Skip to main content

Asynchronous Brain Machine Interface-Based Control of a Wheelchair

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 696))

Abstract

A brain machine interface (BMI) design for controlling the navigation of a power wheelchair is proposed. Real-time experiments with four able bodied subjects are carried out using the BMI-controlled wheelchair. The BMI is based on only two electrodes and operated by motor imagery of four states. A recurrent neural classifier is proposed for the classification of the four mental states. The real-time experiment results of four subjects are reported and problems emerging from asynchronous control are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, and Vaughan TM, “Brain-computer interfaces for communication and control,” Clinical Neurophysiology, vol. 113, pp. 767–791, 2002.

    Article  PubMed  Google Scholar 

  2. Pfurtscheller G and Neuper C, “Motor imagery and direct brain-computer communication,” Proceedings of the IEEE, vol. 89, no. 7, pp. 1123–1134, 2001.

    Article  Google Scholar 

  3. Sanchez JV, Erdogmus D, Nicolesis MAL, Wessberg J, and Principe JC, “Interpreting spatial and temporal neural activity through a recurrent neural network brain-machine interface,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 13, no. 2, pp. 213–219, 2005.

    Article  PubMed  Google Scholar 

  4. Borisoff JF, Mason SG, Bashashati A, and Birch GE, “Brain-computer interface design for asynchronous control applications: improvement to the LF-ASD asynchronous brain switch,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 985–992, 2004.

    Article  PubMed  Google Scholar 

  5. Pfurtscheller G, Muller-Putz GR, Pfurtscheller J, Gerner HJ, and Rupp R, “Thought control of functional electrical stimulation to restore hand grasp in a patient with Tetraplegia,” Neuroscience Letters, vol. 351, no. 1, pp. 33–36, 2003.

    Article  PubMed  CAS  Google Scholar 

  6. Leeb R, Friedman D, Muller-Putz GR, Scherer R, Slater M, and Pfurtscheller G, “Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with tetraplegic,” Computational Intelligence and Neuroscience, no. 79642, 2007.

    Google Scholar 

  7. Rebsamen B, Burdet E, Guan C, Teo CL, Zeng Q, Ang M, and Laugier C, “Controlling a wheelchair using a BCI with low information transfer rate,” Proceeding of the IEEE 10th International Conference on Rehabilitation Robotics, Netherlands, pp. 1003–1008, 2007.

    Google Scholar 

  8. Philips J, Millan JR, Vanacker G, Lew E, Galan F, Ferrez PW, van Brusel H, and Nutin M, “Adaptive shared control of a brain-actuated simulated wheelchair,” Proceedings of the IEEE 10th International Confeence on Rehabilitation Robotics, Netherlands, pp. 408–414, 2007.

    Google Scholar 

  9. Bell CJ, Shenoy P, Chalodhorn R, and Rao RPN, “Control of a humanoid robot by a non-invasive brain-computer interface in humans,” Journal of Neural Engineering, vol. 5, pp. 214–220, 2008.

    Article  PubMed  Google Scholar 

  10. Galan F, Nuttin M, Lew E, Ferrez PW, Vanacker G, Phillips J, and Millan JR, “A brain-actuated wheelchair: asynchronous and non-invasive brain-computer interfaces for continuous control of robots,” Clinical Neurophysiology, vol. 119, pp. 2159–2169, 2008.

    Article  PubMed  CAS  Google Scholar 

  11. Daly J and Wolpaw J, “Brain–computer interfaces in neurological rehabilitation,” Lancet Neurology, vol. 7, pp. 1032–1043, 2008.

    Article  PubMed  Google Scholar 

  12. Pfurtscheller G, Neuper C, Schlogl A, and Lugger K, “Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters,” IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 3, pp. 316–325, 1998.

    Article  PubMed  CAS  Google Scholar 

  13. Millan JR, Renkens F, Mourino J, and Gerstner W, “Noninvasive brain-actuated control of a mobile robot by human EEG,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 1026–1033, 2004.

    Article  Google Scholar 

  14. Hema CR, Yaacob S, Adom AH, Nagarajan R, and Paulraj MP, “Motor imagery signal classification for a four state brain machine interface”, International Journal of Biomedical Sciences, vol. 3, no. 1, pp. 76–81, 2008.

    Google Scholar 

  15. Domenick DG, “International 10–20 Electrode Placement System for Sleep”, 1998. http://members.aol.com/aduial/1020sys.html.

  16. Engelbrecht AP, Computational Intelligence an Introduction, John Wiley and Sons Ltd. pp. 32–33, 2002.

    Google Scholar 

  17. Sivanandam SN and Paulraj M, Introduction to Artificial Neural Networks Vikas Publishing House, India. 2003, ch. 1, 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Hema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hema, C.R., Paulraj, M.P., Yaacob, S., Adom, A.H., Nagarajan, R. (2011). Asynchronous Brain Machine Interface-Based Control of a Wheelchair. In: Arabnia, H., Tran, QN. (eds) Software Tools and Algorithms for Biological Systems. Advances in Experimental Medicine and Biology, vol 696. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7046-6_57

Download citation

Publish with us

Policies and ethics