Skip to main content

Computing Inside the Billiard Ball Model

  • Chapter

Abstract

The chapter studies relations between billiard ball model, reversible cellular automata, conservative and reversible logics and Turing machines. At first we introduce block cellular automata and consider the automata reversibility and simulation dependencies between the block cellular automata and classical cellular automata. We prove that there exists a universal, i.e. simulating any Turing machine, block cellular automaton with eleven states, which is geometrically minimal. Basics of the billiard ball model and presentation of an information in the model are discussed then. We demonstrate how to implement ball movement, reflection of a signal, delays and cycles, collision of signals in configurations of the cellular automaton with Margolus neighborhood. Realizations of Fredkin gate and NOT gate with dual signal encoding are offered. The rest of the chapter deals with a Turing and an intrinsic universality, and uncomputable properties of the billiard ball model. The Turing universality is proved via simulation of a two-counter automaton, which itself is Turing universal. We demonstrate that the billiard ball model is intrinsically universal, or complete, in a class of reversible cellular automata, i.e. the model can simulate any reversible automaton over finite or infinite configurations. A novel notion of space-time simulation, that employs whole space-time diagrams of automaton evolution, is brought up. It is proved that the billiard ball model is also able to space-time simulate any (ir)reversible cellular automaton. Since the billiard ball model possesses the Turing computation power we can project a Turing machine’s halting problem to development of cellular automaton simulating the billiard ball model. Namely, we uncover a connection between undecidability of computation and high unpredictability of configurations of the billiard ball model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert J. and Culik II K. A simple universal cellular automaton and its one-way and totalistic versionComplex Systems 1 (1987) 1–16

    MathSciNet  MATH  Google Scholar 

  2. Bennett C.H. Logical reversibility of computation IBM Journal of Research and Development 6 (1973) 525–532

    Article  Google Scholar 

  3. Burks AEssays on Cellular Automata(Univ. of Illinois Press, 1970).

    MATH  Google Scholar 

  4. Durand-Lose J. Reversible cellular automaton able to simulate any other reversible one using partitioning automata, In: R. Baeza-Yates and E. Goles and P. Poblete (Eds.), LATIN ’95, Lecture Notes in Computer Sciences 911 (1995) 230–244

    Google Scholar 

  5. Durand-Lose J. Intrinsic universality of a 1-dimensional reversible cellular automaton, In: R. Reischuk and M. Morvan (Eds.), STAGS ’97, Lecture Notes in Computer Sciences 1200 (1997) 439–450.

    Google Scholar 

  6. Durand-Lose J. Reversible space-time simulation of cellular automata Theoretical Computer Science 246 (2000) 117–129

    Article  MathSciNet  MATH  Google Scholar 

  7. Durand-Lose J. Representing reversible cellular automata with reversible block cellular automata In: R. Cori, J. Mazoyer, M. Morvan, and R. Mosery (Eds.) Discrete models, combinatorics, computation and geometry (DM-CCG’01), volume AA. Discrete Mathematics and Theoretical Computer Science, 2001

    Google Scholar 

  8. Fredkin E. and Toffoli T. Conservative logic International Journal of Theoretical Physics 21 (1982) 219–253

    Article  MathSciNet  MATH  Google Scholar 

  9. Hedlund G.A. Endomorphism and automorphism of the shift dynamical system Mathematical System Theory 3 (1969) 320–375

    Article  MathSciNet  MATH  Google Scholar 

  10. Kari J. Reversibility of 2D cellular automata is undecidable Physica D 45 (1990) 379–385

    Article  MathSciNet  MATH  Google Scholar 

  11. Kari J. Representation of reversible cellular automata with block permutations Mathematical System Theory 29 (1996) 47–61

    MathSciNet  MATH  Google Scholar 

  12. Lecerf Y. Machines de Turing r¨¦versibles. R¨¦cursive insolubilit¨¦ en n E IN de l’¨¦quation u = 6r ou O est un “isomorphism de codes” Comptes Rendus de L’Academie Francaise des Sciences 257 (1963) 2597–2600

    MathSciNet  Google Scholar 

  13. Margolus N. Physics-like models of computation Physica D 10 (1984) 81–95

    Article  MathSciNet  Google Scholar 

  14. Minsky M. Finite and Infinite Machines (Prentice Hall, 1967).

    MATH  Google Scholar 

  15. Morita K. and Harao M. Computation universality of one-dimensional reversible (injective) cellular automata Transactions of the IEICE E 72 (1989) 758–762

    Google Scholar 

  16. Morita K. A simple construction method of a reversible finite automaton out of Fredkin gates, and its related problem Transactions of the IEICE E 73 (1990) 978–984

    Google Scholar 

  17. Morita K. Any irreversible cellular automaton can be simulated by a reversible one having the same dimension (on finite configurations) Technical Report of the IEICE, Comp. 92–45 (1992) 55–64

    Google Scholar 

  18. Morita K. Computation-universality of one-dimensional one-way reversible cellular automata Information Processing Letters 42 (1992) 325–329

    Article  MathSciNet  MATH  Google Scholar 

  19. Morita K. Reversible simulation of one-dimensional irreversible cellular automata Theoretical Computer Science 148 (1995) 157–163

    Article  MathSciNet  MATH  Google Scholar 

  20. Morita K.. and Ueno S. Computation-universal models of two-dimensional 16-state reversible automata IEICE Transactions on Informations and Systems E75-D (1992) 141–147

    Google Scholar 

  21. Morita K. and Ueno S. Parallel generation and parsing of array languages using reversible cellular automata Lecture Notes in Computer Science 654 (1992) 213–230

    Article  MathSciNet  Google Scholar 

  22. Richardson D. Tessellations with local transformations Journal of Computer and System Sciences 6 (1972) 373–388

    Article  MathSciNet  MATH  Google Scholar 

  23. Rogozhin Yu.V. Seven universal Turing machines In Systems and Theoretical Programming, number 63, Matematicheskije Issledovanija (Academia Nauk Moldayskoi SSR) (1992) 76–90; in Russian

    Google Scholar 

  24. Rogozhin Yu.V. Small universal Turing machines Theoretical Computer Science 168 (1996) 215–240

    Article  MathSciNet  MATH  Google Scholar 

  25. Sipser M. Introduction to the Theory of Computation (PWS Publishing Co., Boston, Massachusetts, 1997)

    Google Scholar 

  26. Smith III A.R. Simple computation-universal cellular spaces Journal of the Association for Computing Machinery 18 (1971) 339–353

    Article  MathSciNet  MATH  Google Scholar 

  27. Sutner K. On the complexity of finite cellular automata Journal of Computer and System Sciences 50 (1995) 87–97

    Article  MathSciNet  MATH  Google Scholar 

  28. Toffoli T. and Margolus N. Cellular Automata Machine A New Environment for Modeling (MIT Press, Cambridge, MA, 1987)

    Google Scholar 

  29. Toffoli T. and Margolus N. Invertible cellular automata: A review Physica D 45 (1990) 229–253

    Article  MathSciNet  MATH  Google Scholar 

  30. Toffoli T. Computation and construction universality of reversible cellular automata Journal of Computer and System Sciences 15 (1977) 213–231

    Article  MathSciNet  MATH  Google Scholar 

  31. Wolfram S. Universality and complexity in cellular automata Physica D 10 (1984) 1–35

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London

About this chapter

Cite this chapter

Durand-Lose, J. (2002). Computing Inside the Billiard Ball Model. In: Adamatzky, A. (eds) Collision-Based Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0129-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0129-1_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-540-3

  • Online ISBN: 978-1-4471-0129-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics