Skip to main content

Laser Beam Machining

  • Chapter
  • First Online:
Nontraditional Machining Processes

Abstract

The cost of cutting hard-to-machine materials by conventional mechanical machining processes is high due to the low material removal rate and short tool life, and some materials are not possible to be cut by the conventional machining process at all. Laser beam machining is the machining processes involving a laser beam as a heat source. It is a thermal process used to remove materials without mechanical engagement with workpiece material where the workpiece is heated to melting or boiling point and removed by melt ejection, vaporization, or ablation mechanisms. In contrast with a conventional machine tool, the laser radiation does not experience wear, and material removal is not dependent on its hardness but on the optical properties of the laser and the optical and thermophysical properties of the material. This chapter summarizes the up-to-date progress of laser beam machining. It presents the basics and characteristics of industrial lasers and the state-of-the-art developments in laser beam machining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( A_{{r,{\text{Fe}}}} \) :

The relative atomic mass of iron (55.8 g/mole)

B :

Constant

b :

Depth of focus

\( C_{p} \) :

Heat capacity of solid metal

\( c_{v} \) :

Volumetric specific heat of the melt

\( c_{w} \) :

Specific heat of workpiece

\( D_{\text{eff}} \) :

Diffusion coefficient of oxygen in liquid iron

\( d \) :

Thickness of workpiece

\( E_{\text{crit}}^{f} \) :

Critical energy density for the cutting fiber

\( E_{\text{crit}}^{m} \) :

Critical energy density for the cutting matrix

\( F \) :

Constant (\( 0 < F \le 1 \))

\( f_{L} \) :

Focal length of focus optics

\( g \) :

Gravitational acceleration

\( H \) :

Height of nozzle from the workpiece,

\( \Updelta H \) :

Reaction heat

\( I \) :

Laser beam intensity

\( I_{0} \) :

The maximum beam intensity at r = 0 (W/cm2)

\( K_{m} \) :

Thermal conductivity of the melt

\( K_{0} \) :

Bassel function of the second kind and zero order

\( k \) :

Thermal diffusivity of workpiece material

\( L_{M} \) :

Latent heat of fusion

\( l \) :

Distance from the stagnation point

\( m_{\text{melted}} \) :

Rate of mass gain in melt layer

\( m_{\text{ejected}} \) :

Rate of mass loss in melt layer

\( P \) :

Incident laser power

\( P_{a} \) :

Absorbed laser energy

\( P_{r} \) :

Power provided by the exothermal reaction in reactive laser cutting

\( P_{\text{loss}} \) :

Energy loss including these to heat the solid controlled volume to the melting temperature, latent heat of melting, and heat the liquid controlled volume to cut temperature

\( P_{v} \) :

Energy spent for vaporization, which is negligible for melting and blow process

\( P_{0} \) :

Stagnation pressure

\( P_{g} \) :

Average cutting gas pressure in the cut kerf

\( {\raise0.7ex\hbox{${\partial P}$} \!\mathord{\left/ {\vphantom {{\partial P} {\partial z}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\partial z}$}} \) :

Pressure gradient through the workpiece thickness

\( p_{a} \) :

Ambient pressure acting on the bottom of the melt film

\( r \) :

Radius of the beam (cm)

\( r_{L} \) :

Radius of laser spot on workpiece

\( s \) :

Melt layer thickness

\( s_{\text{ACC}} \) :

The minimum thickness of melt if melt at the bottom of cut front by acceleration of the molten material

\( s_{\text{HC}} \) :

The maximum thickness of melt film without evaporation

\( T_{0} \) :

Room temperature

\( T_{M} \) :

Melting point of workpiece

\( T_{E} \) :

Boiling point of workpiece

\( t_{\text{on}} \) :

Pulse duration

\( t_{\text{off}} \) :

Duration of laser power off in a pulse

\( V \) :

Cutting speed

\( V_{M} \) :

Velocity of cut front

\( v_{g} \) :

Velocity of the assist gas jet

\( v_{m} \) :

Velocity of melt flow

\( \bar{v}_{m} \) :

Average velocity of melt flow

\( {\text{We}} \) :

Weber number

\( w \) :

The beam radius at which \( I = I_{0} e^{ - 2} \) (86 % of the total energy is within the beam radius \( w \))

\( w_{0} \) :

The collimated beam radius

\( w_{f} \) :

Radius of focused laser beam

\( w_{k} \) :

Kerf width

\( z_{R} \) :

Rayleigh length distance

\( \alpha \) :

Angle of inclination of the cut front

\( \alpha_{w} \) :

Thermal expansion coefficient workpiece

\( \hat{\alpha } \) :

Absorptivity of laser light

\( \beta \) :

Cut front angles at the vertical planes

\( \beta_{B} \) :

Cut front angle at the bottom

\( \eta \) :

Percentage of melt film that is oxidized

\( \lambda \) :

Wavelength of the laser beam

\( \mu_{g} \) :

Dynamic viscosity of the assist gas

\( \mu_{m} \) :

Viscosity of melt

\( \theta \) :

Angle of incidence

\( \rho_{g} \) :

Density of the assist gas

\( \rho_{m} \) :

Density of melt

\( \rho_{w} \) :

Density of workpiece

\( \sigma \) :

Surface tension of melt

References

  1. Meijer J (2004) Laser beam machining (LBM), state of the art and new opportunities. J Mater Process Technol 149:2–17

    Article  Google Scholar 

  2. Tunna L, O’Neill W, Khan A, Sutcliffe C (2005) Analysis of laser micro drilled holes through aluminium for micro-manufacturing applications. Opt Lasers Eng 43:937–950

    Article  Google Scholar 

  3. Li L (2000) The advances and characteristics of high-power diode laser materials processing. Opt Lasers Eng 34:231–253

    Article  Google Scholar 

  4. Schuöcker D (1989) Laser cutting. Mater Manuf Process 4:311–330

    Article  Google Scholar 

  5. Olsen FO, Alting L (1995) Pulsed laser materials processing, ND-YAG versus CO2 lasers. CIRP Ann—Manuf Technol 44:141–145

    Article  Google Scholar 

  6. Elijah Kannatey-Asibu J (2009) Principles of laser materials processing. Wiley, Hoboken

    Book  Google Scholar 

  7. Yalukova O, Sárady I (2006) Investigation of interaction mechanisms in laser drilling of thermoplastic and thermoset polymers using different wavelengths. Compos Sci Technol 66:1289–1296

    Article  Google Scholar 

  8. Bergström D, Powell J, Kaplan AFH (2007) A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces. J Appl Phys 101:13504

    Article  Google Scholar 

  9. Petring D, Abels P, Beyer E (1988) Absorption distribution on idealized cutting front geometries and its significance for laser beam cutting. Proc SPIE 1020:123–131

    Article  Google Scholar 

  10. Kwon H, Yoh JJ (2012) Polarized reflectance of aluminum and nickel to 532, 355 and 266 nm Nd:YAG laser beams for varying surface finish. Opt Laser Technol 44:1823–1828

    Article  Google Scholar 

  11. Mv Allmen (1976) Laser drilling velocity in metals. J Appl Phys 47:5460–5463

    Article  Google Scholar 

  12. Chan CL, Mazumder J (1987) One-dimensional steady-state model for damage by vaporization and liquid expulsion due to laser-material interaction. J Appl Phys 62:4579–4586

    Article  Google Scholar 

  13. Chang JJ, Warner BE (1996) Laser-plasma interaction during visible-laser ablation of metals. Appl Phys Lett 69:473–475

    Article  Google Scholar 

  14. Tam SC, Williams R, Yang LJ, Jana S, Lim LEN, Lau MWS (1990) A review of the laser processing of aircraft components. J Mater Process Technol 23:177–194

    Article  Google Scholar 

  15. Segall AE, Cai G, Akarapu R, Romasco A, Li BQ (2005) Fracture control of unsupported ceramics during laser machining using a simultaneous prescore. J Laser Appl 17:57–62

    Google Scholar 

  16. Tsai C-H, Chen H-W (2003) Laser cutting of thick ceramic substrates by controlled fracture technique. J Mater Process Technol 136:166–173

    Article  Google Scholar 

  17. Kalyanasundaram D, Shrotriya P, Molian P (2010) Fracture mechanics—based analysis for hybrid laser/water jet (LWJ) machining of yttria-partially stabilized zirconia (Y-PSZ). Int J Mach Tool Manuf 50:97–105

    Article  Google Scholar 

  18. Barnes C, Shrotriya P, Molian P (2007) Water-assisted laser thermal shock machining of alumina. Int J Mach Tool Manuf 47:1864–1874

    Article  Google Scholar 

  19. Tsai CH, Liou CS (2003) Fracture mechanism of laser cutting with controlled fracture. J Manuf Sci Eng, Trans ASME 125:519–528

    Article  Google Scholar 

  20. Dubey AK, Yadava V (2008) Experimental study of Nd:YAG laser beam machining—An overview. J Mater Process Technol 195:15–26

    Article  Google Scholar 

  21. Mahrle A, Lütke M, Beyer E (2010) Fibre laser cutting: beam absorption characteristics and gas-free remote cutting. Proc Inst Mech Eng C: J Mech Eng Sci 224:1007–1018

    Article  Google Scholar 

  22. Quintero F, Varas F, Pou J, Lusquiños F, Boutinguiza M, Soto R, Pérez-Amor M (2005) Theoretical analysis of material removal mechanisms in pulsed laser fusion cutting of ceramics. J Phys D Appl Phys 38:655–666

    Article  Google Scholar 

  23. Olsen FO, Alting L (1989) Cutting front formation in laser cutting. CIRP Ann—Manuf Technol 38:215–218

    Article  Google Scholar 

  24. Ivarson A, Powell J, Kamalu J, Magnusson C (1994) The oxidation dynamics of laser cutting of mild steel and the generation of striations on the cut edge. J Mater Process Technol 40:359–374

    Article  Google Scholar 

  25. Arata Y, Maruo H, Miyamoto I, Takeuchi S (1979) Dynamic behaviour in laser cutting of mild steel. Trans Jpn Weld Res Inst 8:15–26

    Google Scholar 

  26. Chen K, Yao YL, Modi V (1999) Numerical simulation of oxidation effects in the laser cutting process. Int J Adv Manuf Technol 15:835–842

    Article  Google Scholar 

  27. Kaplan AFH, Wangler O, Schuöcker D (1997) Laser cutting: fundamentals of the periodic striations and their on-line detection. Lasers Eng 6:103–126

    Google Scholar 

  28. Sobih M, Crouse PL, Li L (2007) Elimination of striation in laser cutting of mild steel. J Phys D Appl Phys 40:6908–6916

    Article  Google Scholar 

  29. Kaplan AFH (1996) An analytical model of metal cutting with a laser beam. J Appl Phys 79:2198–2208

    Article  Google Scholar 

  30. Fomin VM, A.G. Malikov, Orishich AM, Shulyat’ev VB (2011) Energy conditions of gas laser cutting of thick steel sheets. J Appl Mech Tech Phys 52:340–346

    Google Scholar 

  31. Mahrle A, Beyer E (2009) Theoretical aspects of fibre laser cutting. J Phys D Appl Phys 42:175507

    Article  Google Scholar 

  32. Prusa JM, Venkitachalam G, Molian PA (1999) Estimation of heat conduction losses in laser cutting. Int J Mach Tool Manuf 39:431–458

    Article  Google Scholar 

  33. Duan J, Man HC, Yue TM (2001) Modelling the laser fusion cutting process: I. Mathematical modelling of the cut kerf geometry for laser fusion cutting of thick metal. J Phys D Appl Phys 34:2127–2134

    Article  Google Scholar 

  34. Schuöcker D (1986) Theoretical model of reactive gas-assisted laser cutting including dynamic effects. Proc SPIE 650:210–219

    Article  Google Scholar 

  35. Ivarson A (1993) On the physics and chemical thermodynamics of laser cutting. PhD thesis, Lulea University of Technology, Sweden

    Google Scholar 

  36. Powell J (1998) CO2 Laser Cutting. Springer, London

    Book  Google Scholar 

  37. Ivarson A, Powell J, Magnusson C (1991) The role of oxidation in laser cutting stainless and mild steel. J Laser Appl 3:41–45

    Article  Google Scholar 

  38. Hsu MJ, Molian PA (1994) Thermochemical modelling in CO2 laser cutting of carbon steel. J Mater Sci 29:5607–5611

    Article  Google Scholar 

  39. Powell J, Petring D, Kumar RV, Al-Mashikhi SO, Kaplan AFH, Voisey KT (2009) Laser-oxygen cutting of mild steel: the thermodynamics of the oxidation reaction. J Phys D Appl Phys 42:015504

    Article  Google Scholar 

  40. Geiger M, Bergmann HW, Nuss R (1988) Laser cutting of steel sheets. Proc SPIE 1022:20–33

    Article  Google Scholar 

  41. Chen S-L (1998) The effects of gas composition on the CO2 laser cutting of mild steel. J Mater Process Technol 73:147–159

    Article  Google Scholar 

  42. Powell J, Ivarson A, Magnusson C (1993) Laser cutting of steels: a physical and chemical analysis of the particles ejected during cutting. J Laser Appl 5:25–31

    Article  Google Scholar 

  43. Poprawe R, König W (2001) Modeling, monitoring and control in high quality laser cutting. CIRP Ann—Manuf Technol 50:137–140

    Article  Google Scholar 

  44. Yudin P, Kovalev O (2009) Visualization of events inside kerfs during laser cutting of fusible metal. J Laser Appl 21:39–45

