Skip to main content

Mast Cell Proteases as Protective and Inflammatory Mediators

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 716))

Abstract

Proteases are the most abundant class of proteins produced by mast cells. Many of these are stored in membrane-enclosed intracellular granules until liberated by degranulating stimuli, which include cross-linking of high affinity IgE receptor FcεRI by IgE bound to multivalent allergen. Understanding and separating the functions of the proteases is important because expression differs among mast cells in different tissue locations. Differences between laboratory animals and humans in protease expression also influence the degree of confidence with which results obtained in animal models of mast cell function can be extrapolated to humans. The inflammatory potential of mast cell proteases was the first aspect of their biology to be explored and has received the most attention, in part because some of them, notably tryptases and chymases, are biomarkers of local and systemic mast cell degranulation and anaphylaxis. Although some of the proteases indeed augment allergic inflammation and are potential targets for inhibition to treat asthma and related allergic disorders, they are protective and even anti-inflammatory in some settings. For example, mast cell tryptases may protect from serious bacterial lung infections and may limit the “rubor” component of inflammation caused by vasodilating neuropeptides in the skin. Chymases help to maintain intestinal barrier function and to expel parasitic worms and may support blood pressure during anaphylaxis by generating angiotensin II. In other life-or-death examples, carboxypeptidase A3 and other mast cell peptidases limit systemic toxicity of endogenous peptideslike endothelin and neurotensin during septic peritonitis and inactivate venom-associated peptides. On the other hand, mast cell peptidase-mediated destruction of protective cytokines, like IL-6, can enhance mortality from sepsis. Peptidases released from mast cells also influence nonmast cell proteases, such as by activating matrix metalloproteinase cascades, which are important in responses to infection and resolution of tissue injury. Overall, mast cell proteases have a variety of roles, inflammatory and anti-inflammatory, protective and deleterious, in keeping with the increasingly well-appreciated contributions of mast cells in allergy, tissue homeostasis and innate immunity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stevens RL, Adachi R. Protease-proteoglycan complexes of mouse and human mast cells and importance of their ß-tryptase-heparin complexes in inflammation and innate immunity. Immunol Rev 2007; 217:155–167.

    Article  PubMed  CAS  Google Scholar 

  2. Caughey GH. Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 2007; 217:141–154.

    Article  PubMed  CAS  Google Scholar 

  3. Pejler G, Ronnberg E, Waern I et al. Mast cell proteases-multifaceted regulators of inflammatory disease. Blood 2010 [Epub ahead of print].

    Google Scholar 

  4. Trivedi NN, Caughey GH. Mast cell peptidases: Chameleons of innate immunity and host defense. Am J Respir Cell Mol Biol 2010; 42:257–267.

    Article  PubMed  CAS  Google Scholar 

  5. Brain SD, Williams TJ. Substance P regulates the vasodilator activity of calcitonin gene-related peptide. Nature 1988; 335:73–75.

    Article  PubMed  CAS  Google Scholar 

  6. Tarn EK, Caughey GH. Degradation of airway neuropeptides by human lung tryptase. Am J Respir Cell Mol Biol 1990; 3:27–32.

    Google Scholar 

  7. Walls AF, Brain SD, Desai A et al. Human mast cell tryptase attenuates the vasodilator activity of calcitonin gene-related peptide. Biochem Pharmacol 1992; 43:1243–1248.

    Article  PubMed  CAS  Google Scholar 

  8. Steinhoff M, Vergnolle N, Young SH et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med 2000; 6:151–158.

    Article  PubMed  CAS  Google Scholar 

  9. Corvera CU, Dery O, McConalogue K et al. Mast cell tryptase regulates rat colonic myocytes through PAR-2. J Clin Invest 1997; 100:1383–1393.

    Article  PubMed  CAS  Google Scholar 

  10. Molino M, Barnathan ES, Numerof R et al. Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem 1997; 272:4043–4049.

    Article  PubMed  CAS  Google Scholar 

  11. Schmidlin F, Amadesi S, Vidil R et al. Expression and function of PAR-2 in human bronchial smooth muscle. Am J Respir Crit Care Med 2001; 164:1276–1281.

    PubMed  CAS  Google Scholar 

  12. Steinhoff M, Corvera CU, Thoma MS et al. PAR-2 in human skin: tissue distribution and activation of keratinocytes by mast cell tryptase. Exp Dermatol 1999; 8:282–294.

    Article  PubMed  CAS  Google Scholar 

  13. Compton SJ, Renaux B, Wijesuriya SJ et al. Glycosylation and the activation of PAR-2 by human mast cell tryptase. Br J Pharmacol 2001; 134:705–718.

    Article  PubMed  CAS  Google Scholar 

  14. Cottrell GS, Amadesi S, Pikios S et al. PAR-2, dipeptidyl peptidase I and proteases mediate Clostridium difficile toxin A enteritis. Gastroenterology 2007; 132:2422–2437.

    Article  PubMed  CAS  Google Scholar 

  15. Stead RH, Dixon MF, Bramwell NH et al. Mast cells are closely apposed to nerves in the human gastrointestinal mucosa. Gastroenterology 1989; 97:575–585.

    PubMed  CAS  Google Scholar 

  16. Steinhoff M, Neisius U, Ikoma A et al. PrAR-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci 2003; 23:6176–6180.

    PubMed  CAS  Google Scholar 

  17. Ui H, Andoh T, Lee JB et al. Potent pruritogenic action of tryptase mediated by PAR-2 receptor and its involvement in anti-pruritic effect of nafamostat mesilate in mice. Eur J Pharmacol 2006; 530:172–178.

