Skip to main content

Heterogeneous Biological Network Visualization System: Case Study in Context of Medical Image Data

  • Conference paper
  • First Online:
Advances in Systems Biology

Abstract

We have developed a system called megNet for integrating and visualizing heterogeneous biological data in order to enable modeling biological phenomena using a systems approach. Herein we describe megNet, including a recently developed user interface for visualizing biological networks in three dimensions and a web user interface for taking input parameters from the user, and an in-house text mining system that utilizes an existing knowledge base. We demonstrate the software with a case study in which we integrate lipidomics data acquired in-house with interaction data from external databases, and then find novel interactions that could possibly explain our previous associations between biological data and medical images. The flexibility of megNet assures that the tool can be applied in diverse applications, from target discovery in medical applications to metabolic engineering in industrial biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gopalacharyulu PV, Lindfors E, Bounsaythip C, Kivioja T, Yetukuri L, Hollmén J, Oresic M (2005) Data integration and visualization system for enabling conceptual biology. Bioinformatics 21:i177–i185

    Article  CAS  PubMed  Google Scholar 

  2. Gopalacharyulu PV, Lindfors E, Miettinen J, Bounsaythip CK, Oresic M (2008) An integrative approach for biological data mining and visualisation. Int J Data Min Bioinform 2(1):54–77

    Article  PubMed  Google Scholar 

  3. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B et al (2007) Integration of biological networks and gene expression data using cytoscape. Nat Protocols 2(10):2366–2382

    Article  CAS  PubMed  Google Scholar 

  4. Timonen M, Pesonen A (2008) Combining context and existing knowledge when recognizing biological entities – early results. Adv Knowl Discov Data Min 5012:1028–1034

    Article  Google Scholar 

  5. Koikkalainen JR, Antila M, Lotjonen JMP, Helio T, Lauerma K, Kivisto SM, Sipola P, Kaartinen MA, Karkkainen STJ, Reissell E et al (2008) Early familial dilated cardiomyopathy: identification with determination of disease state parameter from cine MR image data 10.1148/radiol.2491071584. Radiology 249(1):88–96

    Article  PubMed  Google Scholar 

  6. Sysi-Aho M, Koikkalainen J, Seppänen-Laakso T, Kaartinen M, Kuusisto J, Peuhkurinen K, Kärkkäinen S, Antila M, Lauerma K, Reissell E et al (2011) Serum lipidomics meets cardiac magnetic resonance imaging: profiling of subjects at risk of dilated cardiomyopathy. PLoS ONE 6(1):e15744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Papin JA, Palsson BO (2004) Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk. J Theor Biol 227(2):283–297

    Article  PubMed  Google Scholar 

  8. Min Lee J, Gianchandani EP, Eddy JA, Papin JA (2008) Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol 4(5):e1000086

    Article  PubMed Central  Google Scholar 

  9. Li X, Gianoulis TA, Yip KY, Gerstein M, Snyder M (2010) Extensive in vivo metabolite–protein interactions revealed by large-scale systematic analyses. Cell 143(4):639–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA et al (2009) NCBI GEO: archive for high-throughput functional genomic data 10.1093/nar/gkn764. Nucl Acids Res 37(suppl_1):D885–890

    Article  CAS  PubMed  Google Scholar 

  11. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T et al (2008) KEGG for linking genomes to life and the environment. Nucl Acids Res 36(suppl_1):D480–484

    CAS  PubMed  Google Scholar 

  12. Herrgard MJ, Swainston N, Dobson P, Dunn WB, Arga KY, Arvas M, Buthgen N, Borger S, Costenoble R, Heinemann M et al (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26(10):1155–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dobson P, Smallbone K, Jameson D, Simeonidis E, Lanthaler K, Pir P, Lu C, Swainston N, Dunn W, Fisher P et al (2010) Further developments towards a genome-scale metabolic model of yeast. BMC Syst Biol 4(1):145

    Article  PubMed  PubMed Central  Google Scholar 

  14. Reguly T, Breitkreutz A, Boucher L, Breitkreutz B-J, Hon G, Myers C, Parsons A, Friesen H, Oughtred R, Tong A et al (2006) Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. J Biol 5(4):11

    Article  PubMed  PubMed Central  Google Scholar 

  15. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucl Acids Res 32(suppl_1):D449–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G (2007) MINT: the molecular interaction database. Nucl Acids Res 35(suppl_1):D572–574

    Article  CAS  PubMed  Google Scholar 

  17. Bader GD, Betel D, Hogue CWV (2003) BIND: the biomolecular interaction network database. Nucleic Acids Res 31:248–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV et al (2003) TRANSFAC(R): transcriptional regulation, from patterns to profiles. Nucl Acids Res 31(1):374–378. doi:10.1093/nar/gkg108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krull M, Pistor S, Voss N, Kel A, Reuter I, Kronenberg D, Michael H, Schwarzer K, Potapov A, Choi C et al (2006) TRANSPATH(R): an information resource for storing and visualizing signaling pathways and their pathological aberrations. Nucl Acids Res 34(suppl_1):D546–551

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) Pubchem: a public information system for analyzing bioactivities of small molecules. Nucl Acids Res 37(suppl_2):W623–633. doi:10.1093/nar/gkp456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. The Gene Ontology Consortium (2008) The gene ontology project in 2008. Nucl Acids Res 36(suppl_1):D440–444. doi:10.1093/nar/gkm883

    Article  Google Scholar 

  22. Consortium TU (2010) The universal protein resource (uniprot) in 2010. Nucl Acids Res 38(suppl_1):D142–148

    Article  Google Scholar 

  23. Cochrane GR, Galperin MY (2010) The 2010 nucleic acids research database issue and online database collection: a community of data resources. Nucl Acids Res 38(suppl_1):D1–4. doi:10.1093/nar/gkp1077

    Article  CAS  PubMed  Google Scholar 

  24. Bodenreider O (2004) The unified medical language system (UMLS): integrating biomedical terminology. Nucl Acids Res 32:D267–D270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Butte AJ, Kohane IS (2006) Creation and implications of a phenome–genome network. Nat Biotechnol 24(1):55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Norton H et al (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14(13):1675–1680

    Article  CAS  PubMed  Google Scholar 

  27. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary dna microarray. Science 270:(5235):467–470. doi:10.1126/science.270.5235.467

    Article  CAS  PubMed  Google Scholar 

  28. Box JF (1987) Guinness, Gosset, Fisher, and small samples. Stat Sci 2(1):45–52

    Article  Google Scholar 

  29. Yetukuri L, Katajamaa M, Medina-Gomez G, Seppanen-Laakso T, Vidal-Puig A, Oresic M (2007) Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst Biol 1(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sammon JWJ (1969) A nonlinear mapping for data structure analysis. IEEE Trans Comp C-18(5):401–409

    Article  Google Scholar 

  31. Demartines P, Hérault J (1997) Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Trans Neur Netw 8:148–154

    Article  CAS  Google Scholar 

  32. Lee JA, Lendasse A, Verleysen M (2004) Nonlinear projection with curvilinear distances: isomap versus curvilinear distance analysis. Neurocomputing 57:49–76

    Article  Google Scholar 

  33. Coffey MJ, Coles B, Locke M, Bermudez-Fajardo A, Williams PC, Jarvis GE, O’Donnell VB (2004) Interactions of 12-lipoxygenase with phospholipase A2 isoforms following platelet activation through the glycoprotein VI collagen receptor. FEBS Lett 576(1):165–168

    Article  CAS  PubMed  Google Scholar 

  34. Zhao L, Funk CD (2004) Lipoxygenase pathways in atherogenesis. Trends Cardiovasc Med 14(5):191–195

    Article  CAS  PubMed  Google Scholar 

  35. Mizuno M, Masumura M, Tomi C, Chiba A, Oki S, Yamamura T, Miyake S (2004) Synthetic glycolipid OCH prevents insulitis and diabetes in NOD mice. J Autoimmun 23(4):293–300

    Article  CAS  PubMed  Google Scholar 

  36. Mi Q-S, Ly D, Zucker P, McGarry M, Delovitch TL (2004) Interleukin-4 but not interleukin-10 protects against spontaneous and recurrent Type 1 diabetes by activated CD1D-restricted invariant natural killer T-cells. Diabetes 53(5):1303–1310. doi:10.2337/diabetes.53.5.1303

    Article  CAS  PubMed  Google Scholar 

  37. Yang L-J (2008) Big mac attack: does it play a direct role for monocytes/macrophages in Type 1 diabetes? Diabetes 57(11):2922–2923. doi:10.2337/db08–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lindfors E, Gopalacharyulu PV, Halperin E, Orešic M (2009) Detection of molecular paths associated with insulitis and Type 1 diabetes in non-obese diabetic mouse. PLoS ONE 4(10):e7323

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gopalacharyulu P, Velagapudi V, Lindfors E, Halperin E, Orešic M (2009) Dynamic network topology changes in functional modules predict responses to oxidative stress in yeast. Mol BioSyst 5:276–287

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Laxman Yetukuri for technical assistance in mapping lipidomics data to metabolic pathways. The project was supported by the research program “White Biotechnology – Green Chemistry” (Academy of Finland; Finnish Centre of Excellence programme, 2008–2013, Decision number 118573), by the EU project MITIN (HEALTH-F4–2008–223450), by the National Graduate School in Informational and Structural Biology (ISB), and by the TRANSCENDO project of the Tekes MASI Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erno Lindfors .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Lindfors, E., Mattila, J., Gopalacharyulu, P.V., Pesonen, A., Lötjönen, J., Orešič, M. (2012). Heterogeneous Biological Network Visualization System: Case Study in Context of Medical Image Data. In: Goryanin, I.I., Goryachev, A.B. (eds) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol 736. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7210-1_5

Download citation

Publish with us

Policies and ethics