associated optimal spatial filter for EEG signal classification: waveform length. In: International conference on pattern recognition (ICPR), pp 1302–1305

    Google Scholar 

  • Lotte F, Guan C (2009) An efficient P300-based brain-computer interface with minimal calibration time. In: Assistive machine learning for people with disabilities symposium (NIPS’09 symposium)

    Google Scholar 

  • Lotte F, Guan C (2010a) Learning from other subjects helps reducing brain-computer interface calibration time. In: International conference on audio, speech and signal processing (ICASSP’2010), pp 614–617

    Google Scholar 

  • Lotte F, Guan C (2010b) Spatially regularized common spatial patterns for EEG classification. In: International conference on pattern recognition (ICPR)

    Google Scholar 

  • Lotte F, Guan C (2011) Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans Biomed Eng 58(2):355–362

    Article  Google Scholar 

  • Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng 4:R1–R13

    Article  Google Scholar 

  • Lotte F, Fujisawa J, Touyama H, Ito R, Hirose M, Lécuyer A (2009 a) Towards ambulatory brain-computer interfaces: A pilot study with P300 signals. In: 5th advances in computer entertainment technology conference (ACE), pp 336–339

    Google Scholar 

  • Lotte F, Lécuyer A, Arnaldi B (2009b) FuRIA: an inverse solution based feature extraction algorithm using fuzzy set theory for brain-computer interfaces. IEEE Trans Signal Process 57(8):3253–3263

    Article  MathSciNet  Google Scholar 

  • Lotte F, Langhenhove AV, Lamarche F, Ernest T, Renard Y, Arnaldi B, Lécuyer A (2010) Exploring large virtual environments by thoughts using a brain-computer interface based on motor imagery and high-level commands. Presence: teleoperators and virtual environments 19(1):54–70

    Article  Google Scholar 

  • Mason S, Birch G (2003) A general framework for brain-computer interface design. IEEE Trans Neural Syst Rehabil Eng 11(1):70–85

    Article  Google Scholar 

  • McFarland DJ, Wolpaw JR (2005) Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance. IEEE Trans Neural Syst Rehabil Eng 13(3):372–379

    Article  Google Scholar 

  • McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol 103(3):386–394

    Article  Google Scholar 

  • McFarland DJ, Anderson CW, Müller KR, Schlögl A, Krusienski DJ (2006) BCI meeting 2005-workshop on BCI signal processing: feature extraction and translation. IEEE Trans Neural Syst Rehabil Eng 14(2):135–138

    Article  Google Scholar 

  • Mellinger J, Schalk G (2007) BCI2000: a general-purpose software platform for BCI research. In: Dornhege G, Millán JR et al (eds) Toward brain-computer interfacing. MIT Press, Cambridge, pp 372–381, 21

    Google Scholar 

  • Michel C, Murray M, Lantz G, Gonzalez S, Spinelli L, de Peralta RG (2004) EEG source imaging. Clin Neurophysiol 115(10):2195–2222

    Article  Google Scholar 

  • Millán J, Mourino J, Franzé M, Cincotti F, Varsta M, Heikkonen J, Babiloni F (2002) A local neural classifier for the recognition of EEG patterns associated to mental tasks. IEEE Trans Neural Networks 13(3):678–686

    Google Scholar 

  • Miranda E, Magee W, Wilson J, Eaton J, Palaniappan R (2011) Brain-computer music interfacing (BCMI) from basic research to the real world of special needs. Music Med 3(3):134–140

    Article  Google Scholar 

  • Noirhomme Q, Kitney R, Macq B (2008) Single trial EEG source reconstruction for brain-computer interface. IEEE Trans Biomed Eng 55(5):1592–1601

    Article  Google Scholar 

  • Obermeier B, Guger C, Neuper C, Pfurtscheller G (2001) Hidden markov models for online classification of single trial EEG. Pattern Recogn Lett 22:1299–1309

    Google Scholar 

  • Ofner P, Muller-Putz G, Neuper C, Brunner C (2011) Comparison of feature extraction methods for brain-computer interfaces. In: International BCI conference 2011

    Google Scholar 

  • Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238

    Article  Google Scholar 

  • Penny W, Roberts S, Curran E, Stokes M (2000) EEG-based communication: a pattern recognition approach. IEEE Trans Rehabilitation Eng 8(2):214–215

    Article  Google Scholar 

  • Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain-computer communication. Proc IEEE 89(7):1123–1134

    Article  Google Scholar 

  • Pfurtscheller G, da Silva FHL (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857

    Article  Google Scholar 

  • Pudil P, Ferri FJ, Kittler J (1994) Floating search methods for feature selection with nonmonotonic criterion functions. Pattern Recogn 2:279–283

    Google Scholar 

  • Qin L, Ding L, He B (2004) Motor imagery classification by means of source analysis for brain computer interface applications. J Neural Eng 1(3):135–141

    Article  Google Scholar 

  • Rakotomamonjy A, Guigue V (2008) BCI competition III: dataset II—ensemble of SVMs for BCI P300 speller. IEEE Trans Biomed Eng 55(3):1147–1154

    Article  Google Scholar 

  • Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabilitation Eng 8(4):441–446

    Article  Google Scholar 

  • Raudys SJ, Jain AK (1991) Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans Pattern Anal Mach Intell 13(3):252–264

    Article  Google Scholar 

  • Renard Y, Lotte F, Gibert G, Congedo M, Maby E, Delannoy V, Bertrand O, Lécuyer A (2010) OpenViBE: an open-source software platform to design, test and use brain-computer interfaces in real and virtual environments. Presence: teleoperators and virtual environments 19(1):35–53

    Article  Google Scholar 

  • Reuderink B, Poel M (2008) Robustness of the common spatial patterns algorithm in the BCI-pipeline. Tech. rep., HMI, University of Twente

    Google Scholar 

  • Rivet B, Souloumiac A, Attina V, Gibert G (2009) xDAWN algorithm to enhance evoked potentials: application to brain computer interface. IEEE Trans Biomed Eng 56(8):2035–2043

    Article  Google Scholar 

  • Samek W, Vidaurre C, Müller KR, Kawanabe M (2012) Stationary common spatial patterns for brain–computer interfacing. J Neural Eng 9(2):026013

    Google Scholar 

  • Sannelli C, Dickhaus T, Halder S, Hammer E, Müller KR, Blankertz B (2010) On optimal channel configurations for SMR-based brain-computer interfaces. Brain Topogr 23(2):186–193, 32

    Google Scholar 

  • Schlögl A, Brunner C, Scherer R, Glatz A (2007) BioSig—an open source software library for BCI research. In: Dornhege G, Millán JR, Hinterberger T, McFarland DJ, Müller K-R (eds) Towards brain-computer interfacing, MIT press, Cambridge, pp 347–358, 20

    Google Scholar 

  • Schröder M, Lal T, Hinterberger T, Bogdan M, Hill N, Birbaumer N, Rosenstiel W, Schölkopf B (2005) Robust EEG channel selection across subjects for brain-computer interfaces. EURASIP J Appl Signal Process 19:3103–3112

    Google Scholar 

  • Tangermann M, Winkler I, Haufe S, Blankertz B (2009) Classification of artifactual ICA components. Int J Bioelectromagnetism 11(2):110–114

    Google Scholar 

  • Thomas K, Guan C, Chiew T, Prasad V, Ang K (2009) New discriminative common spatial pattern method for motor imagery brain computer interfaces. IEEE Trans Biomed Eng 56(11):2730–2733

    Google Scholar 

  • Tomioka R, Dornhege G, Aihara K, Müller KR (2006) An iterative algorithm for spatio-temporal filter optimization. In: Proceedings of the 3rd international brain-computer interface workshop and training course 2006, pp 22–23

    Google Scholar 

  • Varela F, Lachaux J, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239

    Article  Google Scholar 

  • Vialatte F, Maurice M, Dauwels J, Cichocki A (2010) Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives. Prog Neurobiol 90:418–438

    Article  Google Scholar 

  • Vidaurre C, Krämer N, Blankertz B, Schlögl A (2009) Time domain parameters as a feature for EEG-based brain computer interfaces. Neural Networks 22:1313–1319

    Article  Google Scholar 

  • Xu N, Gao X, Hong B, Miao X, Gao S, Yang F (2004) BCI competition 2003–data set IIb: enhancing P300 wave detection using ICA-based subspace projections for BCI applications. IEEE Trans Biomed Eng 51(6):1067–1072

    Article  Google Scholar 

  • Zhong M, Lotte F, Girolami M, Lécuyer A (2008) Classifying EEG for brain computer interfaces using Gaussian processes. Pattern Recogn Lett 29:354–359

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Lotte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Lotte, F. (2014). A Tutorial on EEG Signal-processing Techniques for Mental-state Recognition in Brain–Computer Interfaces. In: Miranda, E., Castet, J. (eds) Guide to Brain-Computer Music Interfacing. Springer, London. https://doi.org/10.1007/978-1-4471-6584-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6584-2_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6583-5

  • Online ISBN: 978-1-4471-6584-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics