Skip to main content

Synthesis Theory in Optimal Control

Encyclopedia of Systems and Control

Abstract

In this entry we review the theory of optimal synthesis. We describe the steps necessary to solve an optimal control problem and the sufficient conditions for optimality given by the theory. We describe some relevant examples that have important applications in mechanics, in the theory of hypo-elliptic operators and for the study of models of geometry of vision. Finally, we discuss the problem of optimal stabilization and the difficulties encountered if one tries to give the solution to the problem in feedback form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Agrachev A (1996) Exponential mappings for contact sub-Riemannian structures. J Dyn Control Syst 2(3):321–358

    Article  MATH  MathSciNet  Google Scholar 

  • Agrachev AA, Sachkov YuL (2004) Control theory from the geometric viewpoint. Encyclopedia of mathematical sciences, vol 87. Springer, Berlin/New York

    Google Scholar 

  • Agrachev A, Boscain U, Sigalotti M (2008) A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds. Discret Contin Dyn Syst A 20:801–822

    Article  MATH  MathSciNet  Google Scholar 

  • Ancona F, Bressan A (1999) Patchy vector fields and asymptotic stabilization. ESAIM Control Optim Calc Var 4:445–471

    Article  MATH  MathSciNet  Google Scholar 

  • Barilari D, Boscain U, Neel RW (2012) Small time heat asymptotics at the sub-Riemannian cut locus. J Differ Geom 92(3):373–416

    MATH  MathSciNet  Google Scholar 

  • Beals R, Gaveau B, Greiner P (1996) The Green function of model step two hypoelliptic operators and the analysis of certain tangential Cauchy Riemann complexes. Adv Math 121(2):288–345

    Article  MATH  MathSciNet  Google Scholar 

  • Bellaiche A (1996) The tangent space in sub-Riemannian geometry. In: Bellaiche A, Risler J-J (eds) Sub-Riemannian geometry. Progress in mathematics, vol 144. Birkhuser, Basel, pp 1–78

    Chapter  Google Scholar 

  • Bloch A (2003) Nonholonomic mechanics and control. Interdisciplinary applied mathematics, vol 24. Springer, New York

    Google Scholar 

  • Boltyanskii V (1966) Sufficient condition for optimality and the justification of the dynamic programming principle. SIAM J Control Optim 4:326–361

    Article  MathSciNet  Google Scholar 

  • Boscain U, Piccoli B (2004) Optimal synthesis for control systems on 2-D manifolds. SMAI, vol 43. Springer, Berlin/New York

    Google Scholar 

  • Boscain U, Rossi F (2008) Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2) and Lens Spaces. SIAM J Control Optim 47:1851–1878

    Article  MATH  MathSciNet  Google Scholar 

  • Boscain U, Duplaix J, Gauthier JP, Rossi F (2012) Anthropomorphic image reconstruction via hypoelliptic diffusion. SIAM J Control Optim 50(3):1309–1336

    Article  MATH  MathSciNet  Google Scholar 

  • Breuillard E, Le Donne E (2012) On the rate of convergence to the asymptotic cone for nilpotent groups and subfinsler geometry. PNAS. doi:10.1073/pnas.1203854109

    Google Scholar 

  • Bressan A (1985) A high order test for optimality of bang-bang controls. SIAM J Control Optim 23(1):38–48

    Article  MATH  MathSciNet  Google Scholar 

  • Bressan A, Piccoli B (1998) A generic classification of time optimal planar stabilizing feedbacks. SIAM J Control Optim 36(1):12–32

    Article  MATH  MathSciNet  Google Scholar 

  • Bressan A, Piccoli B (2007) Introduction to the mathematical theory of control. AIMS series on applied mathematics, vol 2. American Institute of Mathematical Sciences, Springfield

    Google Scholar 

  • Brockett R (1982) Control theory and singular Riemannian geometry. In: New directions in applied mathematics (Cleveland, 1980). Springer, New York/Berlin, pp 11–27

    Google Scholar 

  • Brockett R (1983) Asymptotic stability and feedback stabilization. In: Brockett RW, Millman RS, Sussmann HJ (eds) Differential geometric control theory. Birkhäuser, Boston, pp 181–191

    Google Scholar 

  • Brunovsky P (1978) Every normal linear system has a regular time-optimal synthesis. Math Slovaca 28:81–100

    MATH  MathSciNet  Google Scholar 

  • Brunovsky P (1980) Existence of regular syntheses for general problems. J Differ Equ 38:317–343

    Article  MATH  MathSciNet  Google Scholar 

  • Cesari L (1983) Optimization-theory and applications: problems with ordinary differential equations. Springer, New York

    Book  MATH  Google Scholar 

  • Clarke F, Ledyaev Yu, Subbotin A, Sontag E (1997) Asymptotic controllability implies feedback stabilization. IEEE Trans Autom Control 42:1394–1407

    Article  MATH  MathSciNet  Google Scholar 

  • Charlot G (2002) Quasi-contact S-R metrics: normal form in \(\mathbb{R}^{2n}\), wave front and caustic in \(\mathbb{R}^{4}\). Acta Appl Math 74(3):217–263

    Article  MATH  MathSciNet  Google Scholar 

  • Coron JM (1992) Global asymptotic stabilization for controllable systems without drift. Math Control Signals Syst 5:295–312

    Article  MATH  MathSciNet  Google Scholar 

  • Dubins LE (1957) On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal position and tangents. Am J Math 79:497–516

    Article  MATH  MathSciNet  Google Scholar 

  • El-Alaoui El-H Ch, Gauthier J-P, Kupka I (1996) Small sub-Riemannian balls on \(\mathbb{R}^{3}\). J Dyn Control Sys 2(3):359–421

    Article  Google Scholar 

  • Gaveau B (1977) Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math 139(1–2):95–153

    Article  MATH  MathSciNet  Google Scholar 

  • Gershkovich V, Vershik A (1988) Nonholonomic manifolds and nilpotent analysis. J Geom Phys 5:407–452

    Article  MATH  MathSciNet  Google Scholar 

  • Gromov M (1981) Groups of polynomial growth and expanding maps. Inst Hautes Ètudes Sci Publ Math 53:53–73

    Article  MATH  MathSciNet  Google Scholar 

  • Hormander L (1967) Hypoelliptic second order differential equations. Acta Math 119:147–171

    Article  MathSciNet  Google Scholar 

  • Krener AJ (1977) The high order maximal principle and its application to singular extremals. SIAM J Control Optim 15(2):256–293

    Article  MATH  MathSciNet  Google Scholar 

  • Marigo A, Piccoli B (2002) Regular syntheses and solutions to discontinuous ODEs. ESAIM Control Optim Calc Var 7:291–308

    Article  MATH  MathSciNet  Google Scholar 

  • Montgomery R (2002) A tour of subriemannian geometries, their geodesics and applications. Mathematical surveys and monographs, vol 91. American Mathematical Society, Providence

    Google Scholar 

  • Petitot J (2008) Neurogéométrie de la vision, Modèles mathématiques et physiques des architectures fonctionnelles. Les Éditions de l’ École Polythecnique

    Google Scholar 

  • Piccoli B (1996) Classifications of generic singularities for the planar time-optimal synthesis. SIAM J Control Optim 34(6):1914–1946

    Article  MATH  MathSciNet  Google Scholar 

  • Piccoli B, Sussmann HJ (2000) Regular synthesis and sufficiency conditions for optimality. SIAM J Control Optim 39(2):359–410

    Article  MATH  MathSciNet  Google Scholar 

  • Pontryagin LS et al (1961) The mathematical theory of optimal processes. Wiley, New York

    Google Scholar 

  • Reeds JA, Shepp LA (1990) Optimal Path for a car that goes both forwards and backwards. Pac J Math 145:367–393

    Article  MathSciNet  Google Scholar 

  • Sachkov Yu (2011) Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane. ESAIM COCV 17:293–321

    Article  MATH  MathSciNet  Google Scholar 

  • Sigalotti M, Chitour Y (2006) Dubins’ problem on surfaces II: nonpositive curvature. SIAM J Control Optim 45:457–482

    Article  MathSciNet  Google Scholar 

  • Soueres P, Laumond JP (1996) Shortest paths synthesis for a car-like robot. IEEE Trans Autom Control 41(5):672–688

    Article  MATH  MathSciNet  Google Scholar 

  • Sussmann HJ (1979) Subanalytic sets and feedback control. J Differ Equ 31(1):31–52

    Article  MATH  MathSciNet  Google Scholar 

  • Sussmann HJ (1980) Analytic stratifications and control theory. In: Proceedings of the international congress of mathematicians (Helsinki, 1978), Academia Scientiarum Fennica, Helsinki, pp 865–871

    Google Scholar 

  • Sussmann HJ (1986) Envelopes, conjugate points, and optimal bang-bang extremals. In: Algebraic and geometric methods in nonlinear control theory. Mathematics and its applications, vol 29. Reidel, Dordrecht, pp 325–346

    Google Scholar 

  • Sussmann HJ (1989) Envelopes, higher-order optimality conditions and Lie Brackets. In: Proceedings of the 1989 IEEE conference on decision and control, Tampa, FL, USA

    Google Scholar 

  • Vinter R (2010) Optimal control. Birkhäuser, Basel/Boston

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The first author has been supported by the European Research Council, ERC StG 2009 “GeCoMethods”, contract number 239748.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Boscain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Boscain, U., Piccoli, B. (2014). Synthesis Theory in Optimal Control. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_50-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_50-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Synthesis Theory in Optimal Control
    Published:
    09 November 2020

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_50-2

  2. Original

    Synthesis Theory in Optimal Control
    Published:
    06 October 2014

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_50-1