    Article  PubMed  CAS  Google Scholar 

  18. Cenac N, Andrews CN, Holzhausen M et al. Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest 2007; 117:636–647.

    Article  PubMed  CAS  Google Scholar 

  19. Sekizawa K, Caughey GH, Lazarus SC et al. Mast cell tryptase causes airway smooth muscle hyperresponsiveness in dogs. J Clin Invest 1989; 83:175–179.

    Article  PubMed  CAS  Google Scholar 

  20. Johnson PRA, Ammit AJ, Carlin SM et al. Mast cell tryptase potentiates histamine-induced contraction in human sensitized bronchus. Eur Resp J 1997; 10:38–43.

    Article  CAS  Google Scholar 

  21. Barrios VE, Middleton SC, Kashem MA et al. Tryptase mediates hyperresponsiveness in isolated guinea pig bronchi Life Sci 1998; 63:2295–2303.

    Article  PubMed  CAS  Google Scholar 

  22. Berger P, Compton SJ, Molimard M et al. Mast cell tryptase as a mediator of hyperresponsiveness in human isolated bronchi. Clin Exp Allergy 1999; 29:804–812.

    Article  PubMed  CAS  Google Scholar 

  23. Molinari JF, Scuri M, Moore WR et al. Inhaled tryptase causes bronchoconstriction in sheep via histamine release. Am J Respir Crit Care Med 1996; 154:649–653.

    PubMed  CAS  Google Scholar 

  24. Cocks TM, Fong B, Chow JM et al. A protective role for protease-activated receptors in the airways. Nature 1999; 398:156–160.

    Article  PubMed  CAS  Google Scholar 

  25. Caughey GH, Leidig F, Viro NF et al. Substance P and vasoactive intestinal peptide degradation by mast cell tryptase and chymase. J Pharmacol Exp Ther 1988; 244:133–137.

    PubMed  CAS  Google Scholar 

  26. Franconi GM, Graf PD, Lazarus SC et al. Mast cell chymase and tryptase reverse airway smooth muscle relaxation induced by vasoactive intestinal peptide in the ferret. J Pharmacol Exp Ther 1989; 248:947–951.

    PubMed  CAS  Google Scholar 

  27. Tam EK, Franconi GM, Nadel JA et al. Protease inhibitors potentiate smooth muscle relaxation induced by vasoactive intestinal peptide in isolated human bronchi. Am J Respir Cell Mol Biol 1990; 2:449–452.

    PubMed  CAS  Google Scholar 

  28. Gruber BL, Marchese MJ, Suzuki K et al. Synovial procollagenase activation by human mast cell tryptase. J Clin Invest 1989; 84:1657–1662.

    Article  PubMed  CAS  Google Scholar 

  29. Kobayashi M, Kume H, Oguma T et al. Mast cell tryptase causes homologous desensitization of β-adrenoceptors by Ca2+ sensitization in tracheal smooth muscle. Clin Exp Allergy 2008; 38:135–144.

    PubMed  CAS  Google Scholar 

  30. Piliponsky AM, Chen CC, Nishimura T et al. Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis. Nat Med 2008; 14:392–398.

    Article  PubMed  CAS  Google Scholar 

  31. Maurer M, Wedemeyer J, Metz M et al. Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature 2004; 432:512–516.

    Article  PubMed  CAS  Google Scholar 

  32. Schneider LA, Schlenner SM, Feyerabend TB et al. Molecular mechanism of mast cell mediated innate defense against endothelin and snake venom sarafotoxin. J Exp Med 2007; 204:2629–2639.

    Article  PubMed  CAS  Google Scholar 

  33. Nakano A, Kishi F, Minami K et al. Selective conversion of big endothelins to tracheal smooth muscle-constricting 31-amino acid-length endothelins by chymase from human mast cells. J Immunol 1997; 159:1987–1992.

    PubMed  CAS  Google Scholar 

  34. Nagata N, Niwa Y, Nakaya Y. Anovel 31-amino-acid-length endothelin, ET-1(1–31), can act as abiologically active peptide for vascular smooth muscle cells. Biochem Biophys Res Commun 2000; 275:595–600.

    Article  PubMed  CAS  Google Scholar 

  35. Nagase T, Kurihara H, Kurihara Y et al. Airway hyperresponsiveness to methacholine in mutant mice deficient in endothelin-1. Am J Respir Crit Care Med 1998; 157:560–564.

    PubMed  CAS  Google Scholar 

  36. Irani AM, Goldstein SM, Wintroub BU et al. Human mast cell carboxypeptidase: Selective localization to MCTC cells. J Immunol 1991; 147:247–253.

    PubMed  CAS  Google Scholar 

  37. Goldstein SM, Leong J, Schwartz LB et al. Protease composition of exocytosed human skin mast cell protease-proteoglycan complexes: tryptase resides in acomplex distinct from chymase and carboxypeptidase. J Immunol 1992; 148:2475–2482.

    PubMed  CAS  Google Scholar 

  38. Dougherty RH, Sidhu SS, Raman K et al. Accumulation of intraepithelial mast cells with a unique protease phenotype in Th2-high asthma. J Allergy Clin Immunol 2010; 125:1046–1053.

    Article  PubMed  CAS  Google Scholar 

  39. Schiemann F, Brandt E, Gross R et al. The cathelicidin LL-37 activates human mast cells and is degraded by mast cell tryptase: counter-regulation by CXCL4. J Immunol 2009; 183:2223–2231.

    Article  PubMed  CAS  Google Scholar 

  40. Schiemann F, Grimm TA, Hoch J et al. Mast cells and neutrophils proteolytically activate chemokine precursor CTAP-III and are subject to counterregulation by PF-4 through inhibition of chymase and cathepsin G. Blood 2006; 107:2234–2242.

    Article  PubMed  CAS  Google Scholar 

  41. Zhao W, Oskeritzian CA, Pozez AL et al. Cytokine production by skin-derived mast cells: endogenous proteases are responsible for degradation of cytokines. J Immunol 2005; 175:2635–2642.

    PubMed  CAS  Google Scholar 

  42. Schechter NM, Sprows JL, Schoenberger OL et al. Reaction of human skin chymotrypsin-like proteinase chymase with plasma proteinase inhibitors. J Biol Chem 1989; 264:21308–21315.

    PubMed  CAS  Google Scholar 

  43. Walter M, Sutton RM, Schechter NM. Highly efficient inhibition of human chymase by α2-macroglobulin. Arch Biochem Biophys 1999; 368:276–284.

    Article  PubMed  CAS  Google Scholar 

  44. Raymond WW, Su S, Makarova A et al. α2-Macroglobulin capture allows detection of mast cell chymase in serum and creates a reservoir of angiotensin II-generating activity. J Immunol 2009; 182:5770–5777.

    Article  PubMed  CAS  Google Scholar 

  45. Mallen-St Clair J, Pham CT, Villalta SA et al. Mast cell dipeptidyl peptidase I mediates survival from sepsis. J Clin Invest 2004; 113:628–634.

    Google Scholar 

  46. Metz M, Piliponsky AM, Chen CC et al. Mast cells can enhance resistance to snake and honeybee venoms. Science 2006; 313:526–530.

    Article  PubMed  CAS  Google Scholar 

  47. Fang KC, Raymond WW, Lazarus SC et al. Dog mastocytoma cells secrete a 92-kd gelatinase activated extracellularly by mast cell chymase. J Clin Invest 1996; 97:1589–1596.

    Article  PubMed  CAS  Google Scholar 

  48. Fang KC, Wolters PJ, Steinhoff M et al. Mast cell expression of gelatinases A and B is regulated by kit ligand and TGF-β. J Immunol 1999; 162:5528–5535.

    PubMed  CAS  Google Scholar 

  49. Coussens LM, Raymond WW, Bergers G et al. Inflammatory mast cells upregulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 1999; 13:1382–1397.

    Article  PubMed  CAS  Google Scholar 

  50. Baram D, Vaday GG, Salamon P et al. Human mast cells release metalloproteinase-9 on contact with activated T-cells: juxtacrine regulation by TNFα. J Immunol 2001; 167:4008–4016.

    PubMed  CAS  Google Scholar 

  51. Tchougounova E, Lundequist A, Fajardo I et al. A key role for mast cell chymase in the activation of proMMP-9 and proMMP-2. J Biol Chem 2005; 280:9291–9296.

    Article  PubMed  CAS  Google Scholar 

  52. McQuibban GA, Gong JH, Tam EM et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 2000; 289:1202–1206.

    Article  PubMed  CAS  Google Scholar 

  53. Greenlee KJ, Corry DB, Engler DA et al. Proteomic identification of in vivo substrates for MMPs 2 and 9 reveals a mechanism for resolution of inflammation. J Immunol 2006; 177:7312–7321.

    PubMed  CAS  Google Scholar 

  54. Vu TH, Shipley JM, Bergers G et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 1998; 93:411–422.

    Article  PubMed  CAS  Google Scholar 

  55. Baluk P, Raymond WW, Ator E et al. Matrix metalloproteinase-2 and-9 expression increases in mycoplasma-infected airways but is not required for microvascular remodeling. Am J Physiol Lung Cell Mol Physiol 2004; 287:1307–1317.

    Article  Google Scholar 

  56. Corry DB, Rishi K, Kanellis J et al. Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nat Immunol 2002; 3:347–353.

    Article  PubMed  CAS  Google Scholar 

  57. Corry DB, Kiss A, Song LZ et al. Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines. FASEB J 2004; 18:995–997.

    PubMed  CAS  Google Scholar 

  58. Lukkarinen H, Hogmalm A, Lappalainen U et al. MMP-9 deficiency worsens lung injury in a model of bronchopulmonary dysplasia. Am J Respir Cell Mol Biol 2009; 41:59–68.

    Article  PubMed  CAS  Google Scholar 

  59. Tanaka A, Yamane Y, Matsuda H. Mast cell MMP-9 production enhanced by bacterial lipopolysaccharide. J Vet Med Sci 2001; 63:811–813.

    Article  PubMed  CAS  Google Scholar 

  60. Fang KC, Raymond WW, Blount JL et al. Dog mast cell α-chymase activates progelatinase B by cleaving the Phe88-Phe89 and Phe91-Glu92 bonds of the catalytic domain. J Biol Chem 1997; 272:25628–25635.

    Article  PubMed  CAS  Google Scholar 

  61. Frank BT, Rossall JC, Caughey GH et al. Mast cell tissue inhibitor of metalloproteinase-1 is cleaved and inactivated extracellularly by α-chymase. J Immunol 2001; 166:2783–2792.

    PubMed  CAS  Google Scholar 

  62. Kishi K, Muramatsu M, Jin D et al. The effects of chymase on MMP-2 activation in neointimal hyperplasia after balloon injury in dogs. Hypertens Res 2007; 30:77–83.

    Article  PubMed  CAS  Google Scholar 

  63. Ishida K, Takai S, Murano M et al. Role of chymase-dependent MMP-9 activation in mice with dextran sodium sulfate-induced colitis. J Pharmacol Exp Ther 2008; 324:422–426.

    Article  PubMed  CAS  Google Scholar 

  64. Inoue N, Muramatsu M, Jin D et al. Effects of chymase inhibitor on angiotensin II-induced abdominal aortic aneurysm development in apolipoprotein E-deficient mice. Atherosclerosis 2009; 204:359–364.

    Article  PubMed  CAS  Google Scholar 

  65. Rueff F, Przybilla B, Bilo MB et al. Predictors of severe systemic anaphylactic reactions in patients with hymenoptera venom allergy: importance of baseline serum tryptase. J Allergy Clin Immunol 2009; 124:1047–1054.

    Article  PubMed  CAS  Google Scholar 

  66. Marshall RP, Gohlke P, Chambers RC et al. Angiotensin II and the fibroproliferative response to acute lung injury. Am J Physiol Lung Cell Mol Physiol 2004; 286:L156–L164.

    Article  PubMed  CAS  Google Scholar 

  67. Imai Y, Kuba K, Rao S et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005; 436:112–116.

    Article  PubMed  CAS  Google Scholar 

  68. Reilly CF, Tewksbury DA, Schechter NB et al. Rapid conversion of angiotensin I to angiotensin II by neutrophil and mast cell proteinases. J Biol Chem 1982; 257:8619–8622.

    PubMed  CAS  Google Scholar 

  69. Wintroub BU, Schechter NB, Lazarus GS et al. Angiotensin I conversion by human and rat chymotryptic proteinases. J Invest Derm 1984; 83:336–339.

    Article  PubMed  CAS  Google Scholar 

  70. Urata H, Kinoshita A, Misono KS et al. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 1990; 265:22348–22357.

    PubMed  CAS  Google Scholar 

  71. Urata H, Kinoshita A, Perez DM et al. Cloning of the gene and cDNA for human heart chymase. J Biol Chem 1991; 266:17173–17179.

    PubMed  CAS  Google Scholar 

  72. Caughey GH, Zerweck EH, Vanderslice P. Structure, chromosomal assignment and deduced amino acid sequence of ahuman gene for mast cell chymase. J Biol Chem 1991; 266:12956–12963.

    PubMed  CAS  Google Scholar 

  73. Caughey GH, Schaumberg TH, Zerweck EH et al. The human mast cell chymase gene (CMA1): mapping to the cathepsin G/granzyme gene cluster and lineage-restricted expression. Genomics 1993; 15:614–620.

    Article  PubMed  CAS  Google Scholar 

  74. Woodbury RG, Everitt M, Sanada Y et al. A major serine protease in rat skeletal muscle: Evidence for its mast cell origin. Proc Natl Acad Sci USA 1978; 75:5311–5313.

    Article  PubMed  CAS  Google Scholar 

  75. Woodbury RG, Neurath H. Structure, specificity and localization of the serine proteases of connective tissue. FEBS Lett 1980; 114:189–195.

    Article  PubMed  CAS  Google Scholar 

  76. Woodbury RG, Gruzenski GM, Lagunoff D. Immunofluorescent localization of a serine protease in rat small intestine. Proc Natl Acad Sci USA 1978; 75:2785–2789.

    Article  PubMed  CAS  Google Scholar 

  77. Schechter NM, Irani AM, Sprows JL et al. Identification of a cathepsin G-like proteinase in the mctc type of human mast cell. J Immunol 1990; 145:2652–2661.

    PubMed  CAS  Google Scholar 

  78. Benyon RC, Enciso JA, Befus AD. Analysis of human skin mast cell proteins by two-dimensional gel electrophoresis: identification of tryptase as a sialylated glycoprotein. J Immunol 1993; 151:2699–2706.

    PubMed  CAS  Google Scholar 

  79. de Garavilla L, Greco MN, Sukumar N et al. A novel, potent dual inhibitor of the leukocyte proteases cathepsin G and chymase: molecular mechanisms and anti-inflammatory activity in vivo. J Biol Chem 2005; 280:18001–18007.

    Article  PubMed  CAS  Google Scholar 

  80. Maryanoff BE, de Garavilla L, Greco MN et al. Dual inhibition of cathepsin G and chymase is effective in animal models of pulmonary inflammation. Am J Respir Crit Care Med 2010; 181:247–253.

    Article  PubMed  CAS  Google Scholar 

  81. Lundequist A, Tchougounova E, Abrink M et al. Cooperation between mast cell carboxypeptidase A and the chymase mouse mast cell protease 4 in the formation and degradation of angiotensin II. J Biol Chem 2004; 279:32339–32344.

    Article  PubMed  CAS  Google Scholar 

  82. Caughey GH, Raymond WW, Wolters PJ. Angiotensin II generation by mast cell α-and β-chymases. Biochim Biophys Acta 2000; 1480:245–257.

    Article  PubMed  CAS  Google Scholar 

  83. Wei CC, Hase N, Inoue Y et al. Mast cell chymase limits the cardiac efficacy of Ang I-converting enzyme inhibitor therapy in rodents. J Clin Invest 2010.

    Google Scholar 

  84. Wei CC, Meng QC, Palmer R et al. Evidence for angiotensin-converting enzyme-and chymase-mediated angiotensin ii formationin the interstitial fluid space of the dog heart in vivo. Circulation 1999; 99:2583–2589.

    PubMed  CAS  Google Scholar 

  85. Ju H, Gros R, You X et al. Conditional and targeted overexpression of vascular chymase causes hypertension in transgenic mice. Proc Natl Acad Sci USA 2001; 98:7469–7474.

    Article  PubMed  CAS  Google Scholar 

  86. Shiota N, Okunishi H, Takai S et al. Tranilast suppresses vascular chymase expression and neointima formation in balloon-injured dog carotid artery. Circulation 1999; 99:1084–1090.

    PubMed  CAS  Google Scholar 

  87. Sakaguchi M, Takai S, Jin D et al. A specific chymase inhibitor, NK3201, suppresses bleomycin-induced pulmonary fibrosis in hamsters. Eur J Pharmacol 2004; 493:173–176.

    Article  PubMed  CAS  Google Scholar 

  88. Takai S, Jin D, Muramatsu M et al. Therapeutic applications of chymase inhibitors in cardiovascular diseases and fibrosis. Eur J Pharmacol 2004; 501:1–8.

    Article  PubMed  CAS  Google Scholar 

  89. Mackins CJ, Kano S, Seyedi N et al. Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrine release and arrhythmias in ischemia/reperfusion. J Clin Invest 2006; 116:1063–1070.

    Article  PubMed  CAS  Google Scholar 

  90. Kano S, Tyler E, Salazar-Rodriguez M et al. Immediate hypersensitivity elicits renin release from cardiac mast cells. Int Arch Allergy Immunol 2008; 146:71–75.

    Article  PubMed  CAS  Google Scholar 

  91. Knight PA, Wright SH, Lawrence CE et al. Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. J Exp Med 2000; 192:1849–1856.

    Article  PubMed  CAS  Google Scholar 

  92. Wastling JM, Scudamore CL, Thornton EM et al. Constitutive expression of mouse mast cell protease-1 in normal Balb/c mice and its up-regulation during intestinal nematode infection. Immunology 1997; 90:308–313.

    Article  PubMed  CAS  Google Scholar 

  93. Knight PA, Wright SH, Brown JK et al. Enteric expression of the integrin αvβ6 is essential for nematode-induced mucosal mast cell hyperplasia and expression of the granule chymase, mouse mast cell protease-1. Am J Pathol 2002; 161:771–779.

    Article  PubMed  CAS  Google Scholar 

  94. Pemberton AD, Wright SH, Knight PA et al. Anaphylactic release of mucosal mast cell granule proteases: role of serpins in the differential clearance of mouse mast cell proteases-1 and-2. J Immunol 2006; 176:899–904.

    PubMed  CAS  Google Scholar 

  95. Groschwitz KR, Ahrens R, Osterfeld H et al. Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism. Proc Natl Acad Sci USA 2009; 106:22381–22386.

    Article  PubMed  CAS  Google Scholar 

  96. Jacob C, Yang PC, Darmoul D et al. Mast cell tryptase controls paracellular permeability of the intestine. Role of PAR-2 and beta-arrestins. J Biol Chem 2005; 280:31936–31948.

    Article  PubMed  CAS  Google Scholar 

  97. Mellon MB, Frank BT, Fang KC. Mast cell α-chymase reduces ige recognition of birch pollen profilin by cleaving antibody-binding epitopes. J Immunol 2002; 168:290–297.

    PubMed  CAS  Google Scholar 

  98. Balzar S, Chu HW, Strand M et al. Relationship of small airway chymase-positive mast cells and lung function in severe asthma. Am J Respir Crit Care Med 2005; 171:431–439.

    Article  PubMed  Google Scholar 

  99. Waern I, Jonasson S, Hjoberg J et al. Mouse mast cell protease 4 is the major chymase in murine airways and has a protective role in allergic airway inflammation. J Immunol 2009; 183:6369–6376.

    Article  PubMed  CAS  Google Scholar 

  100. Lazaar AL, Plotnick MI, Kucich U et al. Mast cell chymase modifies cell-matrix interactions and inhibits mitogen-induced proliferation of human airway smooth muscle cells. J Immunol 2002; 169:1014–1020.

    PubMed  CAS  Google Scholar 

  101. Leskinen M, Wang Y, Leszczynski D et al. Mast cell chymase induces apoptosis of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2001; 21:516–522.

    Article  PubMed  CAS  Google Scholar 

  102. Leskinen MJ, Heikkila HM, Speer MY et al. Mast cell chymase induces smooth muscle cell apoptosis by disrupting nf-kappab-mediated survival signaling. Exp Cell Res 2006; 312:1289–1298.

    Article  PubMed  CAS  Google Scholar 

  103. Sun J, Zhang J, Lindholt JS et al. Critical role of mast cell chymase in mouse abdominal aortic aneurysm formation. Circulation 2009; 120:973–982.

    Article  PubMed  CAS  Google Scholar 

  104. McNeil HP, Adachi R, Stevens RL. Mast cell-restricted tryptases: Structure and function in inflammation and pathogen defense. J Biol Chem 2007; 282:20785–20789.

    Article  PubMed  CAS  Google Scholar 

  105. Malaviya R, Ross E, Jakschik BA et al. Mast cell degranulation induced by type 1 fimbriated Escherichia coli in mice. J Clin Invest 1994; 93:1645–1653.

    Article  PubMed  CAS  Google Scholar 

  106. Malaviya R, Ikeda T, Ross E et al. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNFα. Nature 1996; 381:77–80.

    Article  PubMed  CAS  Google Scholar 

  107. Sutherland RE, Olsen JS, McKinstry A et al. Mast cell IL-6 improves survival from Klebsiella pneumonia and sepsis by enhancing neutrophil killing. J Immunol 2008; 181:5598–5605.

    PubMed  CAS  Google Scholar 

  108. Huang C, Friend DS, Qiu WT et al. Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6. J Immunol 1998; 160:1910–1919.

    PubMed  CAS  Google Scholar 

  109. Thakurdas SM, Melicoff E, Sansores-Garcia L et al. The mast cell-restricted tryptase mMCP-6 has a critical immunoprotective role in bacterial infections. J Biol Chem 2007; 282:20809–20815.

    Article  PubMed  CAS  Google Scholar 

  110. Huang C, De Sanctis GT, O’Brien PJ et al. Evaluation of the substrate specificity of human mast cell tryptase βI and demonstration of its importance in bacterial infections of the lung. J Biol Chem 2001; 276:26276–26284.

    Article  PubMed  CAS  Google Scholar 

  111. Soto D, Malmsten C, Blount JL et al. Genetic deficiency of human mast cell α-tryptase. Clin Exp Allergy 2002; 32:1000–1006.

    Article  PubMed  CAS  Google Scholar 

  112. Trivedi NN, Raymond WW, Caughey GH. Chimerism, point mutation and truncation dramatically transformed mast cell δ-tryptases during primate evolution. J Allergy Clin Immunol 2008;121:1262–1268.

    Article  PubMed  CAS  Google Scholar 

  113. Trivedi NN, Tamraz B, Chu C et al. Human subjects are protected from mast cell tryptase deficiency despite frequent inheritance of loss-of-function mutations. J Allergy Clin Immunol 2009; 124:1099–1105.

    Article  PubMed  CAS  Google Scholar 

  114. Schwartz LB, Atkins PC, Bradford TR et al. Release of tryptase together with histamine during the immediate cutaneous response to allergen. J Allergy Clin Immunol 1987; 80:850–855.

    Article  PubMed  CAS  Google Scholar 

  115. Shalit M, Schwartz LB, Golzar N et al. Release of histamine and tryptase in vivo after prolonged cutaneous challenge with allergen in humans. J Pharmacol Exp Ther 1988; 244:133–137.

    Google Scholar 

  116. Wenzel SE, Fowler A, Schwartz LB. Activation of pulmonary mast cells by bronchoalveolar allergen challenge. Am Rev Respir Dis 1988; 137:1002–1008.

    PubMed  CAS  Google Scholar 

  117. Woodruff PG, Modrek B, Choy DF et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med 2009; 180:388–395.

    Article  PubMed  CAS  Google Scholar 

  118. Oh S-W, Pae CI, Lee D-K et al. Tryptase inhibition blocks airway inflammation in a mouse asthma model. J Immunol 2002; 168:1992–2000.

    PubMed  CAS  Google Scholar 

  119. Chen CL, Wang SD, Zeng ZY et al. Serine protease inhibitors nafamostat mesilate and gabexate mesilate attenuate allergen-induced airway inflammation and eosinophilia in a murine model of asthma. J Allergy Clin Immunol 2006; 118:105–112.

    Article  PubMed  CAS  Google Scholar 

  120. Mori S, Itoh Y, Shinohata R et al. Nafamostat mesilate is an extremely potent inhibitor of human tryptase. J Pharmacol Sci 2003; 92:420–423.

    Article  PubMed  CAS  Google Scholar 

  121. Sommerhoff CP, Sollner C, Mentele R et al. A kazal-type inhibitor of human mast cell tryptase: isolation from the medicinal leech Hirudo medicinalis, characterization and sequence analysis. Biol Chem Hoppe-Seyler 1994; 375:685–694.

    Article  PubMed  CAS  Google Scholar 

  122. Krishna MT, Chauhan A, Little L et al. Inhibition of mast cell tryptase by inhaled APC366 attenuates allergen-induced late-phase airway obstruction in asthma. J Allergy Clin Immunol 2001;107:1039–1045.

    Article  PubMed  CAS  Google Scholar 

  123. Erin EM, Leaker BR, Zacharasiewicz A et al. Effects of a reversible β-tryptase and trypsin inhibitor (RWJ-58643) on nasal allergic responses. Clin Exp Allergy 2006; 36:458–464.

    Article  PubMed  CAS  Google Scholar 

  124. He S, Aslam A, Gaca MD et al. Inhibitors of tryptase as mast cell-stabilizing agents in the human airways: effects of tryptase and other agonists of PAR-2 on histamine release. J Pharmacol Exp Ther 2004; 309:119–126.

    Article  PubMed  CAS  Google Scholar 

  125. He S, Gaca MD, Walls AF. A role for tryptase in the activation of human mast cells: modulation of histamine release by tryptase and inhibitors of tryptase. J Pharmacol Exp Ther 1998; 286:289–297.

    PubMed  CAS  Google Scholar 

  126. Molinari JF, Moore WR, Clark J et al. Role of tryptase in immediate cutaneous responses in allergic sheep. J Appl Physiol 1995; 79:1966–1970.

    PubMed  CAS  Google Scholar 

  127. Clark JM, Abraham WM, Fishman CE et al. Tryptase inhibitors block allergen-induced airway and inflammatory responses in allergic sheep. Am J Resp Crit Care Med 1995; 152:2076–2083.

    PubMed  CAS  Google Scholar 

  128. Wright CD, Havill AM, Middleton SC et al. Inhibition of allergen-induced pulmonary responses by the selective tryptase inhibitor 1,5-bis-[4-[(3-carbamimidoyl-benzenesulfonylamino)-methyl]-phenoxy]-pen tane (amg-126737). Biochem Pharmacol 1999; 58:1989–1996.

    Article  PubMed  CAS  Google Scholar 

  129. Rice KD, Wang VR, Gangloff AR et al. Dibasic inhibitors of human mast cell tryptase. Part 2:Structure-activity relationships and requirements for potent activity. Bioorg Med Chem Lett 2000; 10:2361–2366.

    Article  PubMed  CAS  Google Scholar 

  130. Cairns JA. Inhibitors of mast cell tryptase β as therapeutics for the treatment of asthma and inflammatory disorders. Pulm Pharmacol Ther 2005; 18:55–66.

    Article  PubMed  CAS  Google Scholar 

  131. Ruoss SJ, Hartmann T, Caughey GH. Mast cell tryptase is a mitogen for cultured fibroblasts. J Clin Invest 1991; 88:493–499.

    Article  PubMed  CAS  Google Scholar 

  132. Hartmann T, Ruoss SJ, Caughey GH. Modulation of thrombin and thrombin receptor peptide mitogenicity by human lung mast cell tryptase. Am J Physiol Lung Cell Mol Physiol 1994; 267:L113–L119.

    CAS  Google Scholar 

  133. Gruber BL, Kew RR, Jelaska A et al. Human mast cells activate fibroblasts: tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis. J Immunol 1997; 158:2310–2317.

    PubMed  CAS  Google Scholar 

  134. Cairns JA, Walls AF. Mast cell tryptase stimulates synthesis of type I collagen in human lung fibroblasts. J Clin Invest 1997; 99:1313–1321.

    Article  PubMed  CAS  Google Scholar 

  135. Brown JK, Tyler CL, Jones CA et al. Tryptase, the dominant secretory granular protein in human mast cells, is a potent mitogen for cultured dog tracheal smooth muscle cells. Am J Resp Cell Mol Biol 1995; 13:227–236.

    CAS  Google Scholar 

  136. Blair RJ, Meng H, Marchese MJ et al. Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. J Clin Invest 1997; 99:2691–2700.

    Article  PubMed  CAS  Google Scholar 

  137. McNeil HP, Shin K, Campbell IK et al. The mouse mast cell-restricted tetramer-forming tryptases mMCP6 and mMCP7 are critical mediators in inflammatory arthritis. Arthritis Rheum 2008; 58:2338–2346.

    Article  PubMed  Google Scholar 

  138. Shin K, Nigrovic PA, Crish J et al. Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes. J Immunol 2009; 182:647–656.

    PubMed  CAS  Google Scholar 

  139. Buckley MG, Walters C, Wong WM et al. Mast cell activation in arthritis: detection of α-and β-tryptase, histamine and eosinophil cationic protein in synovial fluid. Clin Sci (Colch) 1997; 93:363–370.

    CAS  Google Scholar 

  140. Lee DM, Friend DS, Gurish MF et al. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 2002; 297:1689–1692.

    Article  PubMed  CAS  Google Scholar 

  141. Nigrovic PA, Binstadt BA, Monach PA et al. Mast cells contribute to initiation of autoantibody-mediated arthritis via IL-1. Proc Natl Acad Sci USA 2007; 104:2325–2330.

    Article  PubMed  CAS  Google Scholar 

  142. Nigrovic PA, Lee DM. Synovial mast cells: role in acute and chronic arthritis. Immunol Rev 2007; 217:19–37.

    Article  PubMed  CAS  Google Scholar 

  143. Zhou JS, Xing W, Friend DS et al. Mast cell deficiency in KitW-sh mice does not impair antibody-mediated arthritis. J Exp Med 2007; 204:2797–2802

    Article  PubMed  CAS  Google Scholar 

  144. Balázs M, Illyés G, Vadász G. Mast cells in ulcerative colitis. Quantitative and ultrastructural studies. Virchows Arch 1989; 57:353–360.

    Article  Google Scholar 

  145. Fox CC, Lazenby AJ, Moore WC et al. Enhancement of human intestinal mast cell mediator release in active ulcerative colitis. Gastroenterology 1990; 99:119–124.

    PubMed  CAS  Google Scholar 

  146. Tremaine WJ, Brzezinski A, Katz JA et al. Treatment of mildly to moderately active ulcerative colitis with atryptase inhibitor (APC2059): an open-label pilot study. Aliment Pharmacol Ther 2002; 16:407–413.

    Article  PubMed  CAS  Google Scholar 

  147. Isozaki Y, Yoshida N, Kuroda M et al. Anti-tryptase treatment using nafamostat mesilate has a therapeutic effect on experimental colitis. Scand J Gastroenterol 2006; 41:944–953.

    Article  PubMed  CAS  Google Scholar 

  148. Rubinstein I, Nadel JA, Graf PD et al. Mast cell chymase potentiates histamine-induced wheal formation in the skin of ragweed-allergic dogs. J Clin Invest 1990; 86:555–559.

    Article  PubMed  CAS  Google Scholar 

  149. Briggaman RA, Schechter NM, Fraki J et al. Degradation of the epidermal-dermal junction by proteolytic enzymes from human skin and human polymorphonuclear leukocytes. J Exp Med 1984; 160:1027–1042.

    Article  PubMed  CAS  Google Scholar 

  150. Sommerhoff CP, Caughey GH, Finkbeiner WE et al. Mast cell chymase. A potent secretagogue for airway gland serous cells. J Immunol 1989; 142:2450–2456.

    PubMed  CAS  Google Scholar 

  151. Sommerhoff CP, Nadel JA, Basbaum CB et al. Neutrophil elastase and cathepsin G stimulate secretion from cultured bovine airway gland serous cells. J Clin Invest 1990; 85:682–689.

    Article  PubMed  CAS  Google Scholar 

  152. Matin R, Tam EK, Nadel JA et al. Distribution of chymase-containing mast cells in human bronchi. J Histochem Cytochem 1992; 40:781–786.

    Article  PubMed  CAS  Google Scholar 

  153. Raymond WW, Waugh Ruggles S, Craik CS et al. Albumin is a substrate of human chymase: prediction by combinatorial peptide screening and development of a selective inhibitor based on the albumin cleavage site. J Biol Chem 2003; 278:34517–34524.

    Article  PubMed  CAS  Google Scholar 

  154. Muramatsu M, Katada J, Hattori M et al. Chymase mediates mast cell-induced angiogenesis in hamster sponge granulomas. Eur J Pharmacol 2000; 402:181–191.

    Article  PubMed  CAS  Google Scholar 

  155. Abonia JP, Friend DS, Austen WG Jr et al. Mast cell protease 5 mediates ischemia-reperfusion injury of mouse skeletal muscle. J Immunol 2005; 174:7285–7291.

    PubMed  CAS  Google Scholar 

  156. Sun J, Sukhova GK, Yang M et al. Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. J Clin Invest 2007; 117:3359–3368.

    Article  PubMed  CAS  Google Scholar 

  157. Shiota N, Fukamizu A, Takai S et al. Activation of angiotensin II-forming chymase in the cardiomyopathic hamster heart. J Hypertens 1997; 15:431–440.

    Article  PubMed  CAS  Google Scholar 

  158. Takai S, Shiota N, Kobayashi S et al. Induction of chymase that forms angiotensin II in the monkey atherosclerotic aorta. FEBS Lett 1997; 412:86–90.

    Article  PubMed  CAS  Google Scholar 

  159. Takai S, Yuda A, Jin D et al. Inhibition of chymase reduces vascular proliferation in dog grafted veins. FEBS Lett 2000; 467:141–144.

    Article  PubMed  CAS  Google Scholar 

  160. Nishimoto M, Takai S, Kim S et al. Significance of chymase-dependent angiotensin II-forming pathway in the development of vascular proliferation. Circulation 2001; 104:1274–1279.

    Article  PubMed  CAS  Google Scholar 

  161. Wolters PJ, Laig-Webster M, Caughey GH. Dipeptidyl peptidase I cleaves matrix-associated proteins and is expressed mainly by mast cells in normal dog airways. Am J Respir Cell Mol Biol 2000; 22:183–190.

    PubMed  CAS  Google Scholar 

  162. Wolters PJ, Raymond WW, Blount JL et al. Regulated expression, processing and secretion of dog mast cell dipeptidyl peptidase I. J Biol Chem 1998; 273:15514–15520.

    Article  PubMed  CAS  Google Scholar 

  163. Turk D, Janjic V, Stern I et al. Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. EMBO J 2001; 20:6570–6582.

    Article  PubMed  CAS  Google Scholar 

  164. McGuire MJ, Lipsky PE, Thiele DL. Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I. J Biol Chem 1993; 268:2458–2467.

    PubMed  CAS  Google Scholar 

  165. Pham CT, Ley TJ. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci USA 1999; 96:8627–8632.

    Article  PubMed  CAS  Google Scholar 

  166. Wolters PJ, Pham CT, Muilenburg DJ et al. Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice. J Biol Chem 2001; 276:18551–18556.

    Article  PubMed  CAS  Google Scholar 

  167. Caughey GH. A pulmonary perspective on GASPIDs: Granule-associated serine peptidases of immune defense. Curr Resp Med Rev 2006; 2:263–277.

    CAS  Google Scholar 

  168. Adkison AM, Raptis SZ, Kelley DG et al. Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest 2002; 109:363–371.

    PubMed  CAS  Google Scholar 

  169. Pham CT, Ivanovich JL, Raptis SZ et al. Papillon-Lefevre syndrome: correlating the molecular, cellular and clinical consequences of cathepsin C/dipeptidyl peptidase I deficiency in humans. J Immunol 2004; 173:7277–7281.

    PubMed  CAS  Google Scholar 

  170. Vanderslice P, Ballinger SM, Tam EK et al. Human mast cell tryptase: multiple cDNAs and genes reveal amultigene serine protease family. Proc Natl Acad Sci USA 1990; 87:3811–3815.

    Article  PubMed  CAS  Google Scholar 

  171. Vanderslice P, Craik CS, Nadel JA et al. Molecular cloning of dog mast cell tryptase and a related protease: structural evidence of aunique mode of serine protease activation. Biochemistry 1989; 28:4148–4155.

    Article  PubMed  CAS  Google Scholar 

  172. Sakai K, Ren S, Schwartz LB. A novel heparin-dependent processing pathway for human tryptase: autocatalysis followed by activation with dipeptidyl peptidase I. J Clin Invest 1996; 97:988–995.

    Article  PubMed  CAS  Google Scholar 

  173. Henningsson F, Yamamoto K, Saftig P et al. A role for cathepsin E in the processing of mast-cell carboxypeptidase A. J Cell Sci 2005; 118:2035–2042.

    Article  PubMed  CAS  Google Scholar 

  174. Henningsson F, Wolters P, Chapman HA et al. Mast cell cathepsins C and S control levels of carboxypeptidase A and the chymase, mouse mast cell protease 5. Biol Chem 2003; 384:1527–1531.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Caughey, G.H. (2011). Mast Cell Proteases as Protective and Inflammatory Mediators. In: Gilfillan, A.M., Metcalfe, D.D. (eds) Mast Cell Biology. Advances in Experimental Medicine and Biology, vol 716. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9533-9_12

Download citation

Publish with us

Policies and ethics