Skip to main content

Abstract

Physical activity is the cornerstone of a good cardiac rehabilitation program. Therefore, counseling patients to undertake physical activity to prevent chronic health conditions becomes a primary prevention modality. A structured or prescribed aerobic program, regularly followed, has been shown to reduce the incidence of coronary heart disease, increase the quality of living, and probably reduce the incidence of further myocardial infarctions in the postcoronary patient. New data suggest an increased life expectancy for those who exercise regularly. Ideally, a program to prevent cardiac heart disease should be started during childhood. Although cardiac rehabilitation/secondary prevention programs are recognized as integral to the comprehensive care of patients with cardiovascular disease [1], and as such are recommended as useful and effective (class I) by the American Heart Association and the American College of Cardiology in the treatment of patients with coronary artery disease and chronic heart failure [2], this chapter will focus on the physiological and pathophysiological factors responsible for the decline in work capacity and cardiovascular function. In addition, the effects of different modes of exercise as medical approach for cardiac rehabilitation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wenger NK. Current status of cardiac rehabilitation. J Am Coll Cardiol. 2008;51:1619–31.

    Article  PubMed  Google Scholar 

  2. Balady GJ, Williams MA, Ades PA, et al. Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: a scientific statement from the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation. 2007;115:2675–82.

    Article  PubMed  Google Scholar 

  3. Grech ED. Pathophysiology and investigation of coronary artery disease. BMJ. 2003;326:1027–30.

    Article  PubMed  Google Scholar 

  4. Ades PA. Cardiac rehabilitation and secondary prevention of coronary heart disease. N Engl J Med. 2001;345:892–902.

    Article  PubMed  CAS  Google Scholar 

  5. Oldridge N, Guyatt G, Fischer M, Rimm AA. Cardiac rehabilitation after myocardial infarction. Combined experience of randomized clinical trials. JAMA. 1998;260:945–50.

    Article  Google Scholar 

  6. Atkinson G, Drust B, George K, Reilly T, Waterhouse J. Chronobiological considerations for exercise and heart disease. Sports Med. 2006;36:487–500.

    Article  PubMed  Google Scholar 

  7. Loudon AS, Meng QJ, Maywood ES, Bechtold DA, Boot-Handford RP, Hastings MH. The biology of the circadian Ck1epsilon tau mutation in mice and Syrian hamsters: a tale of two species. Cold Spring Harb Symp Quant Biol. 2007;72:261–71.

    Article  PubMed  CAS  Google Scholar 

  8. Sagiv M, Sagiv A, Soudry M, Ben-Sira D, Ben-Gal S, Rudoy J. Influence of the time of day on physical performance in patients with coronary artery disease. Eur J Appl Physiol Occup Physiol. 1995;71:530–4.

    Article  PubMed  CAS  Google Scholar 

  9. Grundy SM, Balady GJ, Criqui MH. Primary prevention of coronary heart disease: guidance from Framingham: a statement for healthcare professionals from the AHA task force on risk reduction. Circulation. 1998;97:1876–87.

    Article  PubMed  CAS  Google Scholar 

  10. Shephard RJ, Balady GJ. Exercise as cardiovascular therapy. Circulation. 1999;99:963–72.

    Article  PubMed  CAS  Google Scholar 

  11. Lavie LJ, Milani RV. Effects of cardiac rehabilitation programs on exercise capacity, coronary risk factors, behavioral characteristics, and quality of life in a large elderly cohort. Am J Cardiol. 1995;76:177–9.

    Article  PubMed  CAS  Google Scholar 

  12. Gibbons R, Balady G, Timothybricker J, et al. ACC/AHA 2002 guideline update for exercise testing: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2002;40:1531–40.

    Article  PubMed  Google Scholar 

  13. Norris JN, Heady JA, Raffle PA, Roberts CG, Parks JW. Coronary heart disease and physical activity of work. Lancet. 1953;265:1053–7.

    Google Scholar 

  14. Norris JN, Heady JA, Raffle PA, Roberts CG, Parks JW. Coronary heart disease and physical activity of work. Lancet. 1953;265:1111–20.

    Google Scholar 

  15. Paffenbarger Jr RS, Hale WE, Brand RJ, Hyde RT. Work-energy level, personal characteristics, and fatal heart attack: a birth-cohort effect. Am J Epidemiol. 1977;105:200–13.

    PubMed  Google Scholar 

  16. Powell KE, Blair SN. The public health burdens of sedentary living habits: theoretical but realistic estimates. Med Sci Sports Exerc. 1994;26:851–6.

    PubMed  CAS  Google Scholar 

  17. Church T. The low-fitness phenotype as a risk factor: more than just being sedentary? Obesity (Silver Spring). 2009;17 Suppl 3:S39–42.

    Article  Google Scholar 

  18. Petrella RJ, Lattanzio CN, Demeray A, Varallo V, Blore R. Can adoption of regular exercise later in life prevent metabolic risk for cardiovascular disease? Diabetes Care. 2005;28:694–701.

    Article  PubMed  Google Scholar 

  19. Apor P. Measure of fitness and physical activity related to cardiovascular diseases and death (Article in Hungarian). Orv Hetil. 2011;152:107–13.

    Article  PubMed  Google Scholar 

  20. Choh AC, Demerath EW, Lee M, et al. Genetic analysis of self-reported physical activity and adiposity: the Southwest Ohio Family Study. Public Health Nutr. 2009;12:1052–60.

    Article  PubMed  Google Scholar 

  21. Blair SN, Kohl 3rd HW, Barlow CE, Paffenbarger Jr RS, Gibbons LW, Macera CA. Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA. 1995;273:1093–8.

    Article  PubMed  CAS  Google Scholar 

  22. Paffenbarger Jr RS, Hyde RT, Wing AL, Lee IM, Jung DL, Kampert JB. The association of changes in physical-activity level and other lifestyle characteristics with mortality among men. N Engl J Med. 1993;328:538–45.

    Article  PubMed  Google Scholar 

  23. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111:3481–8.

    Article  PubMed  Google Scholar 

  24. Kones R. Recent advances in the management of chronic stable angina I: approach to the patient, diagnosis, pathophysiology, risk stratification, and gender disparities. Vasc Health Risk Manag. 2010;6:635–56.

    Article  PubMed  Google Scholar 

  25. Watanabe T, Akutsu Y, Yamanaka H, Michihata T, Okazaki O, Katagiri T, Harumi K. Exercise-induced ST-segment depression: imbalance between myocardial oxygen demand and myocardial blood flow. Acta Cardiol. 2000;55:25–31.

    Article  PubMed  CAS  Google Scholar 

  26. Nakamura Y, Iwanaga S, Uno K. Increased protection of the ischemic myocardium by decreased aortic pressure. Jpn Heart J. 1995;36:689–97.

    Article  PubMed  CAS  Google Scholar 

  27. Chandrasheckhar Y, Anand IS. Exercise as a coronary protective factor. Am Heart J. 1991;122:1723–39.

    Article  Google Scholar 

  28. Roque FR, Soci UP, Angelis KD, et al. Moderate exercise training promotes adaptations in coronary blood flow and adenosine production in normotensive rats. Clinics (Sao Paulo). 2011;66:2105–11.

    Article  Google Scholar 

  29. Ades PA, Waldmann ML, Meyer WL, et al. Skeletal muscle and cardiovascular adaptations to exercise conditioning in older coronary patients. Circulation. 1996;94:323–30.

    Article  PubMed  CAS  Google Scholar 

  30. Faulkner JA, Larkin LM, Claflin DR, Brooks SV. Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol. 2007;34:1091–6.

    Article  PubMed  CAS  Google Scholar 

  31. Proctor DN, Joyner MJ. Skeletal muscle mass and the reduction of VO2max in trained older subjects. J Appl Physiol. 1997;82:1411–5.

    PubMed  CAS  Google Scholar 

  32. Tarpenning KM, Hamilton-Wessler M, Wiswell RA, Hawkins SA. Endurance training delays age of decline in leg strength and muscle morphology. Med Sci Sports Exerc. 2004;36:74–8.

    Article  PubMed  Google Scholar 

  33. Magaudda L, Di Mauro D, Trimarchi F, Anastasi G. Effects of physical exercise on skeletal muscle fiber ultrastructural and molecular aspects. Basic Appl Myol. 2004;14:17–21.

    Google Scholar 

  34. Ventura-Clapier R, Mettauer B, Bigard X. Beneficial effects of endurance training on cardiac and skeletal muscle energy metabolism in heart failure. Cardiovasc Res. 2007;73:10–8.

    Article  PubMed  CAS  Google Scholar 

  35. Dyck DJ, Glatz PJ, Keizer GH, et al. Functional differences in lipid metabolism in resting skeletal muscle of various types. Am J Physiol. 1997;272:E340–51.

    PubMed  CAS  Google Scholar 

  36. Murakami T, Shimomura Y, Fujitsuka N, Sugiyama S. Differential adaptation to endurance training between heart and gastrocnemius muscle mitochondria in rats. Biochem Mol Biol Int. 1995;36:285–90.

    PubMed  CAS  Google Scholar 

  37. Chow LS, Greenlund LJ, Asmann YW, Short KR, McCrady SK, Levine JA, Nair KS. Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function. J Appl Physiol. 2007;102:1078–89.

    Article  PubMed  CAS  Google Scholar 

  38. Short KR, Vittone JL, Bigelow ML, et al. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes. 2003;52:1888–96.

    Article  PubMed  CAS  Google Scholar 

  39. Nair KS. Aging muscle. Am J Clin Nutr. 2005;81:953–63.

    PubMed  CAS  Google Scholar 

  40. Tafani M, Karpinich NO, Hurster KA, Pastorino JG, Schneider T, Russo MA, Farber JL. Cytochrome c release upon Fas receptor activation depends on translocation of full-length bid and the induction of the mitochondrial permeability transition. J Biol Chem. 2002;277:10073–82.

    Article  PubMed  CAS  Google Scholar 

  41. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85:1093–129.

    Article  PubMed  CAS  Google Scholar 

  42. Jeukendrup AE. Regulation of fat metabolism in skeletal muscle. Ann N Y AcadSci. 2002;967:217–35.

    Article  CAS  Google Scholar 

  43. Smart N, Haluska B, Jeffriess L, Case C, Marwick TH. Cardiac contributions to exercise training responses in patients with chronic heart failure: a strain imaging study. Echocardiography. 2006;23:376–82.

    Article  PubMed  Google Scholar 

  44. Akashi YJ, Koike A, Osada N, Omiya K, Itoh H. Short-term physical training improves vasodilatory capacity in cardiac patients. Jpn Heart J. 2002;43:13–24.

    Article  PubMed  Google Scholar 

  45. Kavazis AN. Exercise preconditioning of the myocardium. Sports Med. 2009;39:923–35.

    Article  PubMed  Google Scholar 

  46. Starnes JW, Taylor RP. Exercise-induced cardioprotection: endogenous mechanisms. Med Sci Sports Exerc. 2007;39:1537–43.

    Article  PubMed  Google Scholar 

  47. Golbidi S, Laher I. Molecular mechanisms in exercise-induced cardioprotection. Cardiol Res Pract. 2011;2011:972807.

    PubMed  Google Scholar 

  48. Powers SK, Quindry JC, Kavazis AN. Exercise-induced cardioprotection against myocardial ischemia-reperfusion injury. Free Radic Biol Med. 2008;44:193–201.

    Article  PubMed  CAS  Google Scholar 

  49. Ascensao A, Ferreira R, Magalhaes J. Exercise-induced cardioprotection – biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int J Cardiol. 2007;117:16–30.

    Article  PubMed  Google Scholar 

  50. Calvert JW. Cardioprotective effects of nitrite during exercise. Cardiovasc Res. 2011;89:499–506.

    Article  PubMed  CAS  Google Scholar 

  51. Murlasits Z, Lee Y, Powers SK. Short-term exercise does not increase ER stress protein expression in cardiac muscle. Med Sci Sports Exerc. 2007;39:1522–8.

    Article  PubMed  CAS  Google Scholar 

  52. Papafili A, Hill MR, Brull DJ, McAnulty RJ, Marshall RP, Humphries SE, Laurent GJ. Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role in acute-phase inflammatory response. Arterioscler Thromb Vasc Biol. 2002;22:1631–6.

    Article  PubMed  CAS  Google Scholar 

  53. DuBois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van de Putte LBA, Lipsky PE. Cyclooxygenase in biology and disease. FASEB J. 1998;12:1063–73.

    PubMed  CAS  Google Scholar 

  54. Kim SY, Jun TW, Lee YS, Na HK, Surh YJ, Song W. Effects of exercise on cyclooxygenase-2 expression and nuclear factor-kappaB DNA binding in human peripheral blood mononuclear cells. Ann N Y Acad Sci. 2009;1171:464–71.

    Article  PubMed  CAS  Google Scholar 

  55. Young JC, Barral JM, Ulrich Hartl F. More than folding: localized functions of cytosolic chaperones. Trends Biochem Sci. 2003;28:541–7.

    Article  PubMed  CAS  Google Scholar 

  56. Yamada P, Amorim F, Moseley P, Schneider S. Heat shock protein 72 response to exercise in humans. Sports Med. 2008;38:715–33.

    Article  PubMed  Google Scholar 

  57. Tanonaka K, Toga W, Takeo S. Induction of heat shock protein 70 in failing heart (Article). Nihon Yakurigaku Zasshi. 2004;123:71–6.

    Article  PubMed  CAS  Google Scholar 

  58. Lennon SL, Quindry J, Hamilton KL, et al. Loss of exercise-induced cardioprotection after cessation of exercise. J Appl Physiol. 2004;96:1299–305.

    Article  PubMed  Google Scholar 

  59. Quindry JC, Hamilton KL, French JP, Lee Y, Murlasits Z, Tumer N, Powers SK. Exercise-induced HSP-72 elevation and cardioprotection against infarct and apoptosis. J Appl Physiol. 2007;103:1056–62.

    Article  PubMed  CAS  Google Scholar 

  60. Stein AB, Tang XL, Guo Y, Xuan YT, Dawn B, Bolli R. Delayed adaptation of the heart to stress: late preconditioning. Stroke. 2004;35:2676–9.

    Article  PubMed  CAS  Google Scholar 

  61. Hajnal A, Nagy O, Litvai A, Papp J, Parratt JR, Vegh A. Nitric oxide involvement in the delayed antiarrhythmic effect of treadmill exercise in dogs. Life Sci. 2005;77:1960–71.

    Article  PubMed  CAS  Google Scholar 

  62. Hall C. Essential biochemistry and physiology of (NT-pro) BNP. Eur J Heart Fail. 2004;6:257–60.

    Article  PubMed  CAS  Google Scholar 

  63. de Groote P, Dagorn J, Soudan B, Lamblin N, McFadden E, Bauters C. B-type natriuretic peptide and peak exercise oxygen consumption provide independent information for risk stratification in patients with stable congestive heart failure. J Am Coll Cardiol. 2004;43:1584–9.

    Article  PubMed  CAS  Google Scholar 

  64. Ohba H, Takada H, Musha H, et al. Effects of prolonged strenuous exercise on plasma levels of atrial natriuretic peptide and brain natriuretic peptide in healthy men. Am Heart J. 2001;141:751–78.

    Article  PubMed  CAS  Google Scholar 

  65. Smith JK, Dykes R, Douglas JE, Krishnaswamy G, Berk S. Long-term exercise and atherogenic activity of blood mononuclear cells in persons at risk of developing ischemic heart disease. JAMA. 1999;281:1722–7.

    Article  PubMed  CAS  Google Scholar 

  66. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    Article  PubMed  CAS  Google Scholar 

  67. Beattie MS, Shlipak MG, Liu H, Browner WS, Schiller NB, Whooley MA. C-reactive protein and ischemia in users and nonusers of beta-blockers and statins: data from the Heart and Soul Study. Circulation. 2003;107:245–50.

    Article  PubMed  CAS  Google Scholar 

  68. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004;25:4–7.

    Article  PubMed  CAS  Google Scholar 

  69. Duncan BB, Schmidt MI, Pankow JS, et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003;52:1799–805.

    Article  PubMed  CAS  Google Scholar 

  70. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  PubMed  CAS  Google Scholar 

  71. Goldhammer E, Tanchilevitch A, Maor I, Beniamini Y, Rosenschein U, Sagiv M. Exercise training modulates cytokines activity in coronary heart disease patients. Int J Cardiol. 2005;100:93–9.

    Article  PubMed  Google Scholar 

  72. Verma S, Wang CH, Li SH, et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 2002;106:913–9.

    Article  PubMed  CAS  Google Scholar 

  73. Michigan A, Johnson TV, Master VA. Review of the relationship between C-reactive protein and exercise. Mol Diagn Ther. 2011;15:265–75.

    Article  PubMed  CAS  Google Scholar 

  74. Wannamethee SG, Lowe GD, Whincup PH, et al. Physical activity and hemostatic and inflammatory variables in elderly men. Circulation. 2002;105:1785–90.

    Article  PubMed  Google Scholar 

  75. Hammett CJ, Oxenham HC, Baldi JC, et al. Effect of six months’ exercise training on C-reactive protein levels in healthy elderly subjects. J Am Coll Cardiol. 2004;44:2411–3.

    Article  PubMed  Google Scholar 

  76. Hachinohe D, Jeong MH, Kim MC, et al. Drug-eluting stent as an option for intractable in-stent coronary restenosis. Korean Circ J. 2011;41:677–80.

    Article  PubMed  Google Scholar 

  77. Moldoveanu AI, Shephard RJ, Shek PN. Exercise elevates plasma levels but not gene expression of IL-1β, IL-6, and TNF-α in blood mononuclear cells. J Appl Physiol. 2000;89:1499–504.

    PubMed  CAS  Google Scholar 

  78. Samitz G, Egger M, Zwahlen M. Domains of physical activity and all-cause mortality: systematic review and dose–response meta-analysis of cohort studies. Int J Epidemiol. 2011;40:1382–400.

    Article  PubMed  Google Scholar 

  79. Tully MA, Cupples ME, Hart ND, McEneny J, McGlade KJ, Chan WS, Young IS. Randomised controlled trial of home-based walking programmes at and below current recommended levels of exercise in sedentary adults. J Epidemiol Community Health. 2007;61:778–83.

    Article  PubMed  Google Scholar 

  80. Paffenbarger Jr RS, Hyde RT, Wing AL, Hsieh CC. Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med. 1986;314:605–13.

    Article  PubMed  Google Scholar 

  81. Hardman AE. Physical activity and health: current issues and research needs. Int J Epidemiol. 2001;30:1193–7.

    Article  PubMed  CAS  Google Scholar 

  82. Surgeon General. Physical activity and health. A report of the surgeon general. US departments of health and human services. Centers for disease control and prevention. Atlanta; 1996.

    Google Scholar 

  83. Lakka TA, Venalainen JM, Rauramaa R, Salonen R, Tuomilehto J, Salonen JT. Relation of leisure-time physical activity and cardiorespiratory fitness to the risk of acute myocardial infarction in men. N Engl J Med. 1994;330:1549–54.

    Article  PubMed  CAS  Google Scholar 

  84. Hiilloskorpi HK, Pasanen ME, Fogelholm MG, Laukkanen RM, Manttari AT. Use of heart rate to predict energy expenditure from low to high activity levels. Int J Sports Med. 2003;24:332–6.

    Article  PubMed  CAS  Google Scholar 

  85. Morris JN. Exercise in the prevention of coronary heart disease: today’s best buy in public health. Med Sci Sports Exerc. 1994;26:807–14.

    PubMed  CAS  Google Scholar 

  86. Dunbar CC, Kalinski MI. Using RPE to regulate exercise intensity during a 20-week training program for postmenopausal women: a pilot study. Percept Mot Skills. 2004;99:688–90.

    PubMed  Google Scholar 

  87. Pollock ML, Gaesser GA, Butcher JD, Després JP, Dishman RK, Franklin BA, Garber CE. ACSM ­position stand on the recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in adults. Med Sci Sports Exerc. 1998;30:975–91.

    Article  Google Scholar 

  88. Fletcher GF, Gary Balady G, Blair SN, et al. Statement on exercise: benefits and recommendations for physical activity programs for all Americans. Circulation. 1996;94:857–62.

    Article  PubMed  CAS  Google Scholar 

  89. Goraya TY, Jacobsen SJ, Pellikka PA, et al. Prognostic value of treadmill exercise testing in elderly persons. Ann Intern Med. 2000;132:862–70.

    PubMed  CAS  Google Scholar 

  90. Ellstead MH. Stress testing: principles and practice. 4th ed. Philadelphia: FA Davis; 1995.

    Google Scholar 

  91. Braunwald E, Antman EM, Beasley JW, et al. ACC/AHA 2002 guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction – summary article: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee on the Management of Patients with Unstable Angina). J Am Coll Cardiol. 2002;40:1366–74.

    Article  PubMed  Google Scholar 

  92. Parameshwar J, Keegan J, Sparrow J, Sutton GC, Poole-Wilson PA. Predictors of prognosis in severe chronic heart failure. Am Heart J. 1992;123:421–6.

    Article  PubMed  CAS  Google Scholar 

  93. Tan LB, Littler WA. Measurement of cardiac reserve in cardiogenic shock: implications for prognosis and management. Br Heart J. 1990;64:121–8.

    Article  PubMed  CAS  Google Scholar 

  94. Roul G, Moulichon ME, Bareiss P, et al. Prognostic factors of chronic heart failure in NYHA class II or III: value of invasive exercise haemodynamic data. Eur Heart J. 1995;16:1387–98.

    PubMed  CAS  Google Scholar 

  95. Williams SG, Cooke GA, Wright DJ, et al. Peak exercise cardiac power output; a direct indicator of cardiac function strongly predictive of prognosis in chronic heart failure. Eur Heart J. 2001;22:1496–503.

    Article  PubMed  CAS  Google Scholar 

  96. Goda A, Lang CC, Williams P, Jones M, Farr MJ, Mancini DM. Usefulness of non-invasive measurement of cardiac output during sub-maximal exercise to predict outcome in patients with chronic heart failure. Am J Cardiol. 2009;104:1556–60.

    Article  PubMed  Google Scholar 

  97. Clausen JP, Trap-Jensen J. Heart rate and arterial blood pressure during exercise in patients with angina pectoris: effects of training and of nitroglycerin. Circulation. 1976;53:436–42.

    Article  PubMed  CAS  Google Scholar 

  98. Billman GE. Aerobic exercise conditioning: a nonpharmacological antiarrhythmic intervention. J Appl Physiol. 2002;92:446–54.

    PubMed  Google Scholar 

  99. Hamilton KL, Powers SK, Sugiura T, et al. Short-term exercise training can improve myocardial tolerance to I/R without elevation in heat shock proteins. Am J Physiol Heart Circ Physiol. 2001;281:H1346–52.

    PubMed  CAS  Google Scholar 

  100. American Association of Cardiovascular and Pulmonary Rehabilitation. Guidelines for cardiac rehabilitation and secondary prevention programs. 4th ed. Champaign: Human Kinetics; 2004.

    Google Scholar 

  101. Arena R, Myers J, Aslam S, Varughese EB, Peberdy MA. Prognostic comparison of the VE/VCO2 ratio and slope in patients with heart failure. Heart Drug. 2004;4:133–9.

    Article  Google Scholar 

  102. Myers JN. Information from ventilatory gas exchange data. In: Myers JW, editor. Essentials of cardiopulmonary exercise testing. Champaign: Human Kinetics; 1996. p. 83–108.

    Google Scholar 

  103. Giardini A, Odendaal D, Khambadkone S, Derrick G. Physiologic decrease of ventilatory response to exercise in the second decade of life in healthy children. Am Heart J. 2011;161:1214–9.

    Article  PubMed  Google Scholar 

  104. Myers J, Zaheer N, Quaglietti S, Madhavan R, Froelicher V, Heidenreich P. Association of functional and health status measures in heart failure. J Card Fail. 2006;12:439–45.

    Article  PubMed  Google Scholar 

  105. Corra U, Mezzani A, Bosimini E, Scapellato F, Imparato A, Giannuzzi P. Ventilatory response to exercise improves risk stratification in patients with chronic heart failure and intermediate functional capacity. Am Heart J. 2002;143:418–26.

    Article  PubMed  Google Scholar 

  106. Francis DP, Shamim W, Davies LC, et al. Cardiopulmonary exercise testing for prognosis in chronic heart failure: continuous and independent prognostic value from VE/VCO(2)slope and peak VO(2). Eur Heart J. 2000;21:154–61.

    Article  PubMed  CAS  Google Scholar 

  107. Kleber FX, Vietzke G, Wernecke KD, Bauer U, Opitz C, Wensel R, Sperfeld A, Gläser S. Impairment of ventilatory efficiency in heart failure: prognostic impact. Circulation. 2000;101:2803–9.

    Article  PubMed  CAS  Google Scholar 

  108. Ingle L, Goode K, Carroll S, Sloan R, Boyes C, Cleland JG, Clark AL. Prognostic value of the VE/VCO2 slope calculated from different time intervals in patients with suspected heart failure. Int J Cardiol. 2007;118:350–5.

    Article  PubMed  Google Scholar 

  109. Wilson JR, Mancini DM. Factors contributing to the exercise limitation of heart failure. J Am Coll Cardiol. 1993;22(Suppl A):93A–8.

    Article  PubMed  CAS  Google Scholar 

  110. Andreas S, Morguet AJ, Werner GS, Kreuzer H. Ventilatory response to exercise and to carbon dioxide in patients with heart failure. Eur Heart J. 1996;17:750–5.

    Article  PubMed  CAS  Google Scholar 

  111. Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ. Principles of exercise testing and inter­pretation including pathophysiology and clinical appli­cations. 4th ed. Philadelphia: Lippincott Williams and Wilkins; 2005.

    Google Scholar 

  112. Scrutinio D, Passantino A, Lagioia R, Napoli F, Ricci A, Rizzon P. Percent achieved of predicted peak exercise oxygen uptake and kinetics of recovery of oxygen uptake after exercise for risk stratification in chronic heart failure. Int J Cardiol. 1998;64:117–24.

    Article  PubMed  CAS  Google Scholar 

  113. Calbet JA, Rådegran G, Boushel R, Saltin B. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass. J Physiol. 2009;587:477–90.

    Article  PubMed  CAS  Google Scholar 

  114. Van de Veirea NR, Van Laethemb C, Philippéc J, De Winterd O, De Backere G, Vanderheyden M, De Suttere J. VE/VCO2 slope and oxygen uptake efficiency slope in patients with coronary artery disease and intermediate peakVO2. Eur J Cardiovasc Prev Rehabil. 2006;13:916–23.

    Article  Google Scholar 

  115. Zavorsky GS, Walley KR, Russell JA. Red cell pulmonary transit times through the healthy human lung. Exp Physiol. 2003;88:191–200.

    Article  PubMed  CAS  Google Scholar 

  116. Koike A, Hiroe M, Taniguchi K, Marumo F. Respiratory control during exercise in patients with cardiovascular disease. Am Rev Respir Dis. 1993;147:425–9.

    PubMed  CAS  Google Scholar 

  117. Sagiv M, Rotstein A, Ben-Sira D, Grodjinovsky A, Fisher N, Kufmann D. Physiological responses to wrist weights during endurance cycling in normal subjects. Med Sci Sports Exerc. 1991;23:748–51.

    PubMed  CAS  Google Scholar 

  118. Cohen-Solal A, Tabet JY, Logeart D, Bourgoin P, Tokmakova M, Dahan M. A non-invasively determined surrogate of cardiac power (‘circulatory power’) at peak exercise is a powerful prognostic factor in chronic heart failure. Eur Heart J. 2002;23:806–14.

    Article  PubMed  CAS  Google Scholar 

  119. Stager JM, Tanner DA. Swimming. 2nd edition; An International Olympic Committee Publication. Oxford: Blackwell Science Ltd.; 2005.

    Google Scholar 

  120. Helgerud J, Ingjer F, Stromme SB. Sex differences in performance-matched marathon runners. Eur J Appl Physiol Occup Physiol. 1990;61:433–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sagiv Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Sagiv, M.S. (2012). Cardiac Rehabilitation. In: Exercise Cardiopulmonary Function in Cardiac Patients. Springer, London. https://doi.org/10.1007/978-1-4471-2888-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2888-5_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2887-8

  • Online ISBN: 978-1-4471-2888-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics