Skip to main content

Unraveling the Complex Regulatory Relationships Between Metabolism and Signal Transduction in Cancer

  • Conference paper
  • First Online:
Advances in Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 736))

Abstract

Cancer cells exhibit an altered metabolic phenotype, known as the Warburg effect, which is characterized by high rates of glucose uptake and glycolysis, even under aerobic conditions. The Warburg effect appears to be an intrinsic component of most cancers and there is evidence linking cancer progression to mutations, translocations, and alternative splicing of genes that directly code for or have downstream effects on key metabolic enzymes. Many of the same signaling pathways are routinely dysregulated in cancer and a number of important oncogenic signaling pathways play important regulatory roles in central carbon metabolism. Unraveling the complex regulatory relationship between cancer metabolism and signaling requires the application of systems biology approaches. Here we discuss computational approaches for modeling protein signal transduction and metabolism as well as how the regulatory relationship between these two important cellular processes can be combined into hybrid models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The idea of a Laplace Demon came from a thought experiment proposed by Pierre-Simon Laplace of a perfect entity who would know the precise location of each atom and of all forces in nature at any given moment. This entity (or demon, as it later came to be called) would have incredible predictive power because it could infer the past and determine the future from any set of initial conditions.

References

  1. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    CAS  PubMed  Google Scholar 

  2. DeBerardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18(1):54–61

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Nakajo M, Jinnouchi S, Inoue H, Otsuka M, Matsumoto T, Kukita T, Tanabe H, Tateno R, Nakajo M (2007) FDG PET findings of chronic myeloid leukemia in the chronic phase before and after treatment. Clin Nucl Med 32(10):775–778

    PubMed  Google Scholar 

  4. Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134(5): 703–707

    CAS  PubMed  Google Scholar 

  5. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gillies RJ, Robey I, Gatenby RA (2008) Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 49(Suppl 2):24S–42S

    CAS  PubMed  Google Scholar 

  7. Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, Xie J, Gu TL, Polakiewicz RD, Roesel JL, Boggon TJ, Khuri FR, Gilliland DG, Cantley LC, Kaufman J, Chen J (2009) Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2(97):ra73

    PubMed  PubMed Central  Google Scholar 

  8. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452(7184):181–186

    CAS  PubMed  Google Scholar 

  9. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799

    CAS  PubMed  Google Scholar 

  10. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501

    CAS  PubMed  Google Scholar 

  11. Buzzai M, Bauer DE, Jones RG, Deberardinis RJ, Hatzivassiliou G, Elstrom RL, Thompson CB (2005) The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24(26):4165–4173

    CAS  PubMed  Google Scholar 

  12. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64(11):3892–3899

    CAS  PubMed  Google Scholar 

  13. Thompson CB (2009) Metabolic enzymes as oncogenes or tumor suppressors. New Engl J Med 360(8):813–815

    CAS  PubMed  Google Scholar 

  14. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7184):230–233

    CAS  PubMed  Google Scholar 

  15. Zu XL, Guppy M (2004) Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313(3):459–465

    CAS  PubMed  Google Scholar 

  16. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    CAS  PubMed  Google Scholar 

  17. Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8(11):1195–1203

    CAS  PubMed  Google Scholar 

  18. Turner TE, Schnell S, Burrage K (2004) Stochastic approaches for modelling in vivo reactions. Comput Biol Chem 28(3):165–178

    CAS  PubMed  Google Scholar 

  19. Cornish-Bowden A (2004) Fundamentals of enzyme kinetics, 3rd edn. Portland, London

    Google Scholar 

  20. Goldbeter A, Koshland DE Jr (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA 78(11):6840–6844

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Flach EH, Schnell S (2006) Use and abuse of the quasi-steady-state approximation. Syst Biol 153(4):187–191

    CAS  Google Scholar 

  23. Segel LA (1984) Modeling dynamic phenomena in molecular and cellular biology. Cambridge University Press, Cambridge

    Google Scholar 

  24. Gombert AK, Nielsen J (2000) Mathematical modelling of metabolism. Curr Opin Biotechnol 11(2):180–186

    CAS  PubMed  Google Scholar 

  25. Heinrich R, Schuster S (1996) The regulation of cellular systems. New York

    Google Scholar 

  26. Albert I, Thakar J, Li S, Zhang R, Albert R (2008) Boolean network simulations for life scientists. Source Code Biol Med 3:16

    PubMed  PubMed Central  Google Scholar 

  27. Thomas R, D’Ari R (1990) Biological Feeback. CRC, Boca Raton

    Google Scholar 

  28. Goldbeter A, Lefever R (1972) Dissipative structures for an allosteric model. Application to glycolytic oscillations. Biophys J 12(10):1302–1315

    CAS  PubMed  Google Scholar 

  29. Sel’kov EE (1968) Self-oscillations in glycolysis. 1. A simple kinetic model. Eur J Biochem 4(1):79–86

    Google Scholar 

  30. Heinrich R, Rapoport SM, Rapoport TA (1977) Metabolic regulation and mathematical models. Prog Biophys Mol Biol 32(1):1–82

    CAS  PubMed  Google Scholar 

  31. Heinrich R, Schuster S (1996) The regulation of cellular systems. Chapman & Hall, New York

    Google Scholar 

  32. Fersht A (1999) Structure and mechanism in protein science: A guide to enzyme catalysis and protein folding. WH Freeman, New York

    Google Scholar 

  33. Schnell S, Maini PK (2003) A century of enzyme kinetics: reliability of the KMand vmaxestimates. Comm Theor Biol 8(2–3):169–187

    Google Scholar 

  34. Cook PF, Cleland WW (2007) Enzyme kinetics and mechanism. Garland Science, London

    Google Scholar 

  35. Savageau MA (1969) Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. J Theor Biol 25(3):365–369

    CAS  PubMed  Google Scholar 

  36. Savageau MA (1969) Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. J Theor Biol 25(3):370–379

    CAS  PubMed  Google Scholar 

  37. Savageau MA (1970) Biochemical systems analysis. III. Dynamic solutions using a power-law approximation. J Theor Biol 26(2):215–226

    CAS  Google Scholar 

  38. Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27:65–104

    CAS  PubMed  Google Scholar 

  39. Heinrich R, Rapoport TA (1974) A linear steady state treatment of enzymatic chains: general properties, control and effector strength. Eur J Biochem 42(1):89–95

    CAS  PubMed  Google Scholar 

  40. Heinrich R, Rapoport TA (1974) A linear steady state treatment of enzymatic chains. Critique of the crossover theorem and a general procedure to identify interaction sites with an effector. Eur J Biochem 42(1):97–105

    CAS  Google Scholar 

  41. Crabtree B, Newsholme EA (1978) Sensitivity of a near-equilibrium reaction in a metabolic pathway to changes in substrate concentration. Eur J Biochem 89(1):19–22

    CAS  PubMed  Google Scholar 

  42. Crabtree B, Newsholme EA (1985) A quantitative approach to metabolic control. Curr Top Cell Reg 25:21–76

    CAS  Google Scholar 

  43. Crabtree B, Newsholme EA (1987) The derivation and interpretation of control coefficients. Biochem J 247(1):113–120

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Varma A, Morbidelli M, Wu H (1999) Parametric sensitivity in chemical systems. Cambridge University Press, New York

    Google Scholar 

  45. Fell D (1997) Understanding the control of metabolism. Frontiers in metabolism. Portland, London

    Google Scholar 

  46. Voit EO (2000) Computational analysis of biochemical systems: A practical guide for biochemists and molecular biologists. Cambridge University Press, New York

    Google Scholar 

  47. Cornish-Bowden A, Cardenas ML (2005) Systems biology may work when we learn to understand the parts in terms of the whole. Biochem Soc Trans 33(3):516–519

    CAS  PubMed  Google Scholar 

  48. Piedrafita G, Montero F, Morán F, Cárdenas ML, Cornish-Bowden A (2010) A simple self-maintaining metabolic system: Robustness, autocatalysis, bistability. PLoS Comput Biol 6(8):e1000872

    PubMed  PubMed Central  Google Scholar 

  49. Rosen R (1991) Life itself: a comprenhensive inquiry into the nature of origin and fabrication of life. Columbia University Press, New York

    Google Scholar 

  50. Cornish-Bowden A, Cárdenas ML, Letelier JC, Soto-Andrade J (2007) Beyond reductionism: metabolic circularity as a guiding vision for a real biology of systems. Proteomics 7(6):839–845

    CAS  PubMed  Google Scholar 

  51. Letelier JC, Soto-Andrade J, Guíñez Abarzúa F, Cornish-Bowden A, Luz Cárdenas M (2006) Organizational invariance and metabolic closure: analysis in terms of (M, R) systems. J Theor Biol 238(4):949–961

    PubMed  Google Scholar 

  52. Huang CY, Ferrell JE Jr (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 93(19):10078–10083

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ventura AC, Jiang P, Van Wassenhove L, Del Vecchio D, Merajver SD, Ninfa AJ (2010) Signaling properties of a covalent modification cycle are altered by a downstream target. Proc Natl Acad Sci USA 107(22):10032–10037

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ventura AC, Sepulchre JA, Merajver SD (2008) A hidden feedback in signaling cascades is revealed. PLoS Comput Biol 4(3):e1000041

    PubMed  PubMed Central  Google Scholar 

  55. Aldridge BB, Saez-Rodriguez J, Muhlich JL, Sorger PK, Lauffenburger DA (2009) Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling. PLoS Comput Biol 5(4):e1000340

    PubMed  PubMed Central  Google Scholar 

  56. Albert R, Othmer HG (2003) The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 223(1):1–18

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Li S, Assmann SM, Albert R (2006) Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol 4(10):e312

    PubMed  PubMed Central  Google Scholar 

  58. Zhang R, Shah MV, Yang J, Nyland SB, Liu X, Yun JK, Albert R, Loughran TP Jr (2008) Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci USA 105(42):16308–16313

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Anderson AR, Quaranta V (2008) Integrative mathematical oncology. Nat Rev Cancer 8(3):227–234

    CAS  PubMed  Google Scholar 

  60. Alarcon T, Byrne HM, Maini PK (2004) A multiple scale model for tumor growth. Multiscale Model Sim 3(2):440–467

    Google Scholar 

  61. Ribba B, Colin T, Schnell S (2006) A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. Theor Biol Med Model 3:7

    PubMed  PubMed Central  Google Scholar 

  62. Ribba B, Saut O, Colin T, Bresch D, Grenier E, Boissel JP (2006) A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. J Theor Biol 243(4):532–541

    CAS  PubMed  Google Scholar 

  63. Frieboes HB, Chaplain MA, Thompson AM, Bearer EL, Lowengrub JS, Cristini V (2011) Physical oncology: a bench-to-bedside quantitative and predictive approach. Cancer Res 71(2):298–302

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Singhania R, Sramkoski RM, Jacobberger JW, Tyson JJ (2011) A hybrid model of mammalian cell cycle regulation. PLoS Comput Biol 7(2):e1001077

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Eden E, Geva-Zatorsky N, Issaeva I, Cohen A, Dekel E, Danon T, Cohen L, Mayo A, Alon U (2011) Proteome half-life dynamics in living human cells. Science 331(6018):764–768

    CAS  PubMed  Google Scholar 

  66. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. 5th edn. WH Freeman, New York

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the University of Michigan Center for Computational Medicine & Bioinformatics Pilot Grant 2010 and the National Science Foundation under Grant No. DMS-1135663. MLW acknowledges support from the Rackham Merit Fellowship, NIH T32 CA140044, and the Breast Cancer Research Foundation. SDM acknowledges support from the Burroughs Wellcome Fund, Breast Cancer Research Foundation, the Avon Foundation and NIH CA77612. SS acknowledges support from NIDDK R25 DK088752.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Schnell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Wynn, M.L., Merajver, S.D., Schnell, S. (2012). Unraveling the Complex Regulatory Relationships Between Metabolism and Signal Transduction in Cancer. In: Goryanin, I.I., Goryachev, A.B. (eds) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol 736. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7210-1_9

Download citation

Publish with us

Policies and ethics