    Article  Google Scholar 

  45. Hirano K, Fabbro R (2011) Experimental investigation of hydrodynamics of melt layer during laser cutting of steel. J Phys D Appl Phys 44:105502

    Article  Google Scholar 

  46. Riveiro A, Quintero F, Lusquiños F, Comesaña R, Pou J (2011) Study of melt flow dynamics and influence on quality for CO2 laser fusion cutting. J Phys D Appl Phys 44:135501

    Article  Google Scholar 

  47. Chen S-L (1997) In-process monitoring of the cutting front of CO2 laser cutting with off-axis optical fibre. Int J Adv Manuf Technol 13:685–691

    Article  Google Scholar 

  48. Schuöcker D, Abel W (1984) Material removal mechanism of laser cutting. Proc SPIE 455:88–95

    Article  Google Scholar 

  49. Schuöcker D (1986) Dynamic phenomena in laser cutting and cut quality. Appl Phys B 40:9–14

    Article  Google Scholar 

  50. Vicanek M, Simon G (1987) Momentum and heat transfer of an inert gas jet to the melt in laser cutting. J Phys D Appl Phys 20:1191–1196

    Article  Google Scholar 

  51. Schulz W, Simon G, Urbassek HM, Decker I (1987) On laser fusion cutting of metals. J Phys D Appl Phys 20:481–488

    Article  Google Scholar 

  52. Schulz W, Kostrykin V, Nießen M, Michel J, Petring D, Kreutz EW, Poprawe R (1999) Dynamics of ripple formation and melt flow in laser beam cutting. J Phys D Appl Phys 32:1219–1228

    Article  Google Scholar 

  53. Vicanek M, Simon G, Urbassek HM, Decker I (1987) Hydrodynamical instability of melt flow in laser cutting. J Phys D Appl Phys 20:140–145

    Article  Google Scholar 

  54. Wandera C, Kujanpaa V (2010) Characterization of the melt removal rate in laser cutting of thick-section stainless steel. J Laser Appl 22:62–70

    Article  Google Scholar 

  55. Hirano K, Fabbro R (2011) Experimental observation of hydrodynamics of melt layer and striation generation during laser cutting of steel. Phys Procedia 12(Part A):555–564

    Google Scholar 

  56. Powell J, Al-Mashikhi SO, Kaplan AFH, Voisey KT (2011) Fibre laser cutting of thin section mild steel: an explanation of the ‘striation free’ effect. Opt Lasers Eng 49:1069–1075

    Article  Google Scholar 

  57. Schober A, Musiol J, Daub R, Feil J, Zaeh MF (2012) Experimental investigation of the cutting front angle during remote fusion cutting. Phys Procedia 39:204–212

    Article  Google Scholar 

  58. Di Pietro P, Yao YL (1995) A numerical investigation into cutting front mobility in CO2 laser cutting. Int J Mach Tool Manuf 35:673–688

    Article  Google Scholar 

  59. Ermolaev GV, Kovalev OB, Orishich AM, Fomin VM (2006) Mathematical modelling of striation formation in oxygen laser cutting of mild steel. J Phys D Appl Phys 39:4236–4244

    Article  Google Scholar 

  60. Li L, Sobih M, Crouse PL (2007) Striation-free laser cutting of mild steel sheets. CIRP Ann—Manuf Technol 56:193–196

    Article  Google Scholar 

  61. Schuöcker D (1988) Heat conduction and mass transfer in laser cutting. Proc SPIE 952:592–599

    Google Scholar 

  62. Tsai MJ, Weng CI (1993) Linear stability analysis of molten flow in laser cutting. J Phys D Appl Phys 26:719–727

    Article  Google Scholar 

  63. Schulz W, Simon G, Vicanek M, Decker I (1987) Influence of the oxidation process in laser gas cutting. Proc SPIE 801:331–336

    Article  Google Scholar 

  64. Powell J, Ivarson A, Ohlsson L, Magnusson C (2000) Conductive losses experienced during CO2 laser cutting. High Temper Mater Process 4:201–211

    Google Scholar 

  65. Onuseit V, Ahmed MA, Weber R, Graf T (2011) Space-resolved spectrometric measurements of the cutting front. Phys Procedia 12(Part A):584–590

    Google Scholar 

  66. Olsen FO (1994) Fundamental mechanisms of cutting front formation in laser cutting. Proc SPIE 2207:402–413

    Article  Google Scholar 

  67. Chen K, Lawrence Yao Y (1999) Striation formation and melt removal in the laser cutting process. J Manuf Process 1:43–53

    Article  Google Scholar 

  68. Heidenreich B, Jüptner W, Sepold G (1996) Fundamental investigations of the burn-out phenomenon of laser cut edges. Lasers Eng 5:1–10

