Skip to main content

High-Temperature Molten Salts

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry
  • 266 Accesses

Introduction

Molten salts, together with their low-temperature analogues, the room-temperature ionic liquids, constitute a particular class of electrolytes which do not contain any solvent. They are composed of inorganic ions only: The cations (Mp+) are metallic species while the anions (Xq−) can either be halides (F, Cl, Br, I) or polyatomic species (NO3 and CO3 2− mainly); the archetypal molten salt is sodium chloride NaCl. Being solid at ambient conditions, these salts are generally used in high-temperature applications (it is worth noting that some compounds have relatively low melting points, e.g., NaAlCl4 melts at 152 °C).

Despite the fact that the most important industrial applications of molten salts have started at the beginning of the twentieth century with the large-scale production of aluminum, their structure has long remained largely unknown. Most of the short-range structural properties can be attributed to the competition between packing effects and electrostatic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edwards FG, Enderby JE, Howe RA, Page DI (1975) The structure of molten sodium chloride. J Phys C Solid State Phys 8:3483–3490

    CAS  Google Scholar 

  2. Papatheodorou GN (1977) Raman spectroscopic studies of yttrium (III) chloride-alkali metal chloride melts and of Cs2NaYCl6 and YCl3 solid compounds. J Chem Phys 66:2893–2900

    CAS  Google Scholar 

  3. Robert E, Olsen JE, Danek V, Tixhon E, Ostvold T, Gilbert B (1997) Structure and thermodynamics of alkali fluoride-aluminum fluoride – alumina melts. Vapor pressure, solubility, and Raman spectroscopic studies. J Phys Chem B 101:9447–9457

    CAS  Google Scholar 

  4. Lacassagne V, Bessada C, Florian P, Bouvet S, Ollivier B, Coutures JP, Massiot D (2002) Structure of high-temperature NaF-AlF3-Al2O3 melts: a multinuclear NMR study. J Phys Chem B 106:1862–1868

    CAS  Google Scholar 

  5. Rollet A-L, Bessada C, Auger Y, Melin P, Gailhanou M, Thiaudière D (2004) A new cell for high temperature EXAFS measurements in molten rare earth fluorides. Nucl Instrum Methods Phys Res, Sect B 226:447–452

    CAS  Google Scholar 

  6. Fumi FG, Tosi MP (1964) Ionic sizes + born repulsive parameters in NaCl-type alkali halides. I. Huggins-Mayer + Pauling form. J Phys Chem Solids 25:31–44

    CAS  Google Scholar 

  7. Madden PA, Wilson M (1996) “Covalent” effects in “ionic” systems. Chem Soc Rev 25:339–350

    CAS  Google Scholar 

  8. Salanne M, Madden PA (2011) Polarization effects in ionic solids and melts. Mol Phys 109:2299–2315

    CAS  Google Scholar 

  9. Pauvert O, Salanne M, Zanghi D, Simon C, Reguer S, Thiaudière D, Okamoto Y, Matsuura H, Bessada C (2011) Ion specific effects on the structure of molten AF-ZrF4 systems (A+ = Li+, Na+, and K+). J Phys Chem B 115:9160–9167

    CAS  Google Scholar 

  10. Salanne M, Simon C, Turq P, Madden PA (2007) Conductivity-viscosity-structure: unpicking the relationship in an ionic liquid. J Phys Chem B 111:4678–4684

    CAS  Google Scholar 

  11. Rollet A-L, Sarou-Kanian V, Bessada C (2009) Measuring self-diffusion coefficients up to 1500 K: a powerful tool to investigate the dynamics and the local structure of inorganic melts. Inorg Chem 48:10972–10975

    CAS  Google Scholar 

  12. Salanne M, Simon C, Groult H, Lantelme F, Goto T, Barhoun A (2009) Transport in molten LiF-NaF-ZrF4 mixtures: a combined computational and experimental approach. J Fluorine Chem 130:61–66

    CAS  Google Scholar 

  13. Angell CA (1992) Mobile ions in amorphous solids. Annu Rev Phys Chem 43:693–717

    CAS  Google Scholar 

  14. Benes O, Beilmann M, Konings RJM (2010) Thermodynamic assessment of the LiF-NaF-ThF4-UF4 system. J Nucl Mater 405:186–198

    CAS  Google Scholar 

  15. Cartlidge E (2011) Saving for a rainy day. Science 334:922–924

    Google Scholar 

  16. Jarayaman S, Thompson AP, von Lilienfeld OA (2011) Molten salt eutectics from atomistic simulations. Phys Rev E 84:030201

    Google Scholar 

  17. Bradwell DJ, Osswald S, Wei WF, Barriga SA, Ceder G, Sadoway DR (2011) Recycling ZnTe, CdTe, and other compound semiconductors by ambipolar electrolysis. J Am Chem Soc 133:19971–19975

    CAS  Google Scholar 

  18. Tremillon BL (1987) Acid base effects in molten electrolytes. In: Mamantov G, Marassi R (eds) Molten salt chemistry, NATO ASI series, series C: mathematical and physical sciences, vol 202. Springer: Dordrecht

    Google Scholar 

  19. Bieber AL, Massot L, Gibilaro M, Cassayre L, Chamelot P, Taxil P (2011) Fluoroacidity evaluation in molten salts. Electrochim Acta 56:5022–5027

    CAS  Google Scholar 

  20. Duffy JA, Ingram MD (1971) Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts, and glasses. J Am Chem Soc 93:6448–6454

    CAS  Google Scholar 

  21. Salanne M, Simon C, Madden PA (2011) Optical basicity scales in protic solvents: water, hydrogen fluoride, ammonia and their mixtures. Phys Chem Chem Phys 13:6305–6308

    CAS  Google Scholar 

  22. Bradwell DJ, Kim H, Sirk AHC, Sadoway DR (2012) Magnesium–antimony liquid metal battery for stationary energy storage. J Am Chem Soc 134:1895–1897

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Salanne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Salanne, M. (2014). High-Temperature Molten Salts. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_502

Download citation

Publish with us

Policies and ethics