Skip to main content

Insights into the Structural Basis of RNA Recognition by Star Domain Proteins

  • Chapter
Post-Transcriptional Regulation by STAR Proteins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 693))

Abstract

STAR proteins regulate diverse cellular processes and control numerous developmental events. They function at the post-transcriptional level by regulating the stability, sub-cellular distribution, alternative splicing, or translational efficiency of specific mRNA targets. Significant effort has been expended to define the determinants of RNA recognition by STAR proteins, in hopes of identifying new mRNA targets that contribute their role in cellular metabolism and development. This work has lead to the extensive biochemical characterization of the nucleotide sequence specificity of a handful of STAR proteins. In contrast, little structural information is available to analyze the molecular basis of sequence specific RNA recognition by this protein family. This chapter reviews the relevant literature on STAR domain protein structure and provides insights into how these proteins discriminate between different RNA sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Farley BM, Ryder SP. Regulation of maternal mRNAs in early development. Crit Rev Biochem Mol Biol 2008; 43:135–162.

    Article  CAS  PubMed  Google Scholar 

  2. Moore MJ. From birth to death: the complex lives of eukaryotic mRNAs. Science 2005; 309:1514–1518.

    Article  CAS  PubMed  Google Scholar 

  3. Keene JD, Lager PJ. Post-transcriptional operons and regulons co-ordinating gene expression. Chromosome Res 2005; 13:327–337.

    Article  CAS  PubMed  Google Scholar 

  4. Verdel A, Jia S, Gerber S et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 2004; 303:672–676.

    Article  CAS  PubMed  Google Scholar 

  5. Green R, Noller HF. Ribosomes and translation. Annu Rev Biochem 1997; 66:679–716.

    Article  CAS  PubMed  Google Scholar 

  6. Spirin AS. “Masked” forms of mRNA. Curr Top Dev Biol 1966; 1:1–38.

    Article  CAS  PubMed  Google Scholar 

  7. Hudson BP, Martinez-Yamout MA, Dyson HJ et al. Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat Struct Mol Biol 2004; 11:257–264.

    Article  CAS  PubMed  Google Scholar 

  8. Liu Z, Luyten I, Bottomley MJ et al. Structural basis for recognition of the intron branch site RNA by splicing factor 1. Science 2001; 294:1098–1102.

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Zamore PD, Hall TM. Crystal structure of a Pumilio homology domain. Mol Cell 2001; 7:855–865.

    Article  CAS  PubMed  Google Scholar 

  10. Edwards TA, Pyle SE, Wharton RP et al. Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell 2001; 105:281–289.

    Article  CAS  PubMed  Google Scholar 

  11. Chao JA, Patskovsky Y, Almo SC et al. Structural basis for the coevolution of a viral RNA-protein complex. Nat Struct Mol Biol 2008; 15:103–105.

    Article  CAS  PubMed  Google Scholar 

  12. Vargason JM, Szittya G, Burgyan J et al. Size selective recognition of siRNA by an RNA silencing suppressor. Cell 2003; 115:799–811.

    Article  CAS  PubMed  Google Scholar 

  13. Valegard K, Murray JB, Stockley PG et al. Crystal structure of an RNA bacteriophage coat protein-operator complex. Nature 1994; 371:623–626.

    Article  CAS  PubMed  Google Scholar 

  14. Oubridge C, Ito N, Evans PR et al. Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 1994; 372:432–438.

    Article  CAS  PubMed  Google Scholar 

  15. Agalarov SC, Sridhar Prasad G, Funke PM et al. Structure of the S15,S6,S18-rRNA complex: assembly of the 30S ribosome central domain. Science 2000; 288:107–113.

    Article  CAS  PubMed  Google Scholar 

  16. Sonoda J, Wharton RP. Recruitment of Nanos to hunchback mRNA by Pumilio. Genes Dev 1999; 13:2704–2712.

    Article  CAS  PubMed  Google Scholar 

  17. Berglund JA, Abovich N, Rosbash M. A cooperative interaction between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition. Genes Dev 1998; 12:858–867.

    Article  CAS  PubMed  Google Scholar 

  18. Vernet C, Artzt K. STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet 1997; 13:479–484.

    Article  CAS  PubMed  Google Scholar 

  19. Vega-Sanchez ME, Zeng L, Chen S et al. SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice. Plant Cell 2008; 20:1456–1469.

    Article  CAS  PubMed  Google Scholar 

  20. Sidman RL, Dickie MM, Appel SH. Mutant Mice (Quaking and Jimpy) with Deficient Myelination in the Central Nervous System. Science 1964; 144:309–311.

    Article  CAS  PubMed  Google Scholar 

  21. Francis R, Barton MK, Kimble J et al. gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics 1995; 139:579–606.

    CAS  PubMed  Google Scholar 

  22. Francis R, Maine E, Schedl T. Analysis of the multiple roles of gld-1 in germline development: interactions with the sex determination cascade and the glp-1 signaling pathway. Genetics 1995; 139:607–630.

    CAS  PubMed  Google Scholar 

  23. Jones AR, Francis R, Schedl T. GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage-and sex-specific expression during Caenorhabditis elegans germline development. Dev Biol 1996; 180:165–183.

    Article  CAS  PubMed  Google Scholar 

  24. Taylor SJ, Shalloway D. An RNA-binding protein associated with Src through its SH2 and SH3 domains in mitosis. Nature 1994; 368:867–871.

    Article  CAS  PubMed  Google Scholar 

  25. Lock P, Fumagalli S, Polakis P et al. The human p62 cDNA encodes Sam68 and not the RasGAP-associated p62 protein. Cell 1996; 84:23–24.

    Article  CAS  PubMed  Google Scholar 

  26. Ebersole TA, Chen Q, Justice MJ et al. The quaking gene product necessary in embryogenesis and myelination combines features of RNA binding and signal transduction proteins. Nat Genet 1996; 12:260–265.

    Article  CAS  PubMed  Google Scholar 

  27. Lin Q, Taylor SJ, Shalloway D. Specificity and determinants of Sam68 RNA binding. Implications for the biological function of K homology domains. J Biol Chem 1997; 272:27274–27280.

    Article  CAS  PubMed  Google Scholar 

  28. Baehrecke EH. who encodes a KH RNA binding protein that functions in muscle development. Development 1997; 124:1323–1332.

    CAS  PubMed  Google Scholar 

  29. Zaffran S, Astier M, Gratecos D et al. The held out wings (how) Drosophila gene encodes a putative RNA-binding protein involved in the control of muscular and cardiac activity. Development 1997; 124:2087–2098.

    CAS  PubMed  Google Scholar 

  30. Nabel-Rosen H, Dorevitch N, Reuveny A et al. The balance between two isoforms of the Drosophila RNA-binding protein how controls tendon cell differentiation. Mol Cell 1999; 4:573–584.

    Article  CAS  PubMed  Google Scholar 

  31. Aberg K, Saetre P, Jareborg N et al. Human QKI, a potential regulator of mRNA expression of human oligodendrocyte-related genes involved in schizophrenia. Proc Natl Acad Sci USA 2006; 103:7482–7487.

    Article  PubMed  Google Scholar 

  32. Haroutunian V, Katsel P, Dracheva S et al. The human homolog of the QKI gene affected in the severe dysmyelination “quaking” mouse phenotype: downregulated in multiple brain regions in schizophrenia. Am J Psychiatry 2006; 163:1834–1837.

    Article  PubMed  Google Scholar 

  33. Chen T, Richard S. Structure-function analysis of Qk1: a lethal point mutation in mouse quaking prevents homodimerization. Mol Cell Biol 1998; 18:4863–4871.

    CAS  PubMed  Google Scholar 

  34. Chen T, Damaj BB, Herrera C et al. Self-association of the single-KH-domain family members Sam68, GRP33, GLD-1 and Qk1: role of the KH domain. Mol Cell Biol 1997; 17:5707–5718.

    CAS  PubMed  Google Scholar 

  35. Ryder SP, Frater L, Abramovitz DL et al. RNA target specificity of the STAR/GSG domain post-transcriptional regulatory protein GLD-1. Nat Struct Mol Biol 2004; 11:20–28.

    Article  CAS  PubMed  Google Scholar 

  36. Ryder SP, Frater LA, Abramovitz DL et al. RNA target specificity of the STAR/GSG domain post-transcriptional regulatory protein GLD-1. Nat Struct Mol Biol 2004; 11:20–28.

    Article  CAS  PubMed  Google Scholar 

  37. Israeli D, Nir R, Volk T. Dissection of the target specificity of the RNA-binding protein HOW reveals dpp mRNA as a novel HOW target. Development 2007; 134:2107–2114.

    Article  CAS  PubMed  Google Scholar 

  38. Galarneau A, Richard S. Target RNA motif and target mRNAs of the Quaking STAR protein. Nat Struct Mol Biol 2005; 12:691–698.

    Article  CAS  PubMed  Google Scholar 

  39. Ryder SP, Williamson JR. Specificity of the STAR/GSG domain protein Qk1: implications for the regulation of myelination. RNA 2004; 10:1449–1458.

    Article  CAS  PubMed  Google Scholar 

  40. Nabel-Rosen H, Volohonsky G, Reuveny A et al. Two isoforms of the Drosophila RNA binding protein, how, act in opposing directions to regulate tendon cell differentiation. Dev Cell 2002; 2:183–193.

    Article  CAS  PubMed  Google Scholar 

  41. Larocque D, Pilotte J, Chen T et al. Nuclear retention of MBP mRNAs in the quaking viable mice. Neuron 2002; 36:815–829.

    Article  CAS  PubMed  Google Scholar 

  42. Jan E, Motzny CK, Graves LE et al. The STAR protein, GLD-1, is a translational regulator of sexual identity in Caenorhabditis elegans. EMBO J 1999; 18:258–269.

    Article  CAS  PubMed  Google Scholar 

  43. Justice MJ, Bode VC. Three ENU-induced alleles of the murine quaking locus are recessive embryonic lethal mutations. Genet Res 1988; 51:95–102.

    Article  CAS  PubMed  Google Scholar 

  44. Ryder SP, Williamson JR. Specificity of the STAR/GSG domain protein Qk1: Implications for the regulation of myelination. RNA 2004; 10:1449–1458.

    Article  CAS  PubMed  Google Scholar 

  45. Galarneau A, Richard S. The STAR RNA binding proteins GLD-1, QKI, SAM68 and SLM-2 bind bipartite RNA motifs. BMC Mol Biol 2009; 10:47.

    Article  PubMed  Google Scholar 

  46. Doniach T. Activity of the sex-determining gene tra-2 is modulated to allow spermatogenesis in the C. elegans hermaphrodite. Genetics 1986; 114:53–76.

    CAS  PubMed  Google Scholar 

  47. Goodwin EB, Okkema PG, Evans TC et al. Translational regulation of tra-2 by its 3′ untranslated region controls sexual identity in C. elegans. Cell 1993; 75:329–339.

    Article  CAS  PubMed  Google Scholar 

  48. Kuwabara PE, Okkema PG, Kimble J. tra-2 encodes a membrane protein and may mediate cell communication in the Caenorhabditis elegans sex determination pathway. Mol Biol Cell 1992; 3:461–473.

    CAS  PubMed  Google Scholar 

  49. Ebersole T, Rho O, Artzt K. The proximal end of mouse chromosome 17: new molecular markers identify a deletion associated with quakingviable. Genetics 1992; 131:183–190.

    CAS  PubMed  Google Scholar 

  50. Kondo T, Furuta T, Mitsunaga K et al. Genomic organization and expression analysis of the mouse qkI locus. Mamm Genome 1999; 10:662–669.

    Article  CAS  PubMed  Google Scholar 

  51. Wu J, Zhou L, Tonissen K et al. The quaking I-5 protein (QKI-5) has a novel nuclear localization signal and shuttles between the nucleus and the cytoplasm. J Biol Chem 1999; 274:29202–29210.

    Article  CAS  PubMed  Google Scholar 

  52. Li Z, Zhang Y, Li D et al. Destabilization and mislocalization of myelin basic protein mRNAs in quaking dysmyelination lacking the QKI RNA-binding proteins. J Neurosci 2000; 20:4944–4953.

    CAS  PubMed  Google Scholar 

  53. Wu JI, Reed RB, Grabowski PJ et al. Function of quaking in myelination: regulation of alternative splicing. Proc Natl Acad Sci USA 2002; 99:4233–4238.

    Article  CAS  PubMed  Google Scholar 

  54. Larocque D, Galarneau A, Liu HN et al. Protection of p27(Kip1) mRNA by quaking RNA binding proteins promotes oligodendrocyte differentiation. Nat Neurosci 2005; 8:27–33.

    Article  CAS  PubMed  Google Scholar 

  55. Zhao L, Ku L, Chen Y et al. QKI binds MAP1B mRNA and enhances MAP1B expression during oligodendrocyte development. Mol Biol Cell 2006; 17:4179–4186.

    Article  CAS  PubMed  Google Scholar 

  56. Saccomanno L, Loushin C, Jan E et al. The STAR protein QKI-6 is a translational repressor. Proc Natl Acad Sci USA 1999; 96:12605–12610.

    Article  CAS  PubMed  Google Scholar 

  57. Ainger K, Avossa D, Diana AS et al. Transport and localization elements in myelin basic protein mRNA. J Cell Biol 1997; 138:1077–1087.

    Article  CAS  PubMed  Google Scholar 

  58. Lukong KE, Richard S. Sam68, the KH domain-containing superSTAR. Biochim Biophys Acta 2003; 1653:73–86.

    CAS  PubMed  Google Scholar 

  59. Maguire ML, Guler-Gane G, Nietlispach D et al. Solution structure and backbone dynamics of the KH-QUA2 region of the Xenopus STAR/GSG quaking protein. J Mol Biol 2005; 348:265–279.

    Article  CAS  PubMed  Google Scholar 

  60. Kramer A, Utans U. Three protein factors (SF1, SF3 and U2AF) function in presplicing complex formation in addition to snRNPs. EMBO J 1991; 10:1503–1509.

    CAS  PubMed  Google Scholar 

  61. Arning S, Gruter P, Bilbe G et al. Mammalian splicing factor SF1 is encoded by variant cDNAs and binds to RNA. RNA 1996; 2:794–810.

    CAS  PubMed  Google Scholar 

  62. Berglund JA, Chua K, Abovich N et al. The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAC. Cell 1997; 89:781–787.

    Article  CAS  PubMed  Google Scholar 

  63. Gasteiger E, Gattiker A, Hoogland C et al. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 2003; 31:3784–3788.

    Article  CAS  PubMed  Google Scholar 

  64. Schwede T, Kopp J, Guex N et al. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 2003; 31:3381–3385.

    Article  CAS  PubMed  Google Scholar 

  65. Lehmann-Blount KA, Williamson JR. Shape-specific nucleotide binding of single-stranded RNA by the GLD-1 STAR domain. J Mol Biol 2005; 346:91–104.

    Article  CAS  PubMed  Google Scholar 

  66. Garrey SM, Cass DM, Wandler AM et al. Transposition of two amino acids changes a promiscuous RNA binding protein into a sequence-specific RNA binding protein. RNA 2008; 14:78–88.

    Article  CAS  PubMed  Google Scholar 

  67. Beuck C, Szymczyna BR, Kerkow DE et al. Structure of the GLD-1 homodimerization domain: insights into STAR protein-mediated translational regulation. Structure 2010; 18:377–389.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean P. Ryder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Ryder, S.P., Massi, F. (2010). Insights into the Structural Basis of RNA Recognition by Star Domain Proteins. In: Volk, T., Artzt, K. (eds) Post-Transcriptional Regulation by STAR Proteins. Advances in Experimental Medicine and Biology, vol 693. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7005-3_3

Download citation

Publish with us

Policies and ethics