    Google Scholar 

  69. Wee LM, Li L (2005) An analytical model for striation formation in laser cutting. Appl Surf Sci 247:277–284

    Article  Google Scholar 

  70. Duan J, Man HC, Yue TM (2001) Modelling the laser fusion cutting process: III. Effects of various process parameters on cut kerf quality. J Phys D Appl Phys 34:2143–2150

    Article  Google Scholar 

  71. Chen K, Lawrence Yao Y, Modi V (2001) Gas dynamic effects on laser cut quality. J Manuf Process 3:38–49

    Article  Google Scholar 

  72. Ermolaev GV, Kovalev OB (2009) Simulation of surface profile formation in oxygen laser cutting of mild steel due to combustion cycles. J Phys D Appl Phys 42:185506

    Article  Google Scholar 

  73. Kovalev OB, Yudin PV, Zaitsev AV (2008) Formation of a vortex flow at the laser cutting of sheet metal with low pressure of assisting gas. J Phys D Appl Phys 41:155112

    Article  Google Scholar 

  74. Farooq K, Kar A (1998) Removal of laser-melted material with an assist gas. J Appl Phys 83:7467–7473

    Article  Google Scholar 

  75. Kovalev OB, Yudin PV, Zaitsev AV (2009) Modeling of flow separation of assist gas as applied to laser cutting of thick sheet metal. Appl Math Model 33:3730–3745

    Article  MathSciNet  MATH  Google Scholar 

  76. Karatas C, Keles O, Uslan I, Usta Y (2006) Laser cutting of steel sheets: influence of workpiece thickness and beam waist position on kerf size and stria formation. J Mater Process Technol 172:22–29

    Article  Google Scholar 

  77. Kaebernick H, Bicleanu D, Brandt M (1999) Theoretical and experimental investigation of pulsed laser cutting. CIRP Ann—Manuf Technol 48:163–166

    Article  Google Scholar 

  78. Decker I, Ruge J, Atzert U (1984) Physical models and technological aspects of laser gas cutting. Proc SPIE 455:81–87

    Article  Google Scholar 

  79. Sobih M, Crouse PL, Li L (2008) Striation-free fibre laser cutting of mild steel sheets. Appl Phys A 90:171–174

    Article  Google Scholar 

  80. Ledenev VI, Karasev VA, Yakunin VP (1999) On cyclical mechanism of kerf formation under gas assisted laser cutting of metals. Proc SPIE 3688:157–162

    Article  Google Scholar 

  81. Di Pietro P, Yao YL (1995) A new technique to characterize and predict laser cut striations. Int J Mach Tool Manuf 35:993–1002

    Article  Google Scholar 

  82. Schuöcker D, Aichinger J, Majer R (2012) Dynamic phenomena in laser cutting and process performance. Phys Procedia 39:179–185

    Article  Google Scholar 

  83. Makashev NK, Asmolov ES, Blinkov VV, Boris AY, Burmistrov AV, Buzykin V, Makarov VA (1994) Gas-hydro-dynamics of CW laser cutting of metals in inert gas. Proc SPIE 2257:2–9

    Article  Google Scholar 

  84. King TG, Powell J (1986) Laser-cut mild steel—factors affecting edge quality. Wear 109:135–144

    Article  Google Scholar 

  85. Kaebernick H, Jeromin A, Mathew P (1998) Adaptive control for laser cutting using striation frequency analysis. CIRP Ann—Manuf Technol 47:137–140

    Article  Google Scholar 

  86. Yan Y, Li L, Sezer K, Whitehead D, Ji L, Bao Y, Jiang Y (2012) Nano-second pulsed DPSS Nd: YAG laser striation-free cutting of alumina sheets. Int J Mach Tool Manuf 53:15–26

    Article  Google Scholar 

  87. Dahotre NB, Harimkar SP (2008) Laser Fabrication and Machining of Materials. Springer, New York

    Google Scholar 

  88. Arata Y, Maruo H, Miyamoto I, Takeuchi S (1981) Quality in laser-gas-cutting stainless steel and its improvement. Trans Jpn Weld Res Inst 10:129–139

    Google Scholar 

  89. Nielsen SE (1997) Developments in laser beam cutting of thick materials. Industrial Laser Review 12: 11–13

    Google Scholar 

  90. Chen S-L (1999) The effects of high-pressure assistant-gas flow on high-power CO2 laser cutting. J Mater Process Technol 88:57–66

    Article  Google Scholar 

  91. O’Neill W, Steen WW (1995) A three-dimensional analysis of gas entrainment operating during the laser-cutting process. J Phys D Appl Phys 28:12–18

