Skip to main content

Auditory Effects of Underwater Noise in Odontocetes

  • Conference paper
The Effects of Noise on Aquatic Life

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 730))

Abstract

A common result of noise exposure is a noise-induced threshold shift, defined as an increase in auditory threshold that persists after cessation of a noise exposure. If the hearing threshold returns to normal after some period of time, the threshold shift is called a temporary threshold shift (TTS). If the threshold does not return to normal, the remaining amount of threshold shift is called a permanent threshold shift (PTS). Observed PTS/TTS may be the result of a variety of mechanical and biochemical processes, including physical damage or distortion of the tympanic membrane and cochlear hair cell stereocilia, oxidative stress-related hair cell death, changes in cochlear blood flow, and swelling of cochlear nerve terminals resulting from glutamate excitotoxicity (Henderson et al. 2006; Kujawa and Liberman 2009). Although the outer hair cells are the most prominent target for noise effects, severe noise exposures may also result in inner hair cell death and loss of auditory nerve fibers (Henderson et al. 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Finneran JJ, Carder DA, Schlundt CE, Dear RL (2010a) Growth and recovery of temporary threshold shift (TTS) at 3 kHz in bottlenose dolphins (Tursiops truncatus). J Acoust Soc Am 127:3256–3266.

    Article  PubMed  Google Scholar 

  • Finneran JJ, Carder DA, Schlundt CE, Dear RL (2010b) Temporary threshold shift in a bottlenose dolphin (Tursiops truncatus) exposed to intermittent tones. J Acoust Soc Am 127:3267–3272.

    Article  PubMed  Google Scholar 

  • Finneran JJ, Schlundt CE (2010) Frequency-dependent and longitudinal changes in noise-induced hearing loss in a bottlenose dolphin (Tursiops truncatus). J Acoust Soc Am 128:567–570.

    Article  PubMed  Google Scholar 

  • Finneran JJ, Schlundt CE, Branstetter B, Dear RL (2007) Assessing temporary threshold shift in a bottlenose dolphin (Tursiops truncatus) using multiple simultaneous auditory evoked potentials. J Acoust Soc Am 122:1249–1264.

    Article  PubMed  Google Scholar 

  • Henderson D, Bielefeld EC, Harris KC, Hu BH (2006) The role of oxidative stress in noise-induced hearing loss. Ear Hear 27:1–19.

    Article  PubMed  Google Scholar 

  • Humes LE, Jesteadt W (1989) Models of the additivity of masking. J Acoust Soc Am 85:1285–1294.

    Article  PubMed  CAS  Google Scholar 

  • Keeler JS (1968) Compatible exposure and recovery functions for temporary threshold shift-mechanical and electrical models. J Sound Vib 2:220–235.

    Article  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085.

    Article  PubMed  CAS  Google Scholar 

  • Mooney TA, Nachtigall PE, Breese M, Vlachos S, Au WWL (2009a) Predicting temporary threshold shifts in a bottlenose dolphin (Tursiops truncatus): The effects of noise level and duration. J Acoust Soc Am 125:1816–1826.

    Article  PubMed  Google Scholar 

  • Mooney TA, Nachtigall PE, Vlachos S (2009b) Sonar-induced temporary hearing loss in dolphins. Biol Lett 5:565–567.

    Article  PubMed  Google Scholar 

  • Patuzzi R (1998) Exponential onset and recovery of temporary threshold shift after loud sound: Evidence for long-term inactivation of mechano-electrical transduction channels. Hear Res 125:17–38.

    Article  PubMed  CAS  Google Scholar 

  • Schlundt CE, Finneran JJ, Carder DA, Ridgway SH (2000) Temporary shift in masked hearing thresholds of bottlenose dolphins, Tursiops truncatus, and white whales, Delphinapterus leucas, after exposure to intense tones. J Acoust Soc Am 107:3496–3508.

    Article  PubMed  CAS  Google Scholar 

  • Southall BL, Bowles AE, Ellison WT, Finneran JJ, Gentry RL, Greene CR Jr, Kastak D, Ketten DR, Miller JH, Nachtigall PE, Richardson WJ, Thomas JA, Tyack PL (2007) Marine mammal noise exposure criteria: initial scientific recommendations. Aquat Mamm 33:411–522.

    Article  Google Scholar 

  • Ward WD (1962) Damage-risk criteria for line spectra. J Acoust Soc Am 34:1610–1619.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Finneran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Finneran, J.J. (2012). Auditory Effects of Underwater Noise in Odontocetes. In: Popper, A.N., Hawkins, A. (eds) The Effects of Noise on Aquatic Life. Advances in Experimental Medicine and Biology, vol 730. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7311-5_44

Download citation

Publish with us

Policies and ethics