Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 22))

Abstract

The ears of all vertebrate species use sensory hair cells (Fig. 3.1) to convert mechanical energy to electrical signals compatible with the nervous system. However, although the basic structure of hair cells is ubiquitous among the vertebrates and hair cells are also found in the lateral line of fishes and aquatic amphibians, a growing body of literature has demonstrated considerable heterogeneity in morphology and physiology in different taxa and even within different end organs of the same species. Although far less is known about the functional diversity that accompanies the differences in structure and physiology, it is increasingly likely that these differences reflect the ability to respond to different types of signals and/or to process signals in different ways before a neurotransmitter is released and a signal is sent to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ades HW, Engström H (1974) Anatomy of the inner ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology: Auditory System: Anatomy Physiology (Ear). Berlin: Springer-Verlag, pp. 125–158.

    Google Scholar 

  • Aitkin LM (1995) The auditory neurobiology of marsupials: a review. Hear Res 82:257–266.

    Article  PubMed  CAS  Google Scholar 

  • Art JJ, Goodman MB (1996) Ionic conductances and hair cell tuning in the turtle cochlea. Ann NY Acad Sci 781:103–122.

    Article  PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas S, Muskavitch MA, Yedvobnick B (1983) Molecular cloning of Notch, a locus affecting neurogenesis in Drosophila melanogaster. Proc Natl Acad Sci USA 80:1977–1981.

    Article  PubMed  CAS  Google Scholar 

  • Ashmore JF (1987) A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol 388:323–347.

    PubMed  CAS  Google Scholar 

  • Baatrup E (1981) Primary sensory cells in the skin of amphioxus (Branchiostoma lanceolatum (P)). Acta Zool 62:147–157.

    Article  Google Scholar 

  • Bardack D (1998) Relationships of living and fossil hagfishes. In: Jørgensen JM, Lomholt JP, Weber RE, Malte H (eds) The Biology of Hagfishes. London: Chapman and Hall, pp. 3–14.

    Chapter  Google Scholar 

  • Baron M, Aslam H, Flasza M, Fostier M, Higgs JE, Mazaleyrat SL, Wilkin MB (2002) Multiple levels of Notch signal regulation (review). Mol Membr Biol 19:27–38.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Arie N, Bellen HJ, Armstrong OL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math 1 is essential for genesis of cerebellar granule neurons. Nature 390:169–172.

    Article  PubMed  CAS  Google Scholar 

  • Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY (2001) Proprioceptor pathway development is dependent on Math l. Neuron 30:411–422.

    Article  PubMed  CAS  Google Scholar 

  • Bone Q, Ryan KP (1978) Cupular sense organs in Ciona (Tunicata: Ascidiacea). J Zool Lond 186:417–429.

    Article  Google Scholar 

  • Braun CB (1996) The sensory biology of the living jawless fishes: a phylogenetic assessment. Brain Behav Evol 48:262–276.

    Article  PubMed  CAS  Google Scholar 

  • Braun CB, Northcutt RG (1997) The lateral line system of hagfishes (Craniata: Myxinoida). Acta Zool 78:247–268.

    Article  Google Scholar 

  • Brichta AM, Goldberg JM (1996) Afferent and efferent responses from morphological fiber classes in the turtle posterior crista. Ann NY Acad Sci 781:183–195.

    Article  PubMed  CAS  Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196.

    Article  PubMed  CAS  Google Scholar 

  • Bruns V, Schmieszek E (1980) Cochlear innervation in the greater horseshoe bat: demonstration of an acoustic fovea. Hear Res 3:27–43.

    Article  PubMed  CAS  Google Scholar 

  • Budelmann BU (1988) Morphological diversity of equilibrium receptor systems in aquatic vertebrates. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 757–782.

    Chapter  Google Scholar 

  • Budelmann BU (1992a) Hearing in crustaceans. In: Webster, DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 131–139.

    Chapter  Google Scholar 

  • Budelmann BU (1992b) Hearing in nonarthropod invertebrates. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 141–155.

    Chapter  Google Scholar 

  • Budelmann BU, Thies G (1977) Secondary sensory cells in the gravity receptor system of the statocysts of Octopus vulgaris. Cell Tissue Res 182:93–98.

    Article  PubMed  CAS  Google Scholar 

  • Budelmann BU, Williamson R (1994) Directional sensitivity of hair cell afferents in the Octopus statocysts. J Exp Biol 187:245–259.

    PubMed  CAS  Google Scholar 

  • Budelmann BU, Sachse M, Staudigl M (1987) The angular acceleration receptor system of Octopus vulgaris, Sepia officinalis, and Loligo vulgaris. Brain Res 56:25–41.

    Article  Google Scholar 

  • Burighel P, Lane NJ, Fabio G, Stefano T, Zaniolo G, Camevali MDC, Manni L (2003) Novel, secondary sensory cell organ in ascidians: in search of the ancestor of the vertebrate lateral line. J Comp Neurol 461:236–249.

    Article  PubMed  Google Scholar 

  • Caldwell JC, Eberl DF (2002) Towards a molecular understanding of Drosophila hearing. J Neurobiol 53:172–189.

    Article  PubMed  CAS  Google Scholar 

  • Carroll RL (1988) Vertebrate Paleontology and Evolution. New York: Freeman.

    Google Scholar 

  • Chandler JP (1984) Light and electron microscopic studies of the basilar papilla in the duck, Anas platyrhynchos. I. The hatchling. J Comp Neurol 222:506–522.

    Article  PubMed  CAS  Google Scholar 

  • Chang JSY, Popper AN, Saidel WM (1992) Heterogeneity of sensory hair cells in a fish ear. J Comp Neurol 324:621–640.

    Article  PubMed  CAS  Google Scholar 

  • Cochran SL, Correia MJ (1995) Functional support of glutamate as a vestibular hair cell transmitter in an amniote. Brain Res 670:321–325.

    Article  PubMed  CAS  Google Scholar 

  • Conway Morris S (2000) The Cambrian “explosion”: slow-fuse or megatonnage? Proc Natl Acad Sci USA 97:4426–4429.

    Article  Google Scholar 

  • Correia MJ, Lang DG (1990) An electrophysiological comparison of solitary type I and type II vestibular hair cells. Neurosci Lett 116:106–111.

    Article  PubMed  CAS  Google Scholar 

  • Correia MJ, Ricci AJ, Rennie KJ (1996) Filtering properties of vestibular hair cells: an update. Ann NY Acad Sci 781:138–149.

    Article  PubMed  CAS  Google Scholar 

  • Correia MJ, Rennie KJ, Koo P (2001) Return of potassium ion channels in regenerated hair cells: possible pathways and the role of intracellular calcium signaling. Ann NY Acad Sci 942:228–240.

    Article  PubMed  CAS  Google Scholar 

  • Cortopassi KA, Lewis ER (1998) A comparison of the linear tuning properties of two classes of axons in the bullfrog lagena. Brain Behav Evol 51:331–348.

    Article  PubMed  CAS  Google Scholar 

  • Corwin JT (1977) Morphology of the macular neglecta in sharks of the genus Carcharhinus. J Morphol 152:341–362.

    Article  PubMed  CAS  Google Scholar 

  • Dallos P (1996) Overview: cochlear neurobiology. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 1–43.

    Chapter  Google Scholar 

  • Dallos P, Evans BN, Hallworth R (1991) Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells. Nature 350:155–157.

    Article  PubMed  CAS  Google Scholar 

  • Dallos P, He DZZ, Lin X, Sziklai I, Mehta S, Evans BN (1997) Acetylcholine, outer hair cell electromotility, and the cochlear amplifier. J Neurosci 17:2212–2226.

    PubMed  CAS  Google Scholar 

  • Devau G (2000) Glycine induced calcium concentration changes in vestibular type I sensory cells. Hear Res 140:126–136.

    Article  PubMed  CAS  Google Scholar 

  • Devau G, Lehouelleur J, Sans A (1993) Glutamate receptors on type I vestibular hair cells of guinea pig. Eur J Neurosci 5:1210–1217.

    Article  PubMed  CAS  Google Scholar 

  • Duggan A, García-Añoveros J, Corey DP (2000) Insect mechanoreception: what a long, strange TRP it’s been. Curr Biol 10:R384–R387.

    Article  PubMed  CAS  Google Scholar 

  • Eberl DF (1999) Feeling the vibes: chordotonal mechanisms in insect hearing. Curr Opin Neurobiol 9:389–393.

    Article  PubMed  CAS  Google Scholar 

  • Eddison M, Le Roux I, Lewis J (2000) Notch signaling in the development of the inner ear: lessons from Drosophila. Proc Natl Acad Sci USA 97:11692–11699.

    Article  PubMed  CAS  Google Scholar 

  • Ekström von Lubitz DKJ (1981) Ultrastructure of the lateral-line sense organs of the ratfish, Chimaera monstrosa. Cell Tissue Res 215:651–665.

    Google Scholar 

  • Engström H, Wersäll J (1958) The ultrastructural organization of the organ of Corti and of the vestibular sensory epithelia. Exp Cell Res Suppl 5:460–492.

    Google Scholar 

  • Erostegui C, Norris CH, Bobbin RP (1994) In vitro pharmacologic characterization of a cholinergic receptor on outer hair cells. Hear Res 74:135–147.

    Article  PubMed  CAS  Google Scholar 

  • Fain GL, Matthews HR, Cornwall MC, Koutalos Y (2001) Adaptation in vertebrate photoreceptors. Physiol Rev 81:117–151.

    PubMed  CAS  Google Scholar 

  • Fernald RD (2000) Evolution of eyes. Curr Opin Neurobiol 10:444–450.

    Article  PubMed  CAS  Google Scholar 

  • Fettiplace R (1987) Electrical tuning of hair cells in the inner ear. Trends Neurosci 10: 421–425.

    Article  Google Scholar 

  • Firbas W, Müller G (1983) The efferent innervation of the avian cochlea. Hear Res 10: 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP (1992) Quantitative analysis of the innervation of the chicken basilar papilla. Hear Res 61:167–178.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP (1994a) General pattern and morphological specializations of the avian cochlea. Scan Microsc 8:351–364.

    CAS  Google Scholar 

  • Fischer FP (1994b) Quantitative TEM analysis of the barn owl basilar papilla. Hear Res 73:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP (1998) Hair cell morphology and innervation in the basilar papilla of the emu (Dromaius novaehollandiae). Hear Res 121:112–124.

    Article  PubMed  CAS  Google Scholar 

  • Flock Å (1964) Structure of the macula utriculi with special reference to directional interplay of sensory responses as revealed by morphological polarization. J Cell Biol 22:413–431.

    Article  PubMed  CAS  Google Scholar 

  • Forey P, Janvier P (1993) Agnathans and the origin of jawed vertebrates. Nature 361: 129–134.

    Article  Google Scholar 

  • Forge A (1991) Structural features of the lateral walls in mammalian cochlear outer hair cells. Cell Tissue Res 265:473–483.

    Article  PubMed  CAS  Google Scholar 

  • Forge A, Davies S, Zajic G (1991) Assessment of ultrastructure in isolated cochlear hair cells using a procedure for rapid freezing before freeze-fracture and deep-etching. J Neurocytol 20:471–484.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B (1987) Inner ear of the coelacanth fish Latimeria has tetrapod affinities. Nature 327:153–154.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B, Beisel KW (2001) Evolution and development of the vertebrate ear. Brain Res Bull 55:711–721.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B, Wahnschaffe U (1987) Electron microscopical evidence for common inner ear and lateral line efferents in urodeles. Neurosci Lett 81:48–52.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs PA, Murrow BW (1992a) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J Neurosci 12:800–809.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Murrow BW (1992b) A novel cholinergic receptor mediates inhibition of chick cochlear hair cells. Proc R Soc Lond B 248:35–40.

    Article  CAS  Google Scholar 

  • Furukawa T, Ishii Y (1967) Neurophysiological studies on hearing in goldfish. J Neurophysiol 30: 1377–1403.

    PubMed  CAS  Google Scholar 

  • Garcífa-Añoveros J, Corey DP (1997) The molecules of mechanosensation. Annu Rev Neurosci 20:567–594.

    Article  Google Scholar 

  • Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 15:371–377.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie PG, Corey DP (1997) Myosin and adaptation by hair cells. Neuron 19:955–958.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O, Manley GA (2000) The hearing organ of birds and Crocodilia. In: Dooling RE, Fay RR, Popper AN (eds) Comparative Hearing: Birds and Reptiles. New York: Springer-Verlag, pp. 70–138.

    Chapter  Google Scholar 

  • Goodman MB, Art JJ (1996) Variations in the ensemble of potassium currents underlying resonance in turtle hair cells. J Physiol 497:395–412.

    PubMed  CAS  Google Scholar 

  • Göpfert MC, Robert D (2003) Motion generation by Drosophila mechanosensory neurons. Proc Natl Acad Sci USA 100:5514–5519.

    Article  PubMed  CAS  Google Scholar 

  • Goulding SE, zur Lage P, Jarman AP (2000) amos, a proneural gene for Drosophila olfactory sense organs that is regulated by lozenge. Neuron 25:69–78.

    Article  PubMed  CAS  Google Scholar 

  • Hackney CM, Fettiplace R, Furness DN (1993) The functional morphology of stereo-ciliary bundles on turtle cochlear hair cells. Hear Res 69:163–175.

    Article  PubMed  CAS  Google Scholar 

  • Hartline PH (1971a) Physiological basis for detection of sound and vibration in snakes. J Exp Biol 54:349–371.

    PubMed  CAS  Google Scholar 

  • Hartline PH (1971b) Mid-brain responses of the auditory and somatic vibration systems in snakes. J Exp Biol 54:373–390.

    PubMed  CAS  Google Scholar 

  • Hartline PH, Campbell HW (1969) Auditory and vibratory responses in the midbrains of snakes. Science 163:1221–1223.

    Article  PubMed  CAS  Google Scholar 

  • Hillman DE (1976) Morphology of the peripheral and central vestibular systems. In: Llinas R, Precht W (eds) Frog Neurobiology. Berlin: Springer-Verlag, pp. 452–480.

    Chapter  Google Scholar 

  • Holland ND, Yu J-K (2002) Epidermal receptor development and sensory pathways in vitally stained amphioxus (Branchiostoma floridae). Acta Zool 83:309–319.

    Article  Google Scholar 

  • Holt JR, Eatock RA (1995) Inwardly rectifying currents of saccular hair cells from the leopard frog. J Neurophysiol 73:1484–1502.

    PubMed  CAS  Google Scholar 

  • Hoshino T (1975) An electron microscopic study of the otolithic maculae of the lamprey (Entosphenus japonicus). Acta Otolaryngol 80:43–53.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth AJ (1985) The cellular basis of hearing: the biophysics of hair cells. Science 230:745–752.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Choe Y, Mehta AD, Martin P (2000) Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc Natl Acad Sci USA 97:11765–11772.

    Article  PubMed  CAS  Google Scholar 

  • Jarman AP (2002) Studies of mechanosensation using the fly. Hum Mol Genet 11:1215–1218.

    Article  PubMed  CAS  Google Scholar 

  • Jarman AP, Grau Y, Jan LY, Jan YN (1993) atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73:1307–1321.

    Article  PubMed  CAS  Google Scholar 

  • Jarman AP, Grell EH, Ackerman L, Jan LY, Jan YN (1994) atonal is the proneural gene for Drosophila photoreceptors. Nature 369:398–400.

    Article  PubMed  CAS  Google Scholar 

  • Jarvik E (1980) Basic Structure and Evolution of Vertebrates, vol 1. London: Academic Press.

    Google Scholar 

  • Jones EMC, Gray-Keller M, Fettiplace R (1999) The role of Ca2+-activated K+ channel spliced variants in the tonotopic organization of the turtle cochlea. J Physiol 518:653–665.

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen JM (1989) Evolution of octavolateralis sensory cells. In: Coombs S, Gömer P, Münz H (eds) The Mechanosensory Lateral Line. New York: Springer-Verlag, pp. 115–146.

    Chapter  Google Scholar 

  • Jørgensen JM, Shichiri M, Geneser FA (1998) Morphology of the hagfish inner ear. Acta Zool 79:251–256.

    Article  Google Scholar 

  • Keil TA (1997) Functional morphology of insect mechanoreceptors. Microsc Res Tech 39:506–531.

    Article  PubMed  CAS  Google Scholar 

  • Klinke R (1981) Neurotransmitters in the cochlea and the cochlear nucleus. Acta OtolaryngoI 91: 541–554.

    Article  CAS  Google Scholar 

  • Köppl C, Gleich O, Schwabedissen G, Siegl E, Manley GA (1998) Fine structure of the basilar papilla of the emu: implications for the evolution of hair-cell types. Hear Res 126:99–112.

    Article  PubMed  Google Scholar 

  • Köppl C, Wegscheider A, Gleich O, Manley GA (2000) A quantitative study of cochlear afferent axons in birds. Hear Res 139:123–143.

    Article  PubMed  Google Scholar 

  • Kros CJ, Marcotti W, van Netten SM, Self TJ, Libby RT, Brown SD, Richardson GP, Steel KP (2002) Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat Neurosci 5:41–47.

    Article  PubMed  CAS  Google Scholar 

  • Lacalli TC, Hou S (1999) A reexamination of the epithelial sensory cells of amphioxus (Branchiostoma). Acta Zool 80: 125–134.

    Article  Google Scholar 

  • Ladhams A, Pickles JO (1996) Morphology of the monotreme organ of Corti and macula lagena. J Comp Neurol 366:335–347.

    Article  PubMed  CAS  Google Scholar 

  • Lanford PJ, Popper AN (1996) Novel afferent terminal structure in the crista ampullaris of the goldfish, Carassius auratus. J Comp Neurol 366:572–579.

    Article  PubMed  CAS  Google Scholar 

  • Lanford PJ, Platt C, Popper AN (2000) Structure and function in the saccule of the goldfish (Carassius auratus): a model of diversity in the non-amniote ear. Hear Res 143:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Leake PA (1977) SEM observations of the cochlear duct in Caiman crocodilus. Scan Electron Microsc II:437–444.

    Google Scholar 

  • Lewis ER (1981) Evolution of inner-ear auditory apparatus in the frog. Brain Res 219: 149–155.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER, Li CW (1973) Evidence concerning the morphogenesis of saccular receptors in the bullfrog (Rana catesbeina). J Morphol 139:351–362.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER, Li CW (1975) Hair cell types and distributions in the otolithic and auditory organs of the bullfrog. Brain Res 83:35–50.

    Article  Google Scholar 

  • Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy. J Comp Neurol 301: 443–460.

    Article  PubMed  CAS  Google Scholar 

  • Lindeman HH (1969) Regional differences in sensitivity of the vestibular sensory epithelia to ototoxic antibiotics. Acta Otolaryngol 67:117–189.

    Article  Google Scholar 

  • Lowenstein O (1970) The electrophysiological study of the responses of the isolated labyrinth of the lamprey (Lampetra fluviatilis) to angular acceleration, tilting, and mechanical vibration. Proc R Soc Lond B 174:419–434.

    Article  PubMed  CAS  Google Scholar 

  • Löwenstein O (1971) Functional anatomy of the vertebrate gravity receptor system. In: Gordon SA, Cohen MJ (eds) Gravity and the Organism. Chicago: University of Chicago Press, pp. 253–261.

    Google Scholar 

  • Löwenstein O, Osborne MP (1964) Ultrastructure of the sensory hair cells in the labryinth of the ammocete larva of the lamprey, Lampetra fluviatilis. Nature 204:97.

    Article  Google Scholar 

  • Löwenstein O, Thornhill RA (1970) The labyrinth of Myxine, anatomy, ultrastructure and electrophysiology. Proc R Soc Lond B 176:21–42.

    Article  Google Scholar 

  • Löwenstein O, Osborne MP, Wersäll J (1964) Structure and innervation of the sensory epithelia of the labyrinth in the thornback ray (Raja clavata). Proc R Soc Lond B 160:1–12.

    Article  PubMed  Google Scholar 

  • Löwenstein O, Osborne MP, Thornhill RA (1968) The anatomy and ultrastructure of the labyrinth of the lamprey (Lampetra fluviatilis L.). Proc R Soc Lond B 170:113–134.

    Article  PubMed  Google Scholar 

  • Manley GA (1981) A review of the auditory physiology of the reptiles. Prog Sens Physiol 2:49–134.

    Article  Google Scholar 

  • Manley GA (1990) Peripheral Hearing Mechanisms in Reptiles and Birds. Heidelberg, Germany: Springer-Verlag.

    Book  Google Scholar 

  • Manley GA (1995) The avian hearing organ: a status report. In: Manley GA, Klump GM, Köppl C, Fastl H, Oeckinghaus H (eds) Advances in Hearing Research. Singapore: World Scientific, pp. 219–229.

    Google Scholar 

  • Manley GA (2000a) The hearing organs of lizards. In: Dooling RE, Fay RR, Popper AN (eds) Comparative Hearing: Birds and Reptiles. New York: Springer-Verlag, pp. 139–196.

    Chapter  Google Scholar 

  • Manley GA (2000b) Cochlear mechanisms from a phylogenetic viewpoint. Proc Nat Acad Sci USA 97:11736–11743.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (2001) Evidence for an active process and a cochlear amplifier in nonmammals. J Neurophysiol 86:541–549.

    PubMed  CAS  Google Scholar 

  • Manley GA, Köppl C (1998) Phylogenetic development of the cochlea and its innervation. Curr Opin Neurobiol 8:468–474.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Gleich O, Kaiser A, Brix J (1989) Functional differentiation of sensory cells in the avian auditory periphery. J Comp Physiol A 164:289–296.

    Article  Google Scholar 

  • Manley GA, Yates GK, Köppl C, Johnstone BM (1990) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: IV. Phase locking of auditory-nerve fibres. J Comp Physiol A 167:129–138.

    Article  Google Scholar 

  • Manley GA, Kirk D, Köppl C, Yates GK (2001) In vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards. Proc Nat Acad Sci USA 98:2826–2831.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Dunst C, Michaels RL, Fuchs PA (1997) Release sites and calcium channels in hair cells of the chick’s cochlea. J Neurosci 17:9133–9144.

    PubMed  CAS  Google Scholar 

  • Martini M, Rossi ML, Rubbini G, Rispoli G (2000) Calcium currents in hair cells isolated from semicircular canals of the frog. Biophys J 78:1240–1254.

    Article  PubMed  CAS  Google Scholar 

  • Masetto S, Correia MJ (1997) Ionic currents in regenerating avian vestibular hair cells. Int J Dev Neurosci 15:387–399.

    Article  PubMed  CAS  Google Scholar 

  • Masetto S, Russo G, Prigioni I (1994) Differential expression of potassium currents by hair cells in thin slices of frog crista ampullaris. J Neurophysiol 72:443–455.

    PubMed  CAS  Google Scholar 

  • Miller ME, Cross FR (2001) Cyclin specificity: how many wheels do you need on a unicycle? J Cell Sci 114:1811–1820.

    PubMed  CAS  Google Scholar 

  • Miller MR (1978) Scanning electron microscope studies of the papilla basilaris of some turtles and snakes. Am J Anat 151:409–436.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR (1980) The reptilian cochlear duct. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 169–204.

    Chapter  Google Scholar 

  • Miller MR (1985) Quantitative studies of auditory hair cells and nerves in lizards. J Comp Neurol 232:1–24.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR (1992) The evolutionary implications of the structural variations in the auditory papilla of lizards. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 463–488.

    Chapter  Google Scholar 

  • Miller MR, Beck J (1988) Auditory hair cell innervational patterns in lizards. J Comp Neurol 271:604–628.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR, Beck J (1990) Further serial transmission electron microscopy studies of auditory hair cell innervation in lizards and a snake. Am J Anat 188:175–184.

    Article  PubMed  CAS  Google Scholar 

  • Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82:429–472.

    PubMed  CAS  Google Scholar 

  • Mire P, Watson GM (1997) Mechanotransduction of hair bundles arising from multicellular complexes in anemones. Hear Res 113:224–234.

    Article  PubMed  CAS  Google Scholar 

  • Neumeister H, Budelmann BU (1997) Structure and function of the Nautilus statocysts. Philos Trans R Soc Lond B 352:1565–1588.

    Article  CAS  Google Scholar 

  • Nolo R, Abbott LA, Bellen HJ (2000) Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102:349–362.

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG, Gans C (1983) The genesis of neural crest and epidermal placodes: a reinterpretat ion of vertebrate origins. Q Rev Biol 58:1–58.

    Article  PubMed  CAS  Google Scholar 

  • Oliver D, He DZZ, Klöcker N, Ludwig J, Schulte U, Waldegger S, Ruppersberg SP, Dallos P, Fakler B (2001) Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science 292:2340–2343.

    Article  PubMed  CAS  Google Scholar 

  • Padian K, Chiappe LM (1998) The origin and early evolution of birds. Biol Rev 73: 1–42.

    Article  Google Scholar 

  • Perin P, Soto E, Vega R, Botta L, Masetto S, Zucca G, Valli P (2000) Calcium channels functional roles in the frog semicircular canal. Neuroreport 11:417–420.

    Article  PubMed  CAS  Google Scholar 

  • Peterson EH, Cotton JR, Grant JW (1996) Structural variation in ciliary bundles of the posterior semicircular canal. Quantitative anatomy and computational analysis. Ann NY Acad Sci 781:85–102.

    Article  PubMed  CAS  Google Scholar 

  • Phelps SM (2002) Like minds: evolutionary convergence in nervous systems. TREE 17: 158–159.

    Google Scholar 

  • Pickles JO, Brix J, Comis SD, Gleich O, Köppl C, Manley GA, Osborne MP (1989) The organization of tip links and stereocilia on hair cells of bird and lizards basilar papillae. Hear Res 41:31–41.

    Article  PubMed  CAS  Google Scholar 

  • Platt C, Popper AN (1984) Variation in length of ciliary bundles on hair cells along the macula of the sacculus in two species of teleost fishes. Scan Electron Microsc 4:1915–1924.

    Google Scholar 

  • Popper AN (1977) A scanning electron microscopic study of the sacculus and lagena in the ears of fifteen species of teleost fishes. J Morphol 153:397–417.

    Article  Google Scholar 

  • Popper AN (1981) Comparative scanning electron microscopic investigations of the sensory epithelia in the teleost sacculus and lagena. J Comp Neurol 200:357–374.

    Article  PubMed  CAS  Google Scholar 

  • Popper AN, Hoxter B (1987) Sensory and nonsensory ciliated cells in the ear of the sea lamprey, Petromyzon marinus. Brain Behav Evol 30:43–61.

    Article  PubMed  CAS  Google Scholar 

  • Popper AN, Saidel WM (1990) Variations in receptor cell innervation in the saccule of a teleost fish ear. Hear Res 46:211–228.

    Article  PubMed  CAS  Google Scholar 

  • Portman DS, Emmons SW (2000) The basic helix-loop-helix transcription factors LIN32 and HLH-2 function together in multiple steps of a C. elegans neuronal sublineage. Development 127:5415–5426.

    PubMed  CAS  Google Scholar 

  • Puschner B, Schacht J (1997) Calmodulin-dependent protein kinases mediate calcium-induced slow motility of mammalian outer hair cells. Hear Res 110:251–258.

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan K, Michael TH, Liang G, Hiel H, Fuchs PA (1999) A molecular mechanism for electrical tuning of cochlear hair cells. Science 283:215–217.

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan K, Michael TH, Fuchs PA (2000) ß subunits modulate alternatively spliced, large conductance, calcium-activated potassium channels of avian hair cells. J Neurosci 20:1675–1684.

    PubMed  CAS  Google Scholar 

  • Reiter ER, Liberman MC (1995) Efferent mediated protection from acoustic overexposure: relation to “slow” effects of olivocochlear stimulation. J Neurophysiol 73: 506–514.

    PubMed  CAS  Google Scholar 

  • Rennie KJ, Correia MJ (1994) Potassium currents in mammalian and avian isolated type I semicircular canal hair cells. J Neurophysiol 71:317–329.

    PubMed  CAS  Google Scholar 

  • Ricci Al, Gray-Keller M, Fettiplace R (2000) Tonotopic variations of calcium signalling in turtle auditory hair cells. J Physiol 524:423–436.

    Article  PubMed  CAS  Google Scholar 

  • Rüsch A, Eatock RA (1996) A delayed rectifier conductance in type I hair cells of the mouse utricle. J Neurophysiol 76:995–1004.

    PubMed  Google Scholar 

  • Rüsch A, Lysakowski A, Eatock RA (1998) Postnatal development of type I and type II hair cells in the mouse utricle: acquisition of voltage-gated conductances and differentiated morphology. J Neurosci 18:7487–7501.

    PubMed  Google Scholar 

  • Saidel WM, Crowder JA (1997) Expression of cytochrome oxidase in hair cells of the teleost utricle. Hear Res 109:63–77.

    Article  PubMed  CAS  Google Scholar 

  • Saidel WM, Presson JC, Chang IS (1990) S100 immunoreactivity identifies a subset of hair cells in the utricle and saccule of a fish. Hear Res 47:139–146.

    Article  PubMed  CAS  Google Scholar 

  • Saito K (1983) Fine structure of the sensory epithelium of guinea pig organ of Corti: subsurface cisternae and lamellar bodies in the outer hair cells. Cell Tissue Res 229: 457–481.

    Article  Google Scholar 

  • Sans A, Scarfone E (1996) Afferent calyces and type I hair cells during development. A new morphofunctional hypothesis. Ann NY Acad Sci 781:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Schrott-Fischer, A, Kammen-Jolly K, Scholtz AW, Gluckert R, Eybalin M (2002) Patterns of GABA-like immunoreactivity in efferent fibers of the human cochlea. Hear Res 174:75–85.

    Article  PubMed  CAS  Google Scholar 

  • Schulte E, Riehl R (1977) Elektronrnikroskopische Untersuchungen an der Oralcirren und der Haut von Branchiostoma lanceolatum. Helgoländer wissenschaftliche Meeresuntersuchungen 29:337–357.

    Article  Google Scholar 

  • Slepecky NB (1996) Structure of the mammalian cochlea. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 44–129.

    Chapter  Google Scholar 

  • Smotherman MS, Narins PM (1999a) The electrical properties of auditory hair cells in the frog amphibian papilla. J Neurosci 19:5275–5292.

    PubMed  CAS  Google Scholar 

  • Smotherman MS, Narins PM (1999b) Potassium currents in auditory hair cells of the frog basilar papilla. Hear Res 132:117–130.

    Article  PubMed  CAS  Google Scholar 

  • Smotherman MS, Narins PM (2000) Hair cells, hearing, and hopping: a field guide to hair cell physiology in the frog. J Exp Biol 203:2237–2246.

    PubMed  CAS  Google Scholar 

  • Sneary MG (1988a) Auditory receptor of the red-eared turtle: I. Afferent and efferent synapses and innervation patterns. J Comp Neurol 276:588–606.

    Article  PubMed  CAS  Google Scholar 

  • Sneary MG (1988b) Auditory receptor of the red-eared turtle: II. General ultrastructure. J Comp Neurol 276:573–587.

    Article  PubMed  CAS  Google Scholar 

  • Song J, Yan HY, Popper AN (1995) Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure. Hear Res 91:63–71.

    Article  PubMed  CAS  Google Scholar 

  • Sridhar T, Liberman MC, Brown MC, Sewell WF (1995) A novel cholinergic “slow effect” of efferent stimulation on cochlear potentials in the guinea pig. J Neurosci 15: 3667–3678.

    PubMed  CAS  Google Scholar 

  • Steinacker A, Monterrubio J, Perez R, Mensinger AF, Marin A (1997) Electrophysiology and pharmacology of outward potassium currents in semicircular canal hair cells of toadfish, Opsanus tau. Hear Res 109:11–20.

    Article  PubMed  CAS  Google Scholar 

  • Stokes MD, Holland ND (1995) Embryos and larvae of a lancelet, Branchiostoma floridae, from hatching through metamorphosis: growth in the laboratory and external morphology. Acta Zool 76:89–176.

    Article  Google Scholar 

  • Strassmaier M, Gillespie PG (2002) The hair cell’s transduction channel. Curr Opin Neurobiol 12:380–386.

    Article  PubMed  CAS  Google Scholar 

  • Sugihara I (2001) Efferent innervation in the goldfish saccule examined by acetylcholinesterase histochemistry. Hear Res 153:91–99.

    Article  PubMed  CAS  Google Scholar 

  • Sugihara I, Furukawa T (1989) Morphological and functional aspects of two different types of hair cells in the goldfish sacculus. J Neurophysiol 62:1330–1343.

    PubMed  CAS  Google Scholar 

  • Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T (1994) Notchl is essential for postimplantation development in mice. Genes Dev 8:707–719.

    Article  PubMed  CAS  Google Scholar 

  • Szönyi M, He DZZ, Ribäri O, Sziklai I, Dallos P (2001) Intracellular calcium and outer hair cell electromotility. Brain Res 922:65–70.

    Article  PubMed  Google Scholar 

  • Takasaka T, Smith CA (1971) The structure and innervation of the pigeon’s basilar papilla. J Ultrastruct Res 34:20–65.

    Article  Google Scholar 

  • Tanaka K, Smith CA (1978) Structure of the chicken’s inner ear: SEM and TEM study. Am J Anat 153:251–272.

    Article  PubMed  CAS  Google Scholar 

  • Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234.

    Article  PubMed  CAS  Google Scholar 

  • Wallis D, Hamblen M, Zhou Y, Venken KJ, Schumacher A, Grimes HL, Zoghbi HY, Orkin SH, Bellen HJ (2003) The zinc finger transcription factor Gfi 1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development 130:221–232.

    Article  PubMed  CAS  Google Scholar 

  • Weisleder P, Tsue TT, Rubel EW (1995) Hair cell replacement in avian vestibular epithelium: supporting cell to type I hair cell. Hear Res 82:125–133.

    Article  PubMed  CAS  Google Scholar 

  • Wersall J (1956) Studies on the structures and innervation of the sensory epithelium of the cristae ampullares in the guinea pig. Acta Otolaryngol Stockh Suppl 126: 1–85.

    CAS  Google Scholar 

  • Wersäll J (1960) Vestibular receptor cells in fish and mammals. Acta Otolaryngol Stockh Suppl 163:25–29.

    Google Scholar 

  • Wersäll J, Bagger-Sjöbäck D (1974) Morphology of the vestibular sense organs. In: Komhuber HH (ed) Handbook of Sensory Physiology: Vestibular System, Part 1. Berlin: Springier-Verlag, pp. 123–170.

    Google Scholar 

  • Wever EG (1975) The caecilian ear. J Exp Zool 191:63–72.

    Article  PubMed  CAS  Google Scholar 

  • Wever EG (1978) The Reptile Ear. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wever EG (1985) The Amphibian Ear. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wever EG, McCormick JG, Palin J, Ridgway SH (1971) The cochlea of the dolphin, Tursiops truncatus: hair cells and ganglion cells. Proc Natl Acad Sci USA 68:2908–2912.

    Article  PubMed  CAS  Google Scholar 

  • Yan HY, Saidel WM, Chang JS, Presson JC, Popper AN (1991) Sensory hair cells of a fish ear: evidence of multiple cell types based on ototoxic sensitivity. Proc R Soc Lond B 245:133–138.

    Article  CAS  Google Scholar 

  • Zheng J, Shen W, He DZZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155.

    Article  PubMed  CAS  Google Scholar 

  • Zufall F, Leinders-Zufall T (2000) The cellular and molecular basis of odor adaptation. Chem Senses 25:473–481.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Coffin, A., Kelley, M., Manley, G.A., Popper, A.N. (2004). Evolution of Sensory Hair Cells. In: Manley, G.A., Fay, R.R., Popper, A.N. (eds) Evolution of the Vertebrate Auditory System. Springer Handbook of Auditory Research, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8957-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8957-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-21093-3

  • Online ISBN: 978-1-4419-8957-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics