Skip to main content

Seeded Segmentation Methods for Medical Image Analysis

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Segmentation is one of the key tools in medical image analysis. The objective of segmentation is to provide reliable, fast, and effective organ delineation. While traditionally, particularly in computer vision, segmentation is seen as an early vision tool used for subsequent recognition, in medical imaging the opposite is often true. Recognition can be performed interactively by clinicians or automatically using robust techniques, while the objective of segmentation is to precisely delineate contours and surfaces. This can lead to effective techniques known as “intelligent scissors” in 2D and their equivalent in 3D.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This particular computation is left as an exercise to the reader.

References

  1. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)

    Article  Google Scholar 

  2. Appleton, B.: Globally minimal contours and surfaces for image segmentation. Ph.D. thesis, University of Queensland (2004). Http://espace.library.uq.edu.au/eserv/UQ:9759/ba_thesis.pdf

  3. Appleton, B., Sun, C.: Circular shortest paths by branch and bound. Pattern Recognit. 36(11), 2513–2520 (2003)

    Article  Google Scholar 

  4. Appleton, B., Talbot, H.: Globally optimal geodesic active contours. J. Math. Imaging Vis. 23, 67–86 (2005)

    Article  MathSciNet  Google Scholar 

  5. Ardon, R., Cohen, L.: Fast constrained surface extraction by minimal paths. Int. J. Comput. Vis. 69(1), 127–136 (2006)

    Article  Google Scholar 

  6. Beucher, S., Lantuéjoul, C.: Use of watersheds in contour detection. In: International Workshop on Image Processing. CCETT/IRISA, Rennes, France (1979)

    Google Scholar 

  7. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. PAMI 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  8. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  9. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  10. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  11. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  12. Chan, T., Bresson, X.: Continuous convex relaxation methods for image processing. In: Proceedings of ICIP 2010 (2010). Keynote talk, http://www.icip2010.org/file/Keynote/ICIP

  13. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  14. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path approach. Int. J. Comput. Vis. 24(1), 57–78 (1997). URL http://citeseer.nj.nec.com/cohen97global.html

  15. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watersheds: A new image segmentation framework extending graph cuts, random walker and optimal spanning forest. In: Proceedings of ICCV 2009, pp. 731–738. IEEE, Kyoto, Japan (2009)

    Google Scholar 

  16. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watersheds: A unifying graph-based optimization framework. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(7), 1384–1399 (2011)

    Article  Google Scholar 

  17. Couprie, C., Grady, L., Talbot, H., Najman, L.: Anisotropic diffusion using power watersheds. In: Proceedings of the International Conference on Image Processing (ICIP), pp. 4153–4156. Honk-Kong (2010)

    Google Scholar 

  18. Couprie, C., Grady, L., Talbot, H., Najman, L.: Combinatorial continuous maximum flows. SIAM J. Imaging Sci. (2010). URL http://arxiv.org/abs/1010.2733. In revision

  19. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: Minimum spanning forests and the drop of water principle. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1362–1374. (2008)

    Google Scholar 

  20. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: Thinnings, shortest-path forests and topological watersheds. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 925–939 (2010)

    Article  Google Scholar 

  21. Cserti, J.: Application of the lattice Green’s function for calculating the resistance of an infinite network of resistors. Am. J. Phys. 68, 896 (2000)

    Article  Google Scholar 

  22. Daragon, X., Couprie, M., Bertrand, G.: Marching chains algorithm for Alexandroff-Khalimsky spaces. In: SPIE Vision Geometry XI, vol. 4794, pp. 51–62 (2002)

    Google Scholar 

  23. Dougherty, E., Lotufo, R.: Hands-on Morphological Image Processing. SPIE press, Bellingham (2003)

    Book  Google Scholar 

  24. Doyle, P., Snell, J.: Random Walks and Electric Networks. Carus Mathematical Monographs, vol. 22, p. 52. Mathematical Association of America, Washington, DC (1984)

    Google Scholar 

  25. Ford, J.L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton, NJ (1962)

    MATH  Google Scholar 

  26. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. PAMI 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  27. Goldberg, A., Tarjan, R.: A new approach to the maximum-flow problem. J. ACM 35, 921–940 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Trans. Image Process. 10(10), 1467–1475 (2001)

    Article  MathSciNet  Google Scholar 

  29. Grady, L.: Multilabel random walker image segmentation using prior models. In: Computer Vision and Pattern Recognition, IEEE Computer Society Conference, vol. 1, pp. 763–770 (2005). DOI http://doi.ieeecomputersociety.org/10.1109/CVPR.2005.239

  30. Grady, L.: Computing exact discrete minimal surfaces: Extending and solving the shortest path problem in 3D with application to segmentation. In: Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference, vol. 1, pp. 69–78. IEEE (2006)

    Google Scholar 

  31. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  32. Grady, L., Funka-Lea, G.: Multi-label image segmentation for medical applications based on graph-theoretic electrical potentials. In: Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis, pp. 230–245. (2004)

    Google Scholar 

  33. Grady, L., Polimeni, J.: Discrete Calculus: Applied Analysis on Graphs for Computational Science. Springer Publishing Company, Incorporated, New York (2010)

    MATH  Google Scholar 

  34. Grady, L., Schwartz, E.: Isoperimetric graph partitioning for image segmentation. Pattern Anal. Mach. Intell. IEEE Trans. 28(3), 469–475 (2006)

    Article  Google Scholar 

  35. Guigues, L., Cocquerez, J., Le Men, H.: Scale-sets image analysis. Int. J. Comput. Vis. 68(3), 289–317 (2006)

    Article  Google Scholar 

  36. Horowitz, S., Pavlidis, T.: Picture segmentation by a directed split-and-merge procedure. In: Proceedings of the Second International Joint Conference on Pattern Recognition, vol. 424, p. 433 (1974)

    Google Scholar 

  37. Iri, M.: Survey of Mathematical Programming. North-Holland, Amsterdam (1979)

    Google Scholar 

  38. Kakutani, S.: Markov processes and the Dirichlet problem. In: Proceedings of the Japan Academy, vol. 21, pp. 227–233 (1945)

    Article  MathSciNet  Google Scholar 

  39. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  Google Scholar 

  40. Khalimsky, E., Kopperman, R., Meyer, P.: Computer graphics and connected topologies on finite ordered sets. Topol. Appl. 36(1), 1–17 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kruskal, J.J.: On the shortest spanning subtree of a graph and the travelling salesman problem. Proc. AMS 7(1) (1956)

    Google Scholar 

  42. Levinshtein, A., Stere, A., Kutulakos, K., Fleet, D., Dickinson, S., Siddiqi, K.: Turbopixels: Fast superpixels using geometric flows. Pattern Anal. Mach. Intell. IEEE Trans. 31(12), 2290–2297 (2009)

    Article  Google Scholar 

  43. Malladi, R., Sethian, J., Vemuri, B.: Shape modelling with front propagation: A level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

    Article  Google Scholar 

  44. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. Ser. B Biol. Sci. 207, 187–217 (1980)

    Article  Google Scholar 

  45. Menzies, S.W., Crotty, K.A., Ingvar, C., McCarthy, W.H.: An Atlas of Surface Microscopy of Pigmented Skin Lesions. McGraw-Hill, Roseville, Australia (1996). ISBN 0 07 470206 8

    Google Scholar 

  46. Meyer, F.: Topographic distance and watershed lines. Signal Process. 38(1), 113–125 (1994)

    Article  MATH  Google Scholar 

  47. Meyer, F., Beucher, S.: Morphological segmentation. J. Vis. Commun. Image Represent. 1(1), 21–46 (1990)

    Article  Google Scholar 

  48. Mortensen, E., Barrett, W.: Interactive segmentation with intelligent scissors. Graph. Models Image Process. 60(5), 349–384 (1998)

    Article  MATH  Google Scholar 

  49. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  50. Najman, L.: On the equivalence between hierarchical segmentations and ultrametric watersheds. Journal of Mathematical Imaging and Vision, 40(3), 231–247 (2011)

    Article  MathSciNet  Google Scholar 

  51. Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. Pattern Anal. Mach. Intell. IEEE Trans. 18(12), 1163–1173 (2002)

    Article  Google Scholar 

  52. Najman, L., Talbot, H. (eds.): Mathematical Morphology: From theory to applications. ISTE-Wiley, London, UK (2010)

    MATH  Google Scholar 

  53. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  54. Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11, 285–296 (1975)

    Article  Google Scholar 

  55. Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. Pattern Anal. Mach. Intell. IEEE Trans. 22(3), 266–280 (2002)

    Article  Google Scholar 

  56. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. Int. J. Comput. Vis. 46(3), 223–247 (2002)

    Article  MATH  Google Scholar 

  57. Pham, D., Xu, C., Prince, J.: Current methods in medical image segmentation1. Biomed. Eng. 2(1), 315 (2000)

    Google Scholar 

  58. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford-Shah functional. In: 12th International Conference on Computer Vision, pp. 1133–1140. IEEE (2009)

    Google Scholar 

  59. Prim, R.: Shortest connection networks and some generalizations. Bell Syst. Techn. J. 36(6), 1389–1401 (1957)

    Google Scholar 

  60. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1-4), 259–268 (1992). DOI http://dx.doi.org/10.1016/0167-2789(92)90242-F

    Google Scholar 

  61. Sagiv, C., Sochen, N., Zeevi, Y.: Integrated active contours for texture segmentation. Image Process. IEEE Trans. 15(6), 1633–1646 (2006)

    Article  Google Scholar 

  62. Sethian, J.: Level set methods and fast marching methods. Cambridge University Press, Cambridge (1999). ISBN 0-521-64204-3

    MATH  Google Scholar 

  63. Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008)

    Article  Google Scholar 

  64. Stawiaski, J., Decencière, E., Bidault, F.: Computing approximate geodesics and minimal surfaces using watershed and graph cuts. In: Banon, G.J.F., Barrera, J., Braga-Neto, U.d.M., Hirata, N.S.T. (eds.) Proceedings of the 8th International Symposium on Mathematical Morphology, vol. 1, pp. 349–360. Instituto Nacional de Pesquisas Espaciais (INPE) (2007). URL http://urlib.net/dpi.inpe.br/ismm@80/2007/03.19.13.04

  65. Strang, G.: Maximal flow through a domain. Math. Program. 26, 123–143 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  66. Veksler, O.: Efficient graph-based energy minimization. Ph.D. thesis, Cornell University (1999)

    Google Scholar 

  67. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  68. Weickert, J., Romeny, B., Viergever, M.: Efficient and reliable schemes for nonlinear diffusion filtering. Image Process. IEEE Trans. 7(3), 398–410 (2002)

    Article  Google Scholar 

  69. Zhu, S., Yuille, A.: Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. Pattern Anal. Mach. Intell. IEEE Trans. 18(9), 884–900 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugues Talbot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Couprie, C., Najman, L., Talbot, H. (2011). Seeded Segmentation Methods for Medical Image Analysis. In: Dougherty, G. (eds) Medical Image Processing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9779-1_3

Download citation

Publish with us

Policies and ethics