Skip to main content

Empirical Assessments of Invariance

  • Chapter
  • First Online:
Invariants of Behavior

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 1))

Abstract

The search for invariances outlined in the previous chapter is taken further with the analysis of empirical methods of behavioral invariance in the study of the mammalian brain. These methods are the bread and butter of the neuroscientist and cognitive neuroscientist: electrophysiology, functional magnetic resonance imaging, and diffusion tensor imaging all search for measurable invariances that may illuminate function and mechanism. This is a simple task as all these methods have inherent particularities, of both empirical and epistemological nature. A clear view on these issues is essential as they have strong bearing on the conclusions about the results of experiments, and by extension on the mechanisms of behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Statements of the sort “These oscillations have multifold functions and act as universal operators or codes of brain functional activity” are too strong, and suffer from the confusion between correlate and cause [2].

  2. 2.

    Timely. Logothetis [27] asks, “What can and what can’t we do with fMRI.”

  3. 3.

    Recent articles have addressed the question of what precise cellular process is the closest correlate of the BOLD signal, whether it is from all neurons, only excitatory, inhibitory, or glial, cells, whether it applies equally to different areas, and so on. Recent articles have competently shown the different sources and how they contribute to the signal [28, 26].

  4. 4.

    Also, a debate has recently arisen concerning unusually high correlations in fMRI studies of social cognition, where a fundamental flaw in some experimental designs has been unearthed [46].

  5. 5.

    Also noteworthy in Fig. 3.4 is the presence of cores in the left hemisphere in participant C.

  6. 6.

    Usually when there is already the requirement for surgical interventions, or when the patient has full body paralysis.

  7. 7.

    Some popular science, as well as renowned scientists, have created much confusion on this particular topic.

  8. 8.

    “Is the brain precise or noisy?” is a version of this paradox, which is also a rather poor way to pose the question.

  9. 9.

    A variation of this argument applies to the search for dendrites computing logical operations. One finds, or does not find, the logical operations sought. Usually this is done by restricting the context of dendritic function way beyond its biological context.

References

  1. Adolphs R (1999) Social cognition and the human brain. Trends Cogn Sci 3(12):469–479

    Article  PubMed  Google Scholar 

  2. Basar E, Basar-Eroglu C, Korokos S, Schrürmann M (1999) Oscillatory brain theory: A new trend in neuroscience IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society, 18(3):56–66

    Google Scholar 

  3. Batterman R (2000) Multiple realizability and universality. Br J Philos Sci 51(1):115–145

    Article  Google Scholar 

  4. Carman G, Drury H, Van Essen D (1995) Computational methods for reconstructing and unfolding the cerebral cortex. Cerebr Cortex 5(6):506–517

    Article  CAS  Google Scholar 

  5. Decety J, Grèzes J (2006) The power of simulation: Imagining one’s own and other’s behavior. Brain Res 1079(1):4–14

    Article  PubMed  CAS  Google Scholar 

  6. Deschamps M, Kervern G, Massiot D, Pintacuda G, Emsley L, Grandinetti P (2008) Superadiabaticity in magnetic resonance. J Chem Phy 129:204,110

    Google Scholar 

  7. Ding M, Chen Y, Bressler S (2006) Granger causality: Basic theory and application to neuroscience. Arxiv preprint q-bio/0608035

    Google Scholar 

  8. Douglas R, Martin K (1995) Vibrations in the memory. Nature 373(6515):563–564

    Article  PubMed  CAS  Google Scholar 

  9. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck H (1988) Coherent oscillations: A mechanism of feature linking in the visual cortex? Biol Cybern 60(2):121–130

    Article  PubMed  CAS  Google Scholar 

  10. Edelman GM (1987) Neural darwinism. Basic Books, New York

    Google Scholar 

  11. Frank LM, Brown E, Wilson M (2000) Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27:169–178

    Article  PubMed  CAS  Google Scholar 

  12. Freeman W, Baird B (1989) Effects of applied electric current fields on cortical neural activity. Computational Neuroscience, New York, Plenum Press

    Google Scholar 

  13. Freeman WJ (1995) Society of Brains: A study in the neuroscience of love and hate. Laurence Erlbaum Associates Inc, Hillsdale, NJ

    Google Scholar 

  14. Gallese V, Fadiga L, Fogassi L, Rizzolati G (1996) Action recognition in the premotor cortex. Brain 119:593–609

    Article  PubMed  Google Scholar 

  15. Grossman E, Donnelly M, Price R, Pickens D, Morgan V, Neighbor G, Blake R (2000) Brain areas involved in perception of biological motion. J Cogn Neurosci 12(5):711–720

    Article  PubMed  CAS  Google Scholar 

  16. Hadjikhani N, Liu A, Dale A, Cavanagh P, Tootell R (1998) Retinotopy and color sensitivity in human visual cortical area V 8. Nat Neurosci 1(3):235–241

    Article  PubMed  CAS  Google Scholar 

  17. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey C, Wedeen V, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159

    Article  PubMed  Google Scholar 

  18. Haynes J, Rees G (2005a) Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat Neurosci 8:686–691

    Article  PubMed  CAS  Google Scholar 

  19. Haynes J, Rees G (2005b) Predicting the stream of consciousness from activity in human visual cortex. Curr Biol 15(14):1301–1307

    Article  PubMed  CAS  Google Scholar 

  20. Haynes J, Rees G (2006) Decoding mental states from brain activity in humans. Nat Rev Neurosci 7(7):523–534

    Article  PubMed  CAS  Google Scholar 

  21. Haynes J, Deichmann R, Rees G (2005) Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus. Nature 438:496–499

    Article  PubMed  CAS  Google Scholar 

  22. Haynes J, Sakai K, Rees G, Gilbert S, Frith C, Passingham R (2007) Reading hidden intentions in the human brain. Curr Biol 17(4):323–328

    Article  PubMed  CAS  Google Scholar 

  23. Hyvärinen A, Oja E (2000) Independent component analysis: Algorithms and applications. Neural Netw 13(4–5):411–430

    Article  PubMed  Google Scholar 

  24. Jeffery KJ, Burgess N (2006) A metric for the cognitive map: Found at last? Trends Cogn Sci 10(1)

    Google Scholar 

  25. Livet J, Weissman T, Kang H, Draft R, Lu J, Bennis R, Sanes J, Lichtman J (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    Article  PubMed  CAS  Google Scholar 

  26. Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23(10):3963–3971

    PubMed  CAS  Google Scholar 

  27. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869–878

    Article  PubMed  CAS  Google Scholar 

  28. Logothetis NK, Pfeuffer J (2004) On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 22(10):1517–1531

    Article  PubMed  Google Scholar 

  29. Molnár G, Oláh S, Komlósi G, Füle M, Szabadics J, Varga C, Barzó P, Tamás G (2008) Complex Events Initiated by Individual Spikes in the Human Cerebral Cortex. PLoS Biol 6(9):e222

    Article  PubMed  Google Scholar 

  30. Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5):527–539

    Article  PubMed  CAS  Google Scholar 

  31. Newberg A, Newberg S (2005) The neuropsychology of religious and spiritual experience. Handbook of the psychology of religion and spirituality. pp 199–215

    Google Scholar 

  32. O’Keefe J, Dostrovsky J (1971) The hippocampus as spatial map: preliminary evidence from unit activity in the freely moving rat. Brain Research 34:171–175

    Article  PubMed  Google Scholar 

  33. Panksepp J (1998) Affective Neuroscience, Oxford UP, chap The Varieties of emotional systems in the brain, pp 41–58

    Google Scholar 

  34. Peigneux P, Orban P, Balteau E, Degueldre C, Luxen A, Laureys S, Maquet P (2006) Offline persistence of memory-related cerebral activity during active wakefulness. PLOS Biology 4(4)

    Google Scholar 

  35. Platt ML, Glimcher PW (1999) Neural correlates of decision variables in parietal cortex. Nature 400:233–238

    Article  PubMed  CAS  Google Scholar 

  36. Preissl H, Pulvermüller F, Lutzenberger W, Birbaumer N (1995) Evoked potentials distinguish between nouns and verbs. Neuroscience Letters 197(1):81–83

    Article  PubMed  CAS  Google Scholar 

  37. Pulvermüller F (2001) Brain reflections of words and their meaning. Trends in Cognitive Sciences 5(12):517–524

    Article  PubMed  Google Scholar 

  38. Quiroga R, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435(7045):1102–1107

    Article  PubMed  CAS  Google Scholar 

  39. Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3(2):131–141

    Article  PubMed  CAS  Google Scholar 

  40. Skaggs W, McNaughton B, Wilson M, Barnes C (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6(2)

    Google Scholar 

  41. Sporns O, Honey C (2006) Small worlds inside big brains. Proceedings of the National Academy of Sciences 103(51):19,219

    Google Scholar 

  42. Sporns O, Honey C, Kötter R (2007) Identification and classification of hubs in brain networks. PLoS ONE 2(10)

    Google Scholar 

  43. Sutton S, Braren M, Zubin J, John E (1965) Evoked-Potential Correlates of Stimulus Uncertainty. Science 150(3700):1187–1188

    Article  PubMed  CAS  Google Scholar 

  44. Varela F, Toro A, John E, Schwartz E (1981) Perceptual framing and cortical alpha rhythm. Neuropsychologia 19(5):675–86

    Article  PubMed  CAS  Google Scholar 

  45. Varela F, Lachaux J, Rodriguez E, Martinerie J, et al (2001) The brainweb: phase synchronization and large-scale integration. Nature Reviews Neuroscience 2(4):229–239

    Article  PubMed  CAS  Google Scholar 

  46. Vul E, Harris C, Winkielman P, Pashler H (2009 (to appear)) Voodoo correlations in social neuroscience. Perspectives on Psychological Science

    Google Scholar 

  47. Watts D, Strogatz S (1998) Small world. Nature 393:440–442

    Article  PubMed  CAS  Google Scholar 

  48. Wedeen V, Hagmann P, Tseng W, Reese T, Weisskoff R (2005) Mapping Complex Tissue Architecture With Diffusion Spectrum Magnetic Resonance Imaging. Magnetic Resonance in Medicine 54(6):1377

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Negrello .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Negrello, M. (2011). Empirical Assessments of Invariance. In: Invariants of Behavior. Springer Series in Cognitive and Neural Systems, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8804-1_3

Download citation

Publish with us

Policies and ethics