Skip to main content

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 2992 Accesses

Abstract

This introductory chapter prepares the background for the pioneer concepts presented in this book. A definition of fractional calculus and fractional signals is required before proceeding in the quest for novel landmarks in biomedical engineering applications. The stage is set by a brief history of fractional calculus and how these abstract concepts became emerging tools in biology and medicine. Two of the most common concepts used to characterize biological signals are introduced, namely those of fractal structure and of fractal dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reader is referred to the appendix for a brief introduction to FC.

References

  1. Adolfsson K, Enelund M, Olsson M (2005) On the fractional order model of viscoelasticity. Mech Time-Depend Mater 9:15–34

    Article  Google Scholar 

  2. Bates J (2007) A recruitment model of quasi-linear power-law stress adaptation in lung tissue. Ann Biomed Eng 35(7):1165–1174

    Article  MathSciNet  Google Scholar 

  3. Bates J (2009) Lung mechanics—an inverse modeling approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Battaglia J, Cois O, Puigsegur L, Oustaloup A (1989) Solving an inverse heat conduction problem using a non-integer identified model. Int J Heat Mass Transf 44:2671–2680

    Article  Google Scholar 

  5. Benson D, Tadjeran C, Meerschaert M, Farnham I, Pohll G (2004) Radial fractional-order dispersion through fractured rock. Water Resour Res 40(12):W12416. doi:10.1029/2004WR003314

    Article  Google Scholar 

  6. Chen Y-Q, Bhaskaran T, Xue D (2008) Practical tuning rule development for fractional order proportional and integral controllers. J Comput Nonlinear Dyn 3:021403

    Article  Google Scholar 

  7. Craiem D, Armentano RL (2007) A fractional derivative model to describe arterial viscoelasticity. Biorheology 44:251–263

    Google Scholar 

  8. Doehring T, Freed A, Carew E, Vesely I (2005) Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity. J Biomech Eng 127:708

    Google Scholar 

  9. Eke A, Herman P, Kocsis L, Kozak L (2002) Fractal characterization of complexity in temporal physiological signals. Physiol Meas 23:R1–R38

    Article  Google Scholar 

  10. Fung YC (1981) Biomechanics: mechanical properties of living tissues. Springer, New York

    Google Scholar 

  11. Gao J, Cao Y, Tung W-W, Hu J (2007) Multiscale analysis of complex time series. Wiley, New Jersey

    Book  MATH  Google Scholar 

  12. Hantos Z, Daroczy B, Suki B, Nagy S, Fredberg J (1992) Input impedance and peripheral inhomogeneity of dog lungs. J Appl Phys 72(1):168–178

    Article  Google Scholar 

  13. Hildebrandt J (1969) Comparison of mathematical models for cat lung and viscoelastic balloon derived by Laplace transform methods from pressure-volume data. Bull Math Biophys 31:651–667

    Article  MATH  Google Scholar 

  14. Hildebrandt J (1970) Pressure-volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model. J Appl Physiol 28(3):365–372

    Google Scholar 

  15. Hou C, Gheorghiu S, Coppens MS, Huxley VH, Pfeifer P (2005) Gas diffusion through the fractal landscape of the lung. In: Losa, Merlini, Nonnenmacher (ed) Fractals in biology and medicine, vol IV. Birkhauser, Berlin

    Google Scholar 

  16. Ionescu C, Chirita M (2008) Stress-strain properties of natural and biomimetical formed collagen constructs. Int J Technol Healthcare 16(6):437–444

    Google Scholar 

  17. Ionescu C, Tenreiro Machado JA (2010) Mechanical properties and impedance model for the branching network of the sapping system in the leaf of Hydrangea macrophylla. Nonlinear Dyn. doi:10.1007/s11071-009-9590-0

    Google Scholar 

  18. Jesus I, Tenreiro J, Cuhna B (2008) Fractional electrical impedances in botanical elements. J Vib Control 14:1389–1402

    Article  MATH  Google Scholar 

  19. Losa G, Merlini D, Nonnenmacher T, Weibel E (2005) Fractals in biology and medicine, vol IV. Birkhauser, Basel

    Book  Google Scholar 

  20. Magin RL (2006) Fractional Calculus in Bioengineering. Begell House Publishers

    Google Scholar 

  21. Maksym G, Bates J (1997) A distributed nonlinear model of lung tissue elasticity. J Appl Physiol 82(1):32–41

    Google Scholar 

  22. Mandelbrot B (1983) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  23. Oldham K, Spanier J (1974) The fractional calculus. Academic Press, London

    MATH  Google Scholar 

  24. Oustaloup A, Cois O, Lannusse P, Melchior P, Moreau X, Sabatier J, Thomas JL (2000) A survey on the CRONE approach. In: Proc. of the IEEE conf on systems, signals and devices (SSD05), tutorial

    Google Scholar 

  25. Oustaloup A (1995) La derivation non-entière. Hermes, Paris (in French)

    MATH  Google Scholar 

  26. Podlubny I (2001) Fractional differential equations. IEEE Press, New York

    Google Scholar 

  27. Ramus-Serment C, Moreau X, Nouillant M, Oustaloup A, Levron F (2002) Generalised approach on fractional response of fractal networks. Chaos Solitons Fractals 14:479–488

    Article  MathSciNet  MATH  Google Scholar 

  28. Salazar E, Knowles J (1964) An analysis of pressure-volume characteristics of the lungs. J Appl Physiol 19:97–104

    Google Scholar 

  29. Suki B, Barabasi A, Lutchen K (1994) Lung tissue viscoelasticity: a mathematical framework and its molecular basis. J Appl Physiol 76(6):2749–2759

    Google Scholar 

  30. Suki B, Frey U (2003) Temporal dynamics of recurrent airway symptoms and cellular random walk. J Appl Physiol 95:2122–2127

    Google Scholar 

  31. Tenreiro Machado JA (1997) Analysis and design of fractional-order digital control systems. Syst Anal Model Simul 27(2–3):107–122

    MATH  Google Scholar 

  32. Tenreiro Machado JA (1999) Fractional-order derivative approximations in discrete-time control systems. Syst Anal Model Simul 34:419–434

    MATH  Google Scholar 

  33. Tenreiro Machado JA, Kiryakova V, Mainardi F (2011) Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 16(3):1140–1153

    Article  MathSciNet  MATH  Google Scholar 

  34. Tenreiro Machado JA (2011) And I say to myself: “What a fractional world!”. Fract Calc Appl Anal 14(4):635–654

    Google Scholar 

  35. Tenreiro Machado JA, Kiryakova V, Mainardi F (2013) Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 16(3):1140–1153

    Article  MathSciNet  Google Scholar 

  36. Tenreiro Machado J, Galhano AM, Trujillo JJ (2013) On development of fractional calculus during the last fifty years. Scientometrics. doi:10.1007/s11192-013-1032-6

    Google Scholar 

  37. Yuan H, Kononov S, Cavalcante F, Lutchen K, Ingenito E, Suki B (2000) Effects of collagenase and elastase on the mechanical properties of lung tissue strips. J Appl Physiol 89(3):3–14

    Google Scholar 

  38. West B, Barghava V, Goldberger A (1986) Beyond the principle of similitude: renormalization of the bronchial tree. J Appl Physiol 60:1089–1097

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Ionescu, C.M. (2013). Introduction. In: The Human Respiratory System. Series in BioEngineering. Springer, London. https://doi.org/10.1007/978-1-4471-5388-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5388-7_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5387-0

  • Online ISBN: 978-1-4471-5388-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics