Skip to main content

Nanogel Windows

  • Chapter
  • First Online:
Nearly Zero Energy Building Refurbishment

Abstract

This chapter deals with the application of highly energy-efficient windows and skylights with silica nanogel as a strategy in the building refurbishment. Aerogel windows seem to have the largest potential for improving the thermal performance and daylight in fenestration industry, because of very low conductivity, density, and a good optical transparency. A state-of-the-art review of nanogel windows in building applications is firstly presented. Then, the proprieties of nanogel glazings in terms of thermal, lighting, and acoustic insulation solutions are discussed. Finally, the potential of the nanogel windows for energy saving in order to achieve a nearly zero-energy building is described, thanks to the results of a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbuBakr Bahaj S, James PAB, Jentsch MF (2008) Potential of emerging glazing technologies for highly glazed buildings in hot arid climates. Energy Build 5:720–731

    Article  Google Scholar 

  • Aegerter MA, Leventis N, Koebel MM (2011) Aerogels Handbook. Springer

    Google Scholar 

  • Akimov YK (2003) Fields of application of aerogels (review). Instrum Exp Tech 3:287–299

    Article  Google Scholar 

  • Anderson AM, Wattley CW, Carroll MK (2009) Silica aerogels prepared via rapid supercritical extraction: effect of process variables on aerogel properties. J Non-Cryst Solids 2:101–108

    Article  Google Scholar 

  • Baetens R, Jelle BP, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energy Build 43:761–769

    Article  Google Scholar 

  • Bavarian center for applied energy research. Division: functional materials for energy technology ZAE Bayern, Würzburg, Germany (2010) Report ZAE 2—0410—02. Measurement of the transmittance and reflectance of Nanogel samples. Available at http://solarinnovations.com/wp-content/uploads/2012/04/transmittance_reflectance.pdf. (Last access on 23th Jan 2013)

  • Bouquerela M, Duforestel T, Baillis D, Rusaouen G (2012) Heat transfer modeling in vacuum insulation panels containing nanoporous silicas—a review. Energy Build 54:320–336

    Article  Google Scholar 

  • Buratti C (2003) Transparent insulating materials: experimental data and buildings energy savings evaluation. In: Proceedings of energy and environment 2003. In: first international conference on sustainable energy, planning and technology in relationship to the environment. Halkidiki, Greece

    Google Scholar 

  • Buratti C, Moretti E (2011) Transparent insulating materials for buildings energy savings: experimental results and performance evaluation. In: Proceedings of third international conference on applied energy. Perugia, Italy

    Google Scholar 

  • Buratti C, Moretti E (2011b) Lighting and energetic characteristics of transparent insulating materials: experimental data and calculation. Indoor Built Environ 20(4):400–411

    Article  Google Scholar 

  • Buratti C, Moretti E (2012) Experimental performance evaluation of aerogel glazing systems. Appl Energy 97:430—437. doi:http://dx.doi.org/10.1016/j.apenergy.2011.12.055

    Google Scholar 

  • Buratti C, Moretti E (2012b) Glazing systems with silica aerogel for energy savings in buildings. Appl Energy 98:396–403. doi:http://dx.doi.org/10.1016/j.apenergy.2012.03.062

    Google Scholar 

  • Buratti C, Moretti E, Belloni E, Cotana F (2013) Unsteady simulation of energy performance and thermal comfort in non-residential buildings. Build Environ 59:482–491

    Article  Google Scholar 

  • Dowson M, Harrison D, Craig S, Gill Z (2011) Improving the thermal performance of single-glazed windows using translucent granular aerogel. Int J Sustain Eng 4(3):266–280

    Article  Google Scholar 

  • Duer K, Svendsen S (1998) Monolithic silica aerogel in superinsulating glazings. Sol Energy 63:259–267

    Article  Google Scholar 

  • Ebrahimpour A, Maerefat M (2011) Application of advanced glazing and overhangs in resi-dential buildings. Energy Convers Manage 52:212–219

    Article  Google Scholar 

  • EN 410 (2011) Glass in building—determination of luminous and solar characteristics of glazing

    Google Scholar 

  • EN ISO 20140-2 (2010) Acoustics—measurement of sound insulation in buildings and of building elements. Part 2: laboratory measurements of airborne sound insulation of building elements

    Google Scholar 

  • EN ISO 717-1 (2007) Acoustics—rating of sound insulation in buildings and of building elements. Part 1: airborne sound insulation

    Google Scholar 

  • Forest L, Gibiat V, Woignier T (1998) Biots theory of acoustic propagation in porous media applied to aerogels and alcogels. J Non-Cryst Solids 225:287–292

    Article  Google Scholar 

  • Forest L, Gibiat V, Hooley A (2001) Impedance matching and acoustic absorption in granular layers of silica aerogels. J Non-Cryst Solids 285:230–235

    Article  Google Scholar 

  • Hassouneh K, Alshboul A, Al-Salaymeh A (2010) Influence of windows on the energy balance of apartment buildings in Amman. Energy Convers Manage 51:1583–1591

    Article  Google Scholar 

  • Ivanov GR, Tomova R, Djambova ST, Nadoliiski M, Dimova–Malinovska D (2010) Functionalized aerogels—new nanomaterials for energy-efficient building. Preliminary AFM, nanoindentation and EIS studies. J Phys: Conf Series 253. doi:10.1088/1742-6596/253/1/012077

    Google Scholar 

  • Jelle BP, Hynd A, Gustavsen A, Arasteh D, Goudey H, Hart R (2012) Fenestration of today and tomorrow: a state-of-the-art review and future research opportunities. Sol Energy Mater Sol Cells 96:1–28

    Article  Google Scholar 

  • Jensen KI, Schultz JM, Kristiansen FH (2004) Development of windows based on highly insulating aerogel glazings. J Non-Cryst Solids 350:351–357

    Article  Google Scholar 

  • Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127

    Google Scholar 

  • Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol-Gel Sci Technol 63:315–339. doi:10.1007/s10971-012-2792-9

    Article  Google Scholar 

  • Oral GK, Yener AK, Bayazit NT (2004) Building envelope design with the objective to ensure thermal, visual and acoustic comfort conditions. Build Environ 3:281–287

    Article  Google Scholar 

  • Pajonk GM (2003) Some applications of silica aerogels. Colloid Polym Sci 281:637–651

    Article  Google Scholar 

  • Parmenter KE, Milstein F (1998) Mechanical properties of silica aerogels. J Non-Cryst Solids 223(3):179–189

    Article  Google Scholar 

  • Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energy Build 40:394–398

    Article  Google Scholar 

  • Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265

    Article  Google Scholar 

  • Reim M, Beck A, Körner W, Petricevic R, Glora M, Weth M, Schliermann T, Schmidt CH, Pötter FJ, Fricke J (2002) Highly insulating aerogel glazing for solar energy usage. Solar Energy 1:21–29

    Article  Google Scholar 

  • Reim M, Reichenauer G, Körner W, Manara J, Arduini-Schuster M, Korder S, Beck A, Fricke J (2004) Silica-aerogel granulate—structural, optical and thermal properties. J Non-Cryst Solids 350:358–363

    Article  Google Scholar 

  • Reim M, Korner W, Manara J, Korder S, Arduini-Schuster M, Ebert HP, Fricke J (2005) Silica aerogel granulate material for thermal insulation and daylighting. Sol Energy 2:131–139

    Article  Google Scholar 

  • Rigacci A, Einarsrudb M, Nilsenb E, Pirardc R, Ehrburger-Dolled F, Chevalier B (2004) Improvement of the silica aerogel strengthening process for scaling-up monolithic tile production. J Non-Cryst Solids 350:196–201

    Article  Google Scholar 

  • Riffat SB, Qiu G (2012) A review of state-of-the-art aerogel applications in buildings. Int J Low-Carbon Technol Adv Access

    Google Scholar 

  • Sadineni SB, Madala S, Boehm RF (2011) Passive building energy savings: a review of building envelope components. Renew Sustain Energy Rev 15:3617–3631

    Article  Google Scholar 

  • Schultz JM, Jensen KI, Kristiansen FH (2005) Super insulating aerogel glazing. Sol Energy Mater Sol Cells 89:275–285

    Article  Google Scholar 

  • Schultz JM, Jensen KI (2008) Evacuated aerogel glazings. Vacuum 82:723–729

    Article  Google Scholar 

  • Soleimani Dorcheh A, Abbasi MH (2008) Silica aerogel: synthesis, properties and characterization. J Mater Process Technol 199:10–26

    Article  Google Scholar 

  • Tajiri K, Igarashi K (1998) The effect of the preparation conditions on the optical properties of transparent silica aerogels. Sol Energy Mater Sol Cells 4:189–195

    Article  Google Scholar 

  • Werner M, Brand L (2010) Focus Report 2010—Aerogels, general sector reports, chemistry and materials, observatory NANO. Available at http://www.observatorynano.eu/project/filesystem/files/WP2_ChemistryMaterials_FocusReport_Aerogels_29_04_2010.pdf. Accessed 22 Jan 2013

  • Wong IL, Eames PC, Perera RS (2007) A review of transparent insulation systems and the evaluation of payback period for building applications. Sol Energy 81(9):1058–1071

    Article  Google Scholar 

Company Websites

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Buratti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Buratti, C., Moretti, E. (2013). Nanogel Windows. In: Pacheco Torgal, F., Mistretta, M., Kaklauskas, A., Granqvist, C., Cabeza, L. (eds) Nearly Zero Energy Building Refurbishment. Springer, London. https://doi.org/10.1007/978-1-4471-5523-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5523-2_20

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5522-5

  • Online ISBN: 978-1-4471-5523-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics