Skip to main content

Electrophoretic Deposition of Carbon Nanotubes (CNTs) and CNT/Nanoparticle Composites

  • Chapter
  • First Online:
Electrophoretic Deposition of Nanomaterials

Abstract

This chapter presents a comprehensive overview of the electrophoretic deposition (EPD) of carbon nanotubes (CNT) and CNT-nanoparticle composites. EPD has been shown to be a very convenient method to manipulate, arrange, and orient CNT from well-dispersed suspensions, whether aqueous or organic, and to deposit them on conductive substrates. Relevant EPD parameters such as electrode materials, deposition time, electrode separation, deposition voltage and resultant electric field are discussed. Moreover, micron-sized and nanoscale ceramic particles have been combined with both multiwalled and single-walled CNT, using EPD, for a variety of functional, structural and biomedical applications. CNT-ceramic composite layers of thickness in the range < 1–50 µm have been produced. Two common experimental approaches are discussed, specifically, sequential EPD of layered nanocomposites and electrophoretic co-deposition from diphasic suspension. Key processing stages, including the functionalisation of the CNTs, the adjustment of the relative zeta potentials of CNT and ceramic particles in suspension, as well as the optimisation of specific EPD parameters, such as deposition voltage and time, are discussed in terms of their influence on the quality and structure of the resulting deposits. Potential and realised applications of CNT-nanoparticle composites are highlighted, including fuel cell and supercapacitor electrodes, field emission devices, bioelectrodes, photocalytic films, sensors as well as a wide range of functional, structural and bioactive coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boccaccini, A.R., Cho, J., Subhani, T., Kaya, C., Kaya, F.: Electrophoretic deposition of carbon nanotube–ceramic nanocomposites. J. Europ. Ceram. Soc. 30, 1115–1129 (2010)

    Article  CAS  Google Scholar 

  2. Corni, I., Ryan, M.P., Boccaccini, A.R.: Electrophoretic deposition: from traditional ceramics to nanotechnology. J. Europ. Ceram. Soc. 28, 1353–1367 (2008)

    Article  CAS  Google Scholar 

  3. Besra, L., Liu, M.: A review on fundamentals and applications of electrophoretic deposition. Prog. Mater. Sci. 52, 1–61 (2007)

    Article  CAS  Google Scholar 

  4. Boccaccini, A.R., Zhitomirsky, I.: Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Curr. Opin. Solid. St. M. 6, 251–260 (2002)

    Article  CAS  Google Scholar 

  5. Van Der Biest, O., Vandeperre, L.J.: Electrophoretic deposition of materials. Ann. Rev. Mater. Sci. 29, 327–354 (1999)

    Article  Google Scholar 

  6. Eder D.: Carbon nanotube-inorganic hybrids. Chem. Rev. 110, 1348–1385 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. Meyyappan, M.: Carbon nanotubes: science and applications. CRC Press, London (2004)

    Book  Google Scholar 

  8. Lau, K. T., Hui, D.: The revolutionary creation of new advanced materials – carbon nanotube composites. Compos. Part B-Eng. 33, 263–277 (2002)

    Article  Google Scholar 

  9. Endo, M., Hayashi, T., Kim, Y. A., Terrones, M., Dresselhaus, M.S.: Applications of carbon nanotubes in the twenty-first century. Phil. Trans. R. Soc. Lond. A. 362, 2223–2238 (2004)

    Article  CAS  Google Scholar 

  10. Andrews, R., Jacques, D., Qian, D., Rantell, T.: Multiwall carbon nanotubes: synthesis and application. Acc. Chem. Res. 35, 1008–1017 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Vairavapandian, D., Vichchulada, P., Lay, M.D.: Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing. Anal. Chim. Acta. 626, 119–129 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. Xie, X.-L., Mai, Y.-W., Zhou, X.-P.: Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. R. 49, 89–112 (2005)

    Article  Google Scholar 

  13. Boccaccini, A.R., Cho, J., Roether, J.A., Thomas, B.J.C., Minay, E.J., Shaffer, M.S.P.: Electrophoretic deposition of carbon nanotubes. Carbon 44, 3149–3160 (2006)

    Article  CAS  Google Scholar 

  14. Kim, S.K., Lee, H.W., Tanaka, H., Weiss P.S.: Vertical alignment of single-walled carbon nanotube films formed by electrophoretic deposition. Langmuir 24, 12936–12942 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. Minnikanti, S., Skeath, P., Peixoto, N.: Electrochemical characterisation of multi-walled carbon nanotube coated electrodes for biological applications. Carbon 47, 884–893 (2008)

    Article  Google Scholar 

  16. Kim, S.-K., Lee, H.: Fabrication of patterned single-walled carbon nanotube film using electrophoretic deposition. Ultramicroscopy 108, 1005–1008 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. Pimanpang, S., Maiaugree, W., Jarernboon, W., Maensiri, S., Amornkitbamrung, V.: Influences of magnesium particles incorporated on electrophoretically multiwall carbon nanotube film on dye-sensitized solar cell performance. Synth. Met. 159, 1996–2000 (2009)

    Article  CAS  Google Scholar 

  18. Qin, Y., Hu, M.: Field emission properties of electrophoretic deposition carbon nanotubes film. Appl. Surf. Sci. 255, 7618–7622 (2009)

    Article  CAS  Google Scholar 

  19. Thomas, B.J.C., Boccaccini, A.R., Shaffer, M.S.P.: Multi-walled carbon nanotube coatings using electrophoretic deposition (EPD). J. Am. Ceram. Soc. 88, 980–982 (2005)

    Article  CAS  Google Scholar 

  20. Shaffer, M.S., Fan, X., Windle, A.H.: Dispersion and packing of carbon nanotubes. Carbon 36(11), 1603–1612 (1988)

    Article  Google Scholar 

  21. Girishkumar, G., Rettker, M., Underhile, R., Binz, D., Vinodgopal, K., McGinn, P., Kamat, P.: Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells. Langmuir. 21, 8487–8494 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. Du, C.S., Heldebrant, D., Pan, N.: Preparation of carbon nanotubes composite sheet using electrophoretic deposition process. J. Mater. Sci. Lett. 21, 565–568 (2002)

    Article  CAS  Google Scholar 

  23. Du, C.S., Heldbrant, D., Pan, N. Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition. Mater. Lett. 57, 434–438 (2002)

    Article  CAS  Google Scholar 

  24. Bae, J., Yoon, Y., Lee, S., Baik, H.: Field emission properties of carbon nanotubes deposited by electrophoresis. Physica B. 323, 169–170 (2002)

    Article  Google Scholar 

  25. Kurnosov, D., Bugaev, A.S., Nikolski, K.N., Tchesov, R., Sheshin, E.: Influence of the interelectrode distance in electrophoretic cold cathode fabrication on the emission uniformity. Appl. Surf. Sci. 215, 232–236 (2003)

    Article  CAS  Google Scholar 

  26. Zhao, H., Song, H., Li, Z., Yuan, G., Jin, Y.: Electrophoretic deposition and field emission properties of patterned carbon nanotubes. Appl. Surf. Sci. 251, 242–244 (2005)

    Article  CAS  Google Scholar 

  27. Jin, Y.W., Jung, J.E., Park, Y.J., Choi, J.H., Jung, D.S., Lee, H.W., et al.: Triode-type field emission array using carbon nanotubes and a conducting polymer composite prepared by electrochemical polymerization. J. Appl. Phys. 92, 1065–1068 (2002)

    Article  CAS  Google Scholar 

  28. Oh, S., Zhang, J., Cheng, Y., Shimoda, H., Zhou, O.: Liquid-phase fabrication of patterned carbon nanotube field emission cathodes. Appl. Phys. Lett. 84, 3738–3740 (2004)

    Article  CAS  Google Scholar 

  29. Barazzouk, S., Hotchandani, S., Vinodgopal, K., Kamat, P.: Single-wall carbon nanotube films for photocurrent generation. A prompt response to visible light irradiation. J. Phys. Chem. B. 108, 17015–17018 (2004)

    Article  CAS  Google Scholar 

  30. Kamat, P., Thomas, K., Barazzouk, S., Girishkumar, G., Vinodgopal. K., Meisel, D.: Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field. J. Am. Chem. Soc. 126, 10757–10762 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. Gao, B., Yue, G.Z., Qiu, Q., Cheng, Y., Shimoda, H., Fleming, L., et al.: Fabrication and electron field emission properties of carbon nanotube films by electrophoretic deposition. Adv. Mater. 13, 1770–1773 (2001)

    Article  CAS  Google Scholar 

  32. Choi, W.B., Jin, Y.W., Kim, H.Y., Lee, S.J., Yun, M.J., Kang J.H., et al.: Electrophoresis deposition of carbon nanotubes for triode-type field emission display. Appl. Phys. Lett. 78, 1547–1549 (2001)

    Article  CAS  Google Scholar 

  33. Nakayama, Y., Akita, S.: Field-emission device with carbon nanotubes for a flat panel display. Synth. Met. 117, 207–210 (2001)

    Article  CAS  Google Scholar 

  34. Yu, K., Zhu, Z., Li, Q., Lu, W.: Electronic properties and field emission of carbon nanotube films treated by hydrogen plasma. Appl. Phys. A. 77, 811–817 (2003)

    Article  CAS  Google Scholar 

  35. Lin, C., Chen, Y.-C., Wang, T., Kuo, C.-T.: Feasibility study of high performance field emitter pattern with the horizontally oriented carbon nanotubes by electrophoresis. Diamond Rel. Mater. 18, 520–523 (2009)

    Article  CAS  Google Scholar 

  36. Singh, C., Shaffer, M.S., Windle, A.H.: Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method. Carbon 41, 359–368 (2003)

    Article  CAS  Google Scholar 

  37. Moon, J.M., An, K.H., Lee, Y.H., Park, Y.S., Bae, D.J., Park, G.S.: High-yield purification process of single walled carbon nanotubes. J. Phys. Chem. B. 105, 5677–5681 (2001)

    Article  CAS  Google Scholar 

  38. Esumi, K., Ishigami, M., Nakajima, A., Sawada, K., Honda, H.: Chemical treatment of carbon nanotubes. Carbon 34(2), 279–281 (1996)

    Article  CAS  Google Scholar 

  39. Du, C., Yeh, J. Pan, N.: Carbon nanotube thin films with ordered structures. J. Mater. Chem. 15, 548–550 (2005)

    Article  CAS  Google Scholar 

  40. Fogdena, S., Verdejo, R., Cottam, B., Shaffer, M.S.: Purification of single walled carbon nanotubes: The problem with oxidation debris. Chem. Phys. Lett. 460, 162–167 (2008)

    Article  Google Scholar 

  41. Cho, J., Konopka, K., Rożniatowski, K., Eva García-Lecina, E., Shaffer, M.S., Boccaccini, A.R. Characterisation of carbon nanotube films deposited by electrophoretic deposition. Carbon 47, 58–67 (2009)

    Article  CAS  Google Scholar 

  42. Quale, S.L., Talbot, J.B. Electrophoretic deposition of substrate-normal-oriented single-walled carbon nanotube structures. J. Electrochem. Soc. 154, 25–28 (2007)

    Article  Google Scholar 

  43. Yamamoto, K., Akita, S., Nakayama, Y.: Orientation and purification of carbon nanotubes using AC electrophoresis. J. Phys. D: Appl. Phys. 31, L34–L36 (1998)

    Article  CAS  Google Scholar 

  44. Thomas, B.J.C., Shaffer, M.S.P., Freeman, S., Koopman, M., Chawla, K.K., Boccaccini, A.R.: Electrophoretic deposition of carbon nanotubes on metallic surfaces. Proc. 2nd Int. Conference on Electrophoretic Deposition. Key Eng. Mater. 314, 141–146 (2006)

    Google Scholar 

  45. De Cheng, W., Lu, S., Jia, E.L., Siew, Y.W., Xu, L., Wuiwui, C.T., Ye, L., Chao, B.H.: Multi-walled carbon nanotube/polyimide composite film fabricated through electrophoretic deposition. Polymer 51, 2155–2160 (2010)

    Article  Google Scholar 

  46. Chen, G.Z., Shaffer, M.S.P., Coleby, D., Dixon, G., Zhou, W., Fray, DJ., et al.: Carbon nanotube and polypyrrole composites: coating and doping. Adv. Mater. 12, 522–526 (2000)

    Article  CAS  Google Scholar 

  47. Shimoda, H., Oh, S.J., Geng, H.Z., Walker, R.J., Zhang, X.B., McNeil, L.E. et al.: Self-assembly of carbon nanotubes. Adv. Mater. 14, 899 (2002)

    Article  CAS  Google Scholar 

  48. Girishkumar, G., Vinodgopal, K., Kamat, PV.: Carbon nanostructures in portable fuel cells: single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction. J. Phys. Chem. B. 108, 19960–19966 (2004)

    Article  CAS  Google Scholar 

  49. König, K., Novak, S., Ivekovič, A., Rade, K., Meng, D., Boccaccini, A.R., Kobe, S.: Fabrication of CNT-SiC/SiC composites by electrophoretic deposition. J. Eur. Ceram. Soc. 30, 1131–1137 (2010)

    Article  Google Scholar 

  50. Dickerson, J.H.: Personal communication (2010)

    Google Scholar 

  51. Zhang, J., Zhuang, R., Liu, J., Mäder, E., Heinrich, G., Gao, S.: Functional interphases with multiwalled carbon nanotubes in glass fibre/epoxy composites. Carbon 48, 2273–2281 (2010)

    Google Scholar 

  52. Qian, H., Greenhalgh, E.S., Shaffer, M.S.P., Bismarck, A.: Carbon nanotube-based hierarchical composites: a review. J. Mater. Chem. 20, 4751–4762 (2010)

    Article  CAS  Google Scholar 

  53. Chicatun, F., Cho, J., Schaab, S., Brusatin, G., Colombo, P., Roether, J.A., Boccaccini, A.R.: Carbon nanotube deposits and CNT/SiO2 composite coatings by electrophoretic deposition. Adv. Appl. Ceram. 106, 186–195 (2007)

    Article  CAS  Google Scholar 

  54. Colorado, R., Barron, A.R.: Silica-coated single-walled nanotubes: nanostructure formation. Chem. Mater. 16, 2691–2693 (2004)

    Article  CAS  Google Scholar 

  55. Wang, S.-C., Huang, B.-C.: Field emission properties of Ag/SiO2/carbon nanotube films by pulsed voltage co-electrophoretic deposition. Thin Solid Films 517, 1245–1250 (2008)

    Article  CAS  Google Scholar 

  56. Lee, S., Sigmund, W.M.: Formation of anatase TiO2 nanoparticles on carbon nanotubes. Chem. Commun. 6, 780–781 (2003)

    Article  Google Scholar 

  57. Jitianu, A., Cacciaguerra, T., Benoit, S., Delpeux, S., Béguin, F., Bonnamy, S.: Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites. Carbon 42, 1147–1151 (2004)

    Article  CAS  Google Scholar 

  58. Jarernboon, W., Pimanpang, S., Maensiri, S., Swatsitang, E., Amornkitbamrung, V.: Effects of multiwall carbon nanotubes in reducing microcrack formation on electrophoretically deposited TiO2 film. J. Alloys. Compd. 476, 840–846 (2009)

    Article  CAS  Google Scholar 

  59. Singh, I., Kaya, C., Shaffer, M.S.P., Thomas, B.C., Boccaccini, A.R.: Bioactive ceramic coatings containing carbon nanotubes on metallic substrates by electrophoretic deposition. J. Mater. Sci. 41, 8144–8151 (2006)

    Article  CAS  Google Scholar 

  60. Yu, Y., Yu, J.Y., Yu, J.-G., Kwok, Y.-C., Che, Y.-K., Zhao, J.-C., Ding, L., Ge, W.-K.: Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal. A. 289, 186–96 (2005)

    Article  CAS  Google Scholar 

  61. Cho, J., Schaab, S., Roether, J.A., Boccaccini, A.R.: Nanostructured carbon nanotube/TiO2 composite coatings using electrophoretic deposition (EPD). J. Nanopart. Res. 10, 99–105 (2008)

    Article  CAS  Google Scholar 

  62. Cava, C.E., Possagno, R., Schnitzler, M.C., Roman, P.C., Oliveira, M.M., Lepiensky, C.M., Zarbin, A.J.G., Roman, L.S.: Iron- and iron oxide-filled multi-walled carbon nanotubes: electrical properties and memory devices. Chem. Phys. Lett. 444, 304–308 (2007)

    Article  CAS  Google Scholar 

  63. Georgakilas, V., Gournis, D., Tzitzios, V., Pasquato, L., Guldi, D. M., Prato, M.: Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem. 17, 2679–2694 (2007)

    Article  CAS  Google Scholar 

  64. Du, C.S., Pan, N.: High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 17, 5314–5318 (2006)

    Article  CAS  Google Scholar 

  65. Mahajan, S.V., Hasan, S.A., Cho, J., Shaffer, M.S.P., Boccaccini, A.R., Dickerson, J.H.: Carbon nanotube–nanocrystal heterostructures fabricated by electrophoretic deposition. Nanotechnology 19, 195301 (8pp) (2008)

    Article  CAS  PubMed  Google Scholar 

  66. Mahajan, S.V., Cho, J., Shaffer, M.S., Boccaccini, A.R., Dickerson, J.H.: Electrophoretic deposition and characterization of Eu2O3 nanocrystal – carbon nanotube heterostructures. J. Europ. Ceram. Soc. 30, 1145–1150 (2010)

    Article  CAS  Google Scholar 

  67. Li, J., Zhitomirsky, I.: Electrophoretic deposition of manganese dioxide-carbon nanotube composites. J. Mater. Proc. Technol. 209, 3452–3459 (2009)

    Article  CAS  Google Scholar 

  68. Lee, C.Y., Tsai, H.M., Chuang, H.J., Li, S.Y., Lin, P., Tseng, T.Y.: Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes. J. Electrochem. Soc. 152, A716–A720 (2005)

    Article  CAS  Google Scholar 

  69. Bordjiba, T., Bélanger, D.: Development of new nanocomposite based on nanosized-manganese oxide and carbon nanotubes for high performance electrochemical capacitors. Electrochimica Acta. 55, 3428–3433 (2010)

    Article  CAS  Google Scholar 

  70. Ma, J., Wang, C., Peng, K. W.: Electrophoretic deposition of porous hydroxyapatite scaffolds. Biomaterials 24, 3505–3510 (2003)

    Article  CAS  PubMed  Google Scholar 

  71. Krause, D., Thomas, B., Leinenbach, C., Eifler, D., Minay, E.J., Boccaccini, A.R.: The electrophoretic deposition of Bioglass® particles on stainless steel and Nitinol substrates. Surf. Coat. Technol. 200, 4835–4845 (2006)

    Article  CAS  Google Scholar 

  72. Zhitomirsky, I.: Electrophoretic hydroxyapatite coatings and fibres. Mater. Lett. 42, 262–271 (2000)

    Article  CAS  Google Scholar 

  73. White, A.A., Best, S.M., Kinloch, I.A.: Hydroxyapatite-carbon nanotube composites for biomedical applications: A Review. Int. J. Appl. Ceram. Tech. 4, 1–13 (2007)

    Article  CAS  Google Scholar 

  74. Singh, K.M., Shokuffar, T., Gracio, J.J.A., Sousa, A.C.M., Fereira, J.M.D.F., Germestani, H., Ahzi, S.: Hydroxyapatite modified with carbon-nanotube-reinforced poly(methyl methacrylate): A nanocomposite material for biomedical applications. Adv. Functional Materials 18, 694–700 (2008)

    Article  CAS  Google Scholar 

  75. Chen, Y., Zhang, Y.Q., Zhang, T.H., Gan, C.H., Zheng, C.H., Yu, G.: Carbon nanotube reinforced hydroxyapatite composite coatings produced through laser surface alloying. Carbon 44, 37–45 (2006)

    Article  CAS  Google Scholar 

  76. Boccaccini, A.R., Chicatun, F., Cho, J., Bretcanu, O., Roether, J.A., Novak, S., Chen, Q.Z.: Carbon nanotube coatings on Bioglass-Based tissue engineering scaffolds. Adv. Funct. Mater. 17, 2815–2822 (2007)

    Article  CAS  Google Scholar 

  77. Harrison, B.S., Attala, A.: Carbon nanotube applications for tissue engineering. Biomaterials 28, 344–353 (2007)

    Article  CAS  PubMed  Google Scholar 

  78. Lange, G.L., Donath, K.: Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite-coated titanium implants. Biomaterials 10, 121–125 (1989)

    Article  PubMed  Google Scholar 

  79. Kaya, C., Singh, I., Boccaccini, A.R.: Multi-walled carbon nanotube-reinforced hydroxyapatite layers on Ti6AI4V medical implants by electrophoretic deposition (EPD). Adv. Eng. Mater. 10, 1–8 (2008)

    Article  Google Scholar 

  80. Balani, K., Anderson, R., Laha, T., Andara, M., Tercero, J., Crumpler, E., Agarwal, A.: Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials 28, 618–624 (2007)

    Article  CAS  PubMed  Google Scholar 

  81. Lin, C., Han, H., Zhang, F.: Electrophoretic deposition of HA/MWNTs composite coating for biomedical applications. J. Mater. Sci: Mater. Med. 19, 2569–2574 (2008)

    CAS  Google Scholar 

  82. Zaman, A. C., Üstündağ, C. B., Kuşkonmaz, N., Kaya, F., Kaya, C.: 3-D micro-ceramic components from hydrothermally processed carbon nanotube–boehmite powders by electrophoretic deposition. Ceram. Int. 36, 1703–1710 (2010)

    Article  CAS  Google Scholar 

  83. Bai Y., Neupane M.P., Park, I.S., Lee, M.H., Bae, T.S., Watari F., Uo, M.: Electrophoretic deposition of carbon nanotubes–hydroxyapatite nanocomposites on titanium substrate. Mater. Sci. Eng. C. 30, 1043–1049 (2010)

    Article  CAS  Google Scholar 

  84. Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K.: Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 2, 117–141 (1971)

    Article  Google Scholar 

  85. Hench, L.L.: Bioceramics. J. Am. Ceram. Soc. 81, 1705–1728 (1998)

    Article  CAS  Google Scholar 

  86. Hench, L.L., Andersson, Ö.: Bioactive glass coatings. An Introduction to Bioceramics 239–259 (1993)

    Google Scholar 

  87. Chen, Q.Z., Thompson, I.D. Boccaccini, A.R.: 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 27, 2414–2425 (2006)

    Article  CAS  PubMed  Google Scholar 

  88. Cho, J., Cannio, M., Boccaccini, A.R.: The electrophoretic deposition of Bioglass®/carbon nanotube composite layers for bioactive coatings. Int. J. Mater. Product Technol. 35, 260–270 (2009)

    Article  CAS  Google Scholar 

  89. Schausten, M.C., Meng, D., Telle, R., Boccaccini, A.R.: Electrophoretic deposition of carbon nanotubes and bioactive glass particles for bioactive composite coatings. Ceram. Int. 36, 307–312 (2010)

    Article  Google Scholar 

  90. Meng, D., Ioannou, J., Boccaccini A.R.: Bioglass-based scaffolds with carbon nanotube coating for bone tissue engineering. J. Mater. Sci. Mater. Med. 20, 2139–2144 (2009)

    Article  CAS  PubMed  Google Scholar 

  91. MacDonald, R.A., Laurenzi, B.F., Viswanathan, G., Ajayan, P.M., Stegemann, J.P.: Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J. Biomed. Mater. Res. 74, 489–495 (2005)

    Article  Google Scholar 

  92. Zanello, L.P., Zhao, B., Hu, H., Haddon, R.C.: Bone cell proliferation on carbon nanotubes. Nano Lett. 6, 562–567 (2006)

    Article  CAS  PubMed  Google Scholar 

  93. Aryal, S., Bhattari, S.R., Bahadur, R., Khil, M.S., Lee, D.R., Kim, H.Y.: Carbon nanotubes assisted biomimetic synthesis of hydroxyapatite from simulated body fluid. Mater. Sci. Eng. A. 426, 202–207 (2006)

    Article  Google Scholar 

  94. Sun, F., Zhitomirsky, I.: Electrodeposition of hyaluronic acid and composite films. Surface Engineering 25, 621–627 (2009)

    Article  CAS  Google Scholar 

  95. Grandfield, K., Sun, F., Fitzpatrick, M., Cheong, M., Zhitomirsky, I.: Electrophoretic deposition of polymer-carbon nanotube-hydroxyapatite composites. Surf. Coatings Technol. 203, 1481–1487 (2009)

    Article  CAS  Google Scholar 

  96. Santillán, M.J., Caneiro, A., Lovey, F.C., Quaranta, N., Boccaccini, A.R.: Electrophoretic codeposition of La0.6Sr0.4Co0.8Fe0.2O3 and carbon nanotubes for developing composite cathodes for intermediate temperature solid oxide fuel cells. Int. J. Appl. Ceram. Technol. 7, 30–40 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Ms S. Keim (University of Erlangen-Nuremberg, Germany) with some of the illustrations. CK acknowledge financial support from TUBITAK (The Scientific and Technological Research Council of Turkey) under the contract number 108T651.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo R. Boccaccini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boccaccini, A.R., Kaya, C., Shaffer, M.S. (2012). Electrophoretic Deposition of Carbon Nanotubes (CNTs) and CNT/Nanoparticle Composites. In: Dickerson, J., Boccaccini, A. (eds) Electrophoretic Deposition of Nanomaterials. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9730-2_4

Download citation

Publish with us

Policies and ethics