    Article  Google Scholar 

  92. Sheng PS, Joshi VS (1995) Analysis of heat-affected zone formation for laser cutting of stainless steel. J Mater Process Technol 53:879–892

    Article  Google Scholar 

  93. Shanjin L, Yang W (2006) An investigation of pulsed laser cutting of titanium alloy sheet. Opt Lasers Eng 44:1067–1077

    Article  Google Scholar 

  94. Riveiro A, Quintero F, Lusquiños F, Comesaña R, Pou J (2010) Influence of assist gas nature on the surfaces obtained by laser cutting of Al–Cu alloys. Surf Coat Technol 205:1878–1885

    Article  Google Scholar 

  95. Riveiro A, Quintero F, Lusquiños F, Comesaña R, Pou J (2010) Parametric investigation of CO2 laser cutting of 2024–T3 alloy. J Mater Process Technol 210:1138–1152

    Article  Google Scholar 

  96. Quintero F, Pou J, Lusquiños F, Boutinguiza M, Soto R, Pérez-Amor M (2004) Quantitative evaluation of the quality of the cuts performed on mullite-alumina by Nd:YAG laser. Opt Lasers Eng 42:327–340

    Article  Google Scholar 

  97. Rao BT, Kaul R, Tiwari P, Nath AK (2005) Inert gas cutting of titanium sheet with pulsed mode CO2 laser. Opt Lasers Eng 43:1330–1348

    Article  Google Scholar 

  98. Scintilla LD, Tricarico L, Wetzig A, Mahrle A, Beyer E (2011) Primary losses in disk and CO2 laser beam inert gas fusion cutting. J Mater Process Technol 211:2050–2061

    Article  Google Scholar 

  99. Powell J, Ivarson A, Kamalu J, Broden G, Magnusson C (1993) Role of oxygen purity in laser cutting of mild steel. Proc SPIE 1990:433–442

    Google Scholar 

  100. Belic I, Stanic J (1987) A method to determine the parameters of laser iron and steel cutting. Opt Laser Technol 19:309–311

    Article  Google Scholar 

  101. Belić I (1989) A method to determine the parameters of laser cutting. Opt Laser Technol 21:277–278

    Article  Google Scholar 

  102. Chryssolouris G (1991) Laser Machining, Therory and Practice. Springer, New York

    Book  Google Scholar 

  103. Lepore M, Dell’Erba M, Esposito C, Daurelio G, Cingolani A (1983) An investigation of the laser cutting process with the aid of a plane polarized CO2 laser beam. Opt Lasers Eng 4:241–251

    Article  Google Scholar 

  104. Muys P, Youn M (2008) Mathematical Modeling of Laser Sublimation Cutting. Laser Phys 18:495–499

    Article  Google Scholar 

  105. Niziev V, Nesterov A (1999) Influence of beam polarization on laser cutting efficiency. J Phys D Appl Phys 32:1455–1461

    Article  Google Scholar 

  106. Scintilla LD, Tricarico L, Mahrle A, Wetzig A, Beyer E (2012) A comparative study of cut front profiles and absorptivity behavior for disk and CO2 laser beam inert gas fusion cutting. J Laser Appl 24:052006

    Article  Google Scholar 

  107. Poprawe R, Schulz W, Schmitt R (2010) Hydrodynamics of material removal by melt expulsion: perspectives of laser cutting and drilling. Phys Procedia 5(Part A):1–18

    Google Scholar 

  108. Olsen FO, Hansen KS, Nielsen JS (2009) Multibeam fiber laser cutting. J Laser Appl 21:133–138

    Article  Google Scholar 

  109. Petring D, Molitor T, Schneider F, Wolf N (2012) Diagnostics, modeling and simulation: three keys towards mastering the cutting process with fiber, disk and diode lasers. Phys Procedia 39:186–196

    Article  Google Scholar 

  110. Wandera C, Kujanpää V, Salminen A (2011) Laser power requirement for cutting thick-section steel and effects of processing parameters on mild steel cut quality. Proc Inst Mech Eng B J Eng Manuf 225:651–661

    Article  Google Scholar 

  111. Sparkes M, Gross M, Celotto S, Zhang T, O’Neill W (2008) Practical and theoretical investigations into inert gas cutting of 304 stainless steel using a high brightness fiber laser. J Laser Appl 20:59–67

    Article  Google Scholar 

  112. Grevey DF, Desplats H (1994) Comparison of the performance obtained with a YAG laser cutting according to the source operation mode. J Mater Process Technol 42:341–348

    Article  Google Scholar 

  113. Ivarson A, Powell J, Magnusson C (1996) The role of oxygen pressure in laser cutting mild steels. J Laser Appl 8:191–196

    Article  Google Scholar 

  114. Thawari G, Sundar JKS, Sundararajan G, Joshi SV (2005) Influence of process parameters during pulsed Nd:YAG laser cutting of nickel-base superalloys. J Mater Process Technol 170:229–239

    Article  Google Scholar 

  115. Bicleanu D, Brandt M, Kaebernick H (1996) An analytical model for pulsed laser cutting of metals. In: Proceedings 15th international congress on applications of lasers and electro-optics, 68–77

    Google Scholar 

  116. Lee CS, Gael A, Osada H (1985) Parametric studies of pulsed-laser cutting of thin metal plates. J Appl Phys 58:1339–1343

    Article  Google Scholar 

  117. Pfeifer R, Herzog D, Hustedt M, Barcikowski S (2010) Pulsed Nd:YAG laser cutting of NiTi shape memory alloys—Influence of process parameters. J Mater Process Technol 210:1918–1925

    Article  Google Scholar 

  118. Powell J, Tan WK, Maclennan P, Rudd D, Wykes C, Engstrom H (2000) Laser cutting stainless steel with dual focus lenses. J Laser Appl 12:224–231

    Article  Google Scholar 

  119. Rocca AVL, Borsati L, Cantello M (1994) Nozzle design to control fluid-dynamics effects in laser cutting. Proc SPIE 2207:354–368

    Article  Google Scholar 

  120. Powell J, Frass K, Menzies IA (1987) 2.5 kW Laser cutting of steels; Factors affecting cut quality in sections up to 20 mm. Proc SPIE 801:278–282

    Article  Google Scholar 

  121. Man HC, Duan J, Yue TM (1997) Design and characteristic analysis of supersonic nozzles for high gas pressure laser cutting. J Mater Process Technol 63:217–222

    Article  Google Scholar 

  122. Leidinger D, Penz A, Schuöcker D (1995) Improved manufacturing processes with high power lasers. Infrared Phys Technol 36:251–266

    Article  Google Scholar 

  123. Quintero F, Pou J, Lusquiños F, Boutinguiza M, Soto R, Pérez-Amor M (2003) Comparative study of the influence of the gas injection system on the Nd:yttrium-aluminum-garnet laser cutting of advanced oxide ceramics. Rev Sci Instrum 74:4199–4205

    Article  Google Scholar 

  124. Na SJ, Yang YS, Koo HM, Kim TK (1989) Effect of shielding gas pressure in laser cutting of sheet metals. Trans ASME J Eng Mater Technol 111:314–318

    Article  Google Scholar 

  125. Quintero F, Pou J, Fernández JL, Doval AF, Lusquiños F, Boutinguiza M, Soto R, Pérez-Amor M (2006) Optimization of an off-axis nozzle for assist gas injection in laser fusion cutting. Opt Lasers Eng 44:1158–1171

    Article  Google Scholar 

  126. Brandt AD, Settles GS (1997) Effect of nozzle orientation on gas dynamics of inert gas laser cutting of mild steel. J Laser Appl 9:269–277

    Article  Google Scholar 

  127. Chryssolouris G, Choi WC (1989) Gas jet effects on laser cutting. Proc SPIE 1042:86-96

    Google Scholar 

  128. Hsu MJ, Molian PA (1995) Off-axial, gas-jet-assisted, laser cutting of 6.35-mm thick stainless steel. Trans ASME J Eng Ind 117:272–276

    Article  Google Scholar 

  129. Prasad GVS, Siores E, Wong WCK (1998) Laser cutting of metallic coated sheet steels. J Mater Process Technol 74:234–242

    Article  Google Scholar 

  130. Arai T, Riches S (1997) Thick plate cutting with spining laser beam. In: Proceedings 16th international congress on applications of lasers and electro-optics, 19–26

    Google Scholar 

  131. O’Neill W, Gabzdy JT (2000) New developments in laser-assisted oxygen cutting. Opt Lasers Eng 34:355–367

    Article  Google Scholar 

  132. Ghany KA, Newishy M (2005) Cutting of 1.2 mm thick austenitic stainless steel sheet using pulsed and CW Nd:YAG laser. J Mater Process Technol 168:438–447

    Article  Google Scholar 

  133. Samant AN, Dahotre NB (2009) Laser machining of structural ceramics—A review. J Europ Ceram Soc 29:969–993

    Article  Google Scholar 

  134. Yan Y, Li L, Sezer K, Whitehead D, Ji L, Bao Y, Jiang Y (2011) Experimental and theoretical investigation of fibre laser crack-free cutting of thick-section alumina. Int J Mach Tool Manuf 51:859–870

    Article  Google Scholar 

  135. Lu G, Siores E, Wang B (1999) An empirical equation for crack formation in the laser cutting of ceramic plates. J Mater Process Technol 88:154–158

    Article  Google Scholar 

  136. Black I, Chua KL (1997) Laser cutting of thick ceramic tile. Opt Laser Technol 29:193–205

    Article  Google Scholar 

  137. Black I, Livingstone SAJ, Chua KL (1998) A laser beam machining (LBM) database for the cutting of ceramic tile. J Mater Process Technol 84:47–55

    Article  Google Scholar 

  138. Lei H, Lijun L (1999) A study of laser cutting engineering ceramics. Opt Laser Technol 31:531–538

    Article  Google Scholar 

  139. Wang J, Wong WCK (1999) CO2 laser cutting of metallic coated sheet steels. J Mater Process Technol 95:164–168

    Article  Google Scholar 

  140. De Graaf RF, Meijer J (2000) Laser cutting of metal laminates: analysis and experimental validation. J Mater Process Technol 103:23–28

    Google Scholar 

  141. Yilbas BS, Khan S, Raza K, Keles O, Ubeyli M, Demir T, Karakas MS (2010) Laser cutting of 7,050 Al alloy reinforced with Al2O3 and B4C composites. Int J Adv Manuf Technol 50:185–193

    Article  Google Scholar 

  142. Kagawa Y, Utsunomiya S, Kogo Y (1989) Laser cutting of CVD-SiC fibre/A6061 composite. J Mater Sci Lett 8:681–683

    Article  Google Scholar 

  143. Cenna AA, Mathew P (1997) Evaluation of cut quality of fibre-reinforced plastics—A review. Int J Mach Tool Manuf 37:723–736

    Article  Google Scholar 

  144. Mello MD (1986) Laser cutting of non-metallic composites. Proc SPIE 668:288–290

    Article  Google Scholar 

  145. Caprino G, Tagliaferri V (1988) Maximum cutting speed in laser cutting of fiber reinforced plastics. Int J Mach Tool Manuf 28:389–398

    Article  Google Scholar 

  146. Ready JF (1997) Industrial Applications of Lasers. Academic Press, San Diego

    Google Scholar 

  147. Migliore L (1996) Laser-material interactions. In: Migliore L (ed) Laser Materials Processing. Marcel Dekker, Inc., New York

    Google Scholar 

  148. Rofin (2004) Introduction to industrial laser materials processing. http://www.obrusn.torun.pl/htm0/prod_images/rofin/Laserbook.pdf. Accessed 23 August 2012

  149. Olsen FO (2011) Laser cutting from CO2 laser to disk or fiber laser—possibilities and challenges. In: Proceedings 30th international congress on applications of lasers and electro-optics, Paper #101

    Google Scholar 

  150. Fieret J, Terry MJ, Ward BA (1986) Aerodynamic interactions during laser cutting. Proc SPIE 668:53–62

    Article  Google Scholar 

  151. Fieret J, Terry MJ, Ward BA (1987) Overview of flow dynamics in gas-assisted laser cutting. Proc SPIE 801:243–250

    Article  Google Scholar 

  152. Molian PA (1993) Dual-beam CO2 laser cutting of thick metallic materials. J Mater Sci 28:1738–1748

    Article  Google Scholar 

  153. Toyserkani E, Khajepour A, Corbin S (2005) Laser Cladding. CRC Press LLC, Boca Raton

    Google Scholar 

  154. Nath AK (2013) High power lasers in material processing applications: an overview of recent development. In: Majumdar JD, Manna I (eds) Laser-assisted fabrication of materials. Springer-Verlag, Berlin

    Google Scholar 

  155. Steen WM, Mazumder J (2010) Laser Material Processing. Springer, London

    Google Scholar 

  156. Powell J, Frass K, Menzies IA, Fuhr H (1988) CO2 laser cutting of non-ferrous metals. Proc SPIE 1020:156–163

    Article  Google Scholar 

  157. Riveiro A, Quintero F, Lusquiños F, Comesaña R, del Val J, Pou J (2011) The role of the assist gas nature in laser cutting of aluminum alloys. Phys Procedia 12(Part A): 548–554

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoujin Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Sun, S., Brandt, M. (2013). Laser Beam Machining. In: Davim, J. (eds) Nontraditional Machining Processes. Springer, London. https://doi.org/10.1007/978-1-4471-5179-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5179-1_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5178-4

  • Online ISBN: 978-1-4471-5179-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics