Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The use of immobilised photocatalysts on a substrate allows to overcome some of the main drawbacks associated to fluidised bed systems. This chapter will address the most important aspects to be considered for the preparation of immobilised photocatalysts, the techniques available for the immobilization of the active phase and the description of some of the most commonly used substrates, paying special attention to a novel family of bi-functional composites in which adsorption and photocatalytic properties are combined, the so-called adsorbent-photocatalyst hybrid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Ekabi H, Serpone N (1988) Kinetic studies in heterogeneous photocatalysis. 1. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over TiO2 supported on a glass matrix. J Phys Chem 92(20):5726–5731

    Google Scholar 

  • Anpo M, Sunamoto M, Che M (1989) Preparation of highly dispersed anchored vanadium oxides by photochemical vapor deposition method and their photocatalytic activity for isomerization of trans-2-butene. J Phys Chem 93(4):1187–1189

    Google Scholar 

  • Ao CH, Lee SC (2003) Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. Appl Catal B 44(3):191–205

    Google Scholar 

  • Arconada N, Durán A, Suárez S, Portela R, Coronado JM, Sánchez B, Castro Y (2009) Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol-gel. Appl Catal B 86(1–2):1–7

    Google Scholar 

  • Arfsten NJ, Eberle A, Otto J, Reich A (1997) Investigations on the angle-dependent dip coating technique (ADDC) for the production of optical filters. J Sol-Gel Sci Technol 8(1–3):1099–1104

    Google Scholar 

  • Avila P, Montes M, Miró EE (2005) Monolithic reactors for environmental applications: a review on preparation technologies. Chem Eng J 109(1):11–36

    Google Scholar 

  • Balasubramanian G, Dionysiou DD, Suidan MT, Baudin I, Laine J-M (2004) Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water. Appl Catal B 47(2):73–84

    Google Scholar 

  • Bianchi CL, Pirola C, Selli E, Biella S (2012) Photocatalytic NOx abatement: The role of the material supporting the TiO2 active layer. J Hazard Mater 211–212:203–207

    Google Scholar 

  • Blanco J, Avila P, Suarez S, Martin JA, Knapp C (2000) Alumina- and titania-based monolithic catalysts for low temperature selective catalytic reduction of nitrogen oxides. Appl Catal B 28(3–4):235–244

    Google Scholar 

  • Bouazza N, Lillo-Ródenas MA, Linares-Solano A (2008) Enhancement of the photocatalytic activity of pelletized TiO2 for the oxidation of propene at low concentration. Appl Catal B 77(3–4):284–293

    Google Scholar 

  • Brinker CJ, Hurd AJ, Ward KJ (1988) Ultrastructure processing of advanced ceramics. Wiley, New York

    Google Scholar 

  • Brinker CJ, Frye GC, Hurd AJ, Ashley CS (1991) Fundamentals of sol-gel dip coating. Thin Solid Films 201(1):97–108

    Google Scholar 

  • Byrne JA, Eggins BR, Brown NMD, McKinney B, Rouse M (1998) Immobilisation of TiO2 powder for the treatment of polluted water. Appl Catal B 17(1–2):25–36

    Google Scholar 

  • Camra J, Bielanska E, Bernasik A, Kowalski K, Zimowska M, Bialas A, Najbar M (2005) Role of Al segregation and high affinity to oxygen in formation of adhesive alumina layers on FeCr alloy support. Catal Today 105(3–4):629–633

    Google Scholar 

  • Candal RJ, Zeltner WA, Anderson MA (1998) TiO2-mediated photoelectrocatalytic purification of water. J Adv Oxid Technol 3:270–276

    Google Scholar 

  • Candal R, Rodriguez J, Colón G, Gelover S, Vigil-Santos E, Jimenez-Gonzalez A, Blesa MA (2004) Materiales para fotocatálisis y electrofotocatálisis. In: Blesa MA, Sánchez B (eds) Eliminación de contaminantes por fotocatálisis heterogénea Madrid

    Google Scholar 

  • Carneiro JT, Berger R, Moulijn JA, Mul G (2009) An internally illuminated monolith reactor: pros and cons relative to a slurry reactor. Catal Today 147(Supplement 1):S324–S329

    Google Scholar 

  • Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177

    Google Scholar 

  • Chen BT (1983) Investigation of the solvent-evaporation effect on spin coating of thin films. Polym Eng Sci 23(7):399–403

    Google Scholar 

  • Chen Y, Dionysiou DD (2006a) Correlation of structural properties and film thickness to photocatalytic activity of thick TiO2 films coated on stainless steel. Appl Catal B 69(1–2):24–33

    Google Scholar 

  • Chen Y, Dionysiou DD (2006b) TiO2 photocatalytic films on stainless steel: the role of Degussa P-25 in modified sol-gel methods. Appl Catal B 62(3–4):255–264

    Google Scholar 

  • Chen CH, Kelder EM, Schoonman J (1998) Effects of additives in electrospraying for materials preparation. J Eur Ceram Soc 18(10):1439–1443

    Google Scholar 

  • Chen CH, Kelder EM, Schoonman J (1999) Electrostatic sol-spray deposition (ESSD) and characterisation of nanostructured TiO2 thin films. Thin Solid Films 342(1–2):35–41

    Google Scholar 

  • Chiarello GL, Selli E, Forni L (2008) Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO2 and Au/TiO2. Appl Catal B 84(1–2):332–339

    Google Scholar 

  • Chiarello GL, Ferri D, Selli E (2011) Effect of the CH3OH/H2O ratio on the mechanism of the gas-phase photocatalytic reforming of methanol on noble metal-modified TiO2. J Catal 280(2):168–177

    Google Scholar 

  • Chung YS, Park SB, Kang DW (2004) Magnetically separable titania-coated nickel ferrite photocatalyst. Mater Chem Phys 86(2–3):375–381

    Google Scholar 

  • Coronado JM, Sánchez B, Fresno F, Suárez S, Portela R (2008a) Influence of catalysts properties and reactor configuration on the photocatalytic degradation of trichloroethylene under sunlight irradiation. J Solar Energy Eng 130(4):041012–041015

    Google Scholar 

  • Coronado JM, Sánchez B, Portela R, Suárez S (2008b) Solar photocatalysis for the elimination of trichloroethylene in the gas phase. J Solar Energy Eng 130(1):011014–011016

    Google Scholar 

  • Cybulsky A, Moulijn JA (1998) Structurated catalysts and reactors. CRC Press, USA

    Google Scholar 

  • Deng X, Yue Y, Gao Z (2002) Gas-phase photo-oxidation of organic compounds over nanosized TiO2 photocatalysts by various preparations. Appl Catal B 39(2):135–147

    Google Scholar 

  • Ding Z, Hu X, Lu GQ, Yue PL, Greenfield PF (2000) Novel silica gel supported TiO2 photocatalyst synthesized by CVD method. Langmuir 16(15):6216–6222

    Google Scholar 

  • Ding Z, Hu X, Yue PL, Lu GQ, Greenfield PF (2001) Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition. Catal Today 68(1–3):173–182

    Google Scholar 

  • Eufinger K, Poelman D, Poelman H, De Gryse R, Marin GB (2007) Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin films. Appl Surf Sci 254(1):148–152

    Google Scholar 

  • Fernandez A, Lassaletta G, Jimenez VM, Justo A, Gonzalez-Elipe AR, Herrmann J-M, Tahiri H, Ait-Ichou Y (1995) Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel): comparative studies of photocatalytic activity in water purification. Appl Catal B 7(1–2):49–63

    Google Scholar 

  • Fujimoto M, Kado T, Takashima W, Kaneto K, Hayase S (2006) Dye-sensitized solar cells fabricated by electrospray coating using TiO2 nanocrystal dispersion solution. J Electrochem Soc 153(5):A826–A829

    Google Scholar 

  • Gijsman P, Meijers G, Vitarelli G (1999) Comparison of the UV-degradation chemistry of polypropylene, polyethylene, polyamide 6 and polybutylene terephthalate. Polym Degrad Stab 65(3):433–441

    Google Scholar 

  • Giornelli T, Lofberg A, Bordes-Richard E (2006) Preparation and characterization of VOx/TiO2 catalytic coatings on stainless steel plates for structured catalytic reactors. Appl Catal A-Gen 305(2):197–203

    Google Scholar 

  • Guglielmi M, Zenezini S (1990) Thickness of sol-gel silica coatings obtained by dipping. J Non-Cryst Solids 121(1–3):303–309

    Google Scholar 

  • Hájková P, Spatenka P, Krumeich J, Exnar P, Kolouch A, Matousek J, Koci P (2009) Antibacterial effect of silver modified TiO2/PECVD films. Eur Phys J D 54(2):189–193

    Google Scholar 

  • Hegemann D, Brunner H, Oehr C (2003) Plasma treatment of polymers for surface and adhesion improvement. Nucl Instrum Methods Phys Res, Sect B 208(1–4):281–286

    Google Scholar 

  • Herbig B, Lobmann P (2004) TiO2 photocatalysts deposited on fiber substrates by liquid phase deposition. J Photochem Photobiol, A 163(3):359–365

    Google Scholar 

  • Herman GS, Gao Y, Tran TT, Osterwalder J (2000) X-ray photoelectron diffraction study of an anatase thin film: TiO2(001). Surf Sci 447(1):201–211

    Google Scholar 

  • Hernández-Alonso MD, Tejedor–Tejedor I, Coronado JM, Soria J, Anderson MA (2006) Sol-gel preparation of TiO2-ZrO2 thin films supported on glass rings: Influence of phase composition on photocatalytic activity. Thin Solid Films 502(1–2):125–131

    Google Scholar 

  • Herrmann JM, Matos J, Disdier J, Guillard C, Laine J, Malato S, Blanco J (1999) Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension. Catal Today 54(2–3):255–265

    Google Scholar 

  • Hewer TLR, Suárez S, Coronado JM, Portela R, Avila P, Sanchez B (2009) Hybrid photocatalysts for the degradation of trichloroethylene in air. Catal Today 13(3–4):302–308

    Google Scholar 

  • Hirai T, Okubo H, Komasawa I (2001) Incorporation of CdS nanoparticles formed in reverse micelles into mesoporous silica. Colloid Interface Sci 235(2):358–364

    Google Scholar 

  • Hofstadler K, Bauer R, Novalic S, Heisler G (1994) New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused-silica glass fibers: Photomineralization of 4-chlorophenol. Env Scien Tech 28(4):670–674

    Google Scholar 

  • Iketani K, Sun R-D, Toki M, Hirota K, Yamaguchi O (2003) Sol-gel-derived TiO2/poly(dimethylsiloxane) hybrid films and their photocatalytic activities. J Phys Chem Solids 64(3):507–513

    Google Scholar 

  • Ilisz I, Dombi A, Mogyorosi K, Farkas A, Dekany I (2002) Removal of 2-chlorophenol from water by adsorption combined with TiO2 photocatalysis. Appl Catal B 39(3):247–256

    Google Scholar 

  • Jung SC, Imaishi N (2001) Preparation, crystal structure, and photocatalytic activity of TiO2 films by chemical vapor deposition. Korean J Chem Eng 18(6):867–872

    Google Scholar 

  • Jung SC, Kim SJ, Imaishi N, Cho YI (2005) Effect of TiO2 thin film thickness and specific surface area by low-pressure metal-organic chemical vapor deposition on photocatalytic activities. Appl Catal B 55(4):253–257

    Google Scholar 

  • Kang H, Lee CS, Kim DY, Kim J, Choi W, Kim H (2011) Photocatalytic effect of thermal atomic layer deposition of TiO2 on stainless steel. Appl Catal B104(1–2):6–11

    Google Scholar 

  • Kim SB, Hong SC (2002) Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Appl Catal B 35(4):305–315

    Google Scholar 

  • Kitano M, Funatsu K, Matsuoka M, Ueshima M, Anpo M (2006a) Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation. J Phys Chem B 110(50):25266–25272

    Google Scholar 

  • Kitano M, Tsujimaru K, Anpo M (2006b) Decomposition of water in the separate evolution of hydrogen and oxygen using visible light-responsive TiO2 thin film photocatalysts: Effect of the work function of the substrates on the yield of the reaction. Appl Catal A 314(2):179–183

    Google Scholar 

  • Krunks M, Mellikov E (1995) Zinc oxide thin films by the spray pyrolysis method. Thin Solid Films 270(1–2):33–36

    Google Scholar 

  • Kumar AP, Depan D, Singh Tomer N, Singh RP (2009) Nanoscale particles for polymer degradation and stabilization–trends and future perspectives. Prog Polym Sci 34(6):479–515

    Google Scholar 

  • Lai JH (1979) An investigation of spin coating of electron resists. Polym Eng Sci 19(15):1117–1121

    Google Scholar 

  • Langlet M, Kim A, Audier M, Herrmann JM (2002) Sol-gel preparation of photocatalytic TiO2 films on polymer substrates. J Sol-Gel Sci Technol 25(3):223–234

    Google Scholar 

  • Lee GH, Yamamoto Y, Kourogi M, Ohtsu M (2001a) Blue shift in room temperature photoluminescence from photo-chemical vapor deposited ZnO films. Thin Solid Films 386(1):117–120

    Google Scholar 

  • Lee SH, Kang M, Cho SM, Han GY, Kim BW, Yoon KJ, Chung CH (2001b) Synthesis of TiO2 photocatalyst thin film by solvothermal method with a small amount of water and its photocatalytic performance. J Photochem Photobiol, A 146(1–2):121–128

    Google Scholar 

  • Leenaars AFM, Keizer K, Burggraaf AJ (1984) The preparation and characterization of alumina membranes with ultra-fine pores—part 1 microstructural investigations on non-supported membranes. J Mater Sci 19(4):1077–1088

    Google Scholar 

  • Lei L, Chu HP, Hu X, Yue PL (1999) Preparation of heterogeneous photocatalyst (TiO2/alumina) by metallo-organic chemical vapor deposition. Ind Eng Chem Res 38(9):3381–3385

    Google Scholar 

  • Li D, Haneda H (2003) Photocatalysis of sprayed nitrogen-containing Fe2O3-ZnO and WO3-ZnO composite powders in gas-phase acetaldehyde decomposition. J Photochem Photobiol, A 160(3):203–212

    Google Scholar 

  • Li Puma G, Bono A, Collin JG (2008) Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper. J Hazard Mater 157(2–3):209–219

    Google Scholar 

  • Liu B, Zhao X, Zhang N, Zhao Q, He X, Feng J (2005) Photocatalytic mechanism of TiO2-CeO2 films prepared by magnetron sputtering under UV and visible light. Surf Sci 595(1–3):203–211

    Google Scholar 

  • Lunawat PS, Senapati S, Kumar R, Gupta NM (2007) Visible light-induced splitting of water using CdS nanocrystallites immobilized over water-repellant polymeric surface. Int J Hydrogen Energy 32(14):2784–2790

    Google Scholar 

  • Maeda M, Watanabe T (2005) Evaluation of photocatalytic properties of titanium oxide films prepared by plasma-enhanced chemical vapor deposition. Thin Solid Films 489(1–2):320–324

    Google Scholar 

  • Matsuda A, Matoda T, Kogure T, Tadanaga K, Minami T, Tatsumisago M (2003) Formation of anatase nanocrystals-precipitated silica coatings on plastic substrates by the sol-gel process with hot water treatment. J Sol-Gel Sci Technol 27(1):61–69

    Google Scholar 

  • Matthews RW (1987) Solar-electric water purification using photocatalytic oxidation with TiO2 as a stationary phase. Sol Energy Mater 38(6):405–413

    MathSciNet  Google Scholar 

  • Meille V (2006) Review on methods to deposit catalysts on structured surfaces. Appl Catal A 315:1–17

    Google Scholar 

  • Mikula M, Brezova V, Ceppan M, Pach L, Karpinsky L (1995) Comparison of photocatalytic activity of sol-gel TiO2 and P25 TiO2 particles supported on commercial fibreglass fabric. J Mater Sci Lett 14(9):615–616

    Google Scholar 

  • Minero C, Catozzo F, Pelizzetti E (1992) Role of adsorption in photocatalyzed reactions of organic molecules in aqueous TiO2 suspensions. Langmuir 8(2):481–486

    Google Scholar 

  • Molinari R, Mungari M, Drioli E, Di Paola A, Loddo V, Palmisano L, Schiavello M (2000) Study on a photocatalytic membrane reactor for water purification. Catal Today 55(1–2):71–78

    Google Scholar 

  • Muñoz-Vicente M, Suárez S, Hernández-Alonso MD, Sánchez B (2011) TiO2-Al based monolithic photocatalyst for VOCs degradation. EuropaCat X, Glasgow

    Google Scholar 

  • Muñoz-Vicente M, Hernández-Alonso MD, Suárez S, Sánchez-Muñoz M, Sánchez B (2012) Indoor air bacteria and VOCs elimination using Al/one -dimensional TiO2 nanostructures as photocatalysts for air conditioning systems. In: 7th European meeting on solar chemistry and photocatalysis: environmental applications (SPEA7). Oporto, Portugal

    Google Scholar 

  • Nair M, Luo Z, Heller A (1993) Rates of photocatalytic oxidation of crude oil on salt water on Buoyant, Cenosphere-attached titanium dioxide. Ind Eng Chem Res 32:2318–2323

    Google Scholar 

  • Nam HJ, Amemiya T, Murabayashi M, Itoh K (2004) Photocatalytic activity of sol-gel TiO2 thin films on various kinds of glass substrates: the effects of Na+ and primary particle size. J Phys Chem B 108(24):8254–8259

    Google Scholar 

  • Nasonova A, Pham HC, Kim DJ, Kim KS (2010) NO and SO2 removal in non-thermal plasma reactor packed with glass beads-TiO2 thin film coated by PCVD process. Chem Eng J 156(3):557–561

    Google Scholar 

  • Neti NR, Parmar GR, Bakardjieva S, Subrt J (2010) Thick film titania on glass supports for vapour phase photocatalytic degradation of toluene, acetone, and ethanol. Chem Eng J 163(3):219–229

    Google Scholar 

  • Nizard H, Kosinova ML, Fainer NI, Rumyantsev YM, Ayupov BM, Shubin YV (2008) Deposition of titanium dioxide from TTIP by plasma enhanced and remote plasma enhanced chemical vapor deposition. Surf Coat Technol 202(17):4076–4085

    Google Scholar 

  • Nogier JP, Millot Y, Man PP, Shishido T, Che M, Dzwigaj S (2009) Probing the incorporation of Ti(IV) into the BEA zeolite framework by XRD, FTIR, NMR, and DR UV-jp810722bis. J Phys Chem C 113(12):4885–4889

    Google Scholar 

  • Nomura M, Meester B, Schoonman J, Kapteijn F, Moulijn JA (2003) Improvement of thermal stability of porous titania films prepared by electrostatic sol-spray deposition (ESSD). Chem Mater 15(6):1283–1288

    Google Scholar 

  • Nozawa M, Tanigawa K, Hosomi M, Chikusa T, Kawada E (2001) Removal and decomposition of malodorants by using titanium dioxide photocatalyst supported on fiber activated carbon. Water Sci Technol, 127–133

    Google Scholar 

  • Nyok-Sai H (1977) Photodegradation of cellulose acetate fibers. J Polym Sci: Polym Chemistry Edition 15(3):725–744

    Google Scholar 

  • Obata K, Irie H, Hashimoto K (2007) Enhanced photocatalytic activities of Ta, N co-doped TiO2 thin films under visible light. Chem Phys 339(1–3):124–132

    Google Scholar 

  • O’Neill SA, Parkin IP, Clark RJH, Mills A, Elliott N (2003) Atmospheric pressure chemical vapour deposition of titanium dioxide coatings on glass. J Mater Chem 13(1):56–60

    Google Scholar 

  • Pan JH, Lee WI (2006) Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties. Chem Mater 18(3):847–853

    Google Scholar 

  • Paschoalino MP, Kiwi J, Jardim WF (2006) Gas-phase photocatalytic decontamination using polymer supported TiO2. Appl Catal B 68(1–2):68–73

    Google Scholar 

  • Pawinrat P, Mekasuwandumrong O, Panpranot J (2009) Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catal Commun 10(10):1380–1385

    Google Scholar 

  • Portela R, Sanchez B, Coronado JM, Candal R, Suarez S (2007) Selection of TiO2-support: UV-transparent alternatives and long-term use limitations for H2S removal. Catal Today 129(1–2):223–230

    Google Scholar 

  • Portela R, Suárez S, Rasmussen SB, Arconada N, Castro Y, Durán A, Ávila P, Coronado JM, Sánchez B (2010) Photocatalytic-based strategies for H2S elimination. Catal Today 151(1–2):64–70

    Google Scholar 

  • Portela R, Tessinari RF, Suárez S, Rasmussen SB, Hernández-Alonso MD, Canela MC, Ávila P, Sánchez B (2012) Photocatalysis for continuous air purification in wastewater treatment plants: from lab to reality. Environ Sci Tech 46(9):5040–5048

    Google Scholar 

  • Quintana M, Ricra E, Rodríguez J, Estrada W (2002) Spray pyrolysis deposited zinc oxide films for photo-electrocatalytic degradation of methyl orange: influence of the pH. Catal Today 76(2–4):141–148

    Google Scholar 

  • Rasmussen SB, Portela R, Suárez S, Coronado JM, Rojas-Cervantes ML, Avila P, Sánchez B (2010) Hybrid TiO2/SiMgOX composite for combined chemisorption and photocatalytic elimination of gaseous H2S. Ind Eng Chem Res 49(15):6685–6690

    Google Scholar 

  • Raupp GB, Alexiadis A, Hossain MM, Changrani R (2001) First-principles modeling, scaling laws and design of structured photocatalytic oxidation reactors for air purification. Catal Today 69(1–4):41–49

    Google Scholar 

  • Rico V, Romero P, Hueso JL, Espinos JP, Gonzalez-Elipe AR (2009) Wetting angles and photocatalytic activities of illuminated TiO2 thin films. Catal Today 143(3–4):347–354

    Google Scholar 

  • Rodríguez J, Paraguay-Delgado F, López A, Alarcón J, Estrada W (2010) Synthesis and characterization of ZnO nanorod films for photocatalytic disinfection of contaminated water. Thin Solid Films 519(2):729–735

    Google Scholar 

  • Sampath S, Uchida H, Yoneyama H (1994) Photocatalytic degradation of gaseous pyridine over zeolite-supported titanium dioxide. J Catal 149(1):189–194

    Google Scholar 

  • Sánchez B, Cardona AI, Romero M, Avila P, Bahamonde A (1999) Influence of temperature on gas-phase photo-assisted mineralization of TCE using tubular and monolithic catalysts. Catal Today 54:369–377

    Google Scholar 

  • Sánchez B, Coronado JM, Candal R, Portela R, Tejedor I, Anderson MA, Tompkins D, Lee T (2006) Preparation of TiO2 coatings on PET monoliths for the photocatalytic elimination of trichloroethylene in the gas phase. Appl Catal B 66(3–4):295–301

    Google Scholar 

  • Sanz O, Almeida LC, Zamaro JM, Ulla MA, Miró EE, Montes M (2008) Washcoating of Pt-ZSM5 onto aluminium foams. Appl Catal B 78(1–2):166–175

    Google Scholar 

  • Sarantopoulos C, Puzenat E, Guillard C, Herrmann JM, Gleizes AN, Maury F (2009) Microfibrous TiO2 supported photocatalysts prepared by metal-organic chemical vapor infiltration for indoor air and waste water purification. Appl Catal B 91(1–2):225–233

    Google Scholar 

  • Schultes M (2003) Raschig super-ring: a new fourth generation packing offers new advantages. Chem Eng Res Des 81(1):48–57

    Google Scholar 

  • Schwitzgebel J, Ekerdt JG, Gerischer H, Heller A (1995) Role of the oxygen molecule and of the photogenerated electron in TiO2-photocatalyzed air oxidation reactions. J Phys Chem 99:5633–5638

    Google Scholar 

  • Shan AY, Ghazi TIM, Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal A 389(1–2):1–8

    Google Scholar 

  • Shang J, Li W, Zhu Y (2003) Structure and photocatalytic characteristics of TiO2 film photocatalyst coated on stainless steel webnet. J Mol Catal A: Chem 202(1–2):187–195

    Google Scholar 

  • Sirisuk A, Hill CG Jr, Anderson MA (1999) Photocatalytic degradation of ethylene over thin films of titania supported on glass rings. Catal Today 54(1):159–164

    Google Scholar 

  • Stern O (1924) Z Elektrochem, Angew Phys Chem 30:508–516

    Google Scholar 

  • Strawbridge I, James PF (1986) Thin silica films prepared by dip coating. J Non-Cryst Solids 82(1–3):366–372

    Google Scholar 

  • Suárez S (2002) Desarrollo de catalizadores SCR altamente selectivos a nitrógeno para plantas de ácido nítrico. Alcalá University, Madrid

    Google Scholar 

  • Suárez S, Coronado JM, Portela R, Martín JC, Yates M, Ávila P, Sánchez B (2008) On the preparation of TiO2-sepiolite hybrid materials for the photocatalytic degradation of TCE: influence of TiO2 distribution in the mineralization. Environ Sci Technol 42(16):5892–5896

    Google Scholar 

  • Suárez S, Arconada N, Castro Y, Coronado JM, Portela R, Durán A, Sánchez B (2011a) Photocatalytic degradation of TCE in dry and wet air conditions with TiO2 porous thin films. Appl Catal B 108–109:14–21

    Google Scholar 

  • Suárez S, Hewer TLR, Portela R, Hernandez-Alonso MD, Freire RS, Sanchez B (2011b) Behaviour of TiO2-SiMgOx hybrid composites on the solar photocatalytic degradation of polluted air. Appl Catal B 101(3–4):176–182

    Google Scholar 

  • Takahashi M, Mita K, Toyuki H, Kume M (1989) Pt-TiO2 thin films on glass substrates as efficient photocatalysts. J Mater Sci 24(1):243–246

    Google Scholar 

  • Takeda N, Torimoto T, Sampath S, Kuwabata S, Yoneyama H (1995) Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. J Phys Chem 99(24):9986–9991

    Google Scholar 

  • Tennakone K, Tilakaratne CTK, Kottegoda IRM (1997) Photomineralization of carbofuran by TiO2-supported catalyst. Water Res 31(8):1909–1912

    Google Scholar 

  • Twesme TM, Tompkins DT, Anderson MA, Root TW (2006) Photocatalytic oxidation of low molecular weight alkanes: Observations with ZrO2-TiO2 supported thin films. Appl Catal B 64(3–4):153–160

    Google Scholar 

  • Verbruggen SW, Ribbens S, Tytgat T, Hauchecorne B, Smits M, Meynen V, Cool P, Martens JA, Lenaerts S (2011) The benefit of glass bead supports for efficient gas phase photocatalysis: case study of a commercial and a synthesised photocatalyst. Chem Eng J 174(1):318–325

    Google Scholar 

  • Vohra A, Goswami DY, Deshpande DA, Block SS (2005) Enhanced photocatalytic inactivation of bacterial spores on surfaces in air. J Ind Microbiol Biotechnol 32(8):364–370

    Google Scholar 

  • Wiles DM (1973) The effect of light on some commercially important polymers. Polym Eng Sci 13(1):74–77

    Google Scholar 

  • Wu CY, Chiang BS, Chang S, Liu DS (2011) Determination of photocatalytic activity in amorphous and crystalline titanium oxide films prepared using plasma-enhanced chemical vapor deposition. Appl Surf Sci 257(6):1893–1897

    Google Scholar 

  • Xu Y, Langford CH (1995) Enhanced photoactivity of a titanium(IV) oxide supported on ZSM5 and zeolite A at low coverage. J Phys Chem 99(29):11501–11507

    Google Scholar 

  • Yang J-H, Han Y-S, Choy J-H (2006) TiO2 thin-films on polymer substrates and their photocatalytic activity. Thin Solid Films 495(1–2):266–271

    Google Scholar 

  • Yang R, Christensen PA, Egerton TA, White JR, Maltby A (2011) Spectroscopic studies of photodegradation of polyethylene films containing TiO2 nanoparticles. J Appl Polym Sci 119(3):1330–1338

    Google Scholar 

  • Yoneyama H, Torimoto T (2000) Titanium dioxide/adsorbent hybrid photocatalysis for photodestruction of organic substances of dilute concentrations. Catal Today 58:133–140

    Google Scholar 

  • Yu J, Zhao X (2000) Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films. Mater Res Bull 35(8):1293–1301

    Google Scholar 

  • Yu JC, Ho W, Lin J, Yip H, Wong PK (2003) Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ Sci Technol 37(10):2296–2301

    Google Scholar 

  • Zhang H, Quan X, Chen S, Zhao H, Zhao Y (2006a) Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water. Sep Purif Technol 50(2):147–155

    Google Scholar 

  • Zhang X, Zhou M, Lei L (2006b) TiO2 photocatalyst deposition by MOCVD on activated carbon. Carbon 44(2):325–333

    Google Scholar 

  • Zhu J, Yang J, Bian ZF, Ren J, Liu YM, Cao Y, Li HX, He HY, Fan KN (2007) Nanocrystalline anatase TiO2 photocatalysts prepared via a facile low temperature nonhydrolytic sol-gel reaction of TiCl4 and benzyl alcohol. Appl Catal B 76(1–2):82–91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Suárez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Suárez, S. (2013). Immobilised Photocatalysts. In: Coronado, J., Fresno, F., Hernández-Alonso, M., Portela, R. (eds) Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5061-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5061-9_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5060-2

  • Online ISBN: 978-1-4471-5061-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics