Skip to main content

Regulation of Cytoskeletal Composition in Neurons: Transcriptional and Post-transcriptional Control in Development, Regeneration, and Disease

  • Chapter
  • First Online:
Cytoskeleton of the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 3))

Abstract

The neuronal cytoskeleton consists of microfilaments, microtubules, and neurofilaments, which are composed of actins, tubulins, and neurofilament proteins, respectively. Each of these polymers plays a distinctive role that is subserved from embryo to adult by modulating the relative mix of the different subtypes and isoforms of their constituent monomeric subunits. Expression levels of each of these cytoskeletal protein subunits are under tight spatial and temporal control, especially during neuronal process outgrowth. In the adult, aberrations in the normal patterns of expression of cytoskeletal subunits accompany the failure of axon outgrowth during regeneration and neurodegenerative disease. In some cases, these abnormal expression patterns directly contribute to the pathological state, whereas in others, they reflect defects in regulatory modules that couple expression of cytoskeletal subunits to that of other essential intracellular elements. This control is governed by a complex interplay of transcriptional and post-transcriptional gene regulatory mechanisms. This chapter focuses on current knowledge of how the composition of each neuronal cytoskeletal polymer changes during the life cycle of the neuron, as well as the cis-acting elements and trans-acting factors that operate at the transcriptional and post-transcriptional levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adjaye J, Plessmann U, Weber K, Dodemont H (1995) Characterisation of neurofilament protein NF70 mRNA from the gastropod Helix aspersa reveals that neuronal and non-neuronal intermediate filament proteins of cerebral ganglia arise from separate lamin-related genes. J Cell Sci 108:3581–3590

    CAS  PubMed  Google Scholar 

  • Amaya E, Kroll KL (1999) A method for generating transgenic frog embryos. Methods Mol Biol 97:393–414

    CAS  PubMed  Google Scholar 

  • Ananthakrishnan L, Gervasi C, Szaro BG (2008) Dynamic regulation of middle neurofilament (NF-M) RNA pools during optic nerve regeneration. Neuroscience 153:144–153

    CAS  PubMed  Google Scholar 

  • Ananthakrishnan L, Szaro BG (2009) Transcriptional and translational dynamics of light neurofilament subunit RNAs during Xenopus laevis optic nerve regeneration. Brain Res 1250:27–40

    CAS  PubMed  Google Scholar 

  • Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33:141–150

    CAS  PubMed  Google Scholar 

  • Antic D, Lu N, Keene JD (1999) ELAV tumor antigen, Hel-N1, increases translation of neurofilament M mRNA and induces formation of neurites in teratocarcinoma cells. Genes Dev 13:449–461

    CAS  PubMed  Google Scholar 

  • Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T et al. (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611

    CAS  PubMed  Google Scholar 

  • Asch WS, Leake D, Canger AK, Passini MA, Argenton F, Schechter N (1998) Cloning of zebrafish neurofilament cDNAs for plasticin and gefiltin: increased mRNA expression in ganglion cells after optic nerve injury. J Neurochem 71:20–32

    CAS  PubMed  Google Scholar 

  • Banerjee A, Roach MC, Wall KA, Lopata MA, Cleveland DW, Luduena RF (1988) A monoclonal antibody against the type II isotype of β-tubulin. J Biol Chem 265:1794–1799

    Google Scholar 

  • Barbee SA, Estes PS, Cziko AM, Hillebrand J, Luedeman RA et al. (2006) Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 52:997–1009

    CAS  PubMed  Google Scholar 

  • Bassell GJ, Zhang H, Byrd AL, Femino AM, Singer RH et al. (1998) Sorting of β-actin mRNA and protein to neurites and growth cones in culture. J Neurosci 18:251–265

    CAS  PubMed  Google Scholar 

  • Bates CA, Meyer RL (1993) The heavy neurofilament protein is expressed in regenerating adult but not embryonic mammalian optic fibers in vitro. Exp Neurol 119:249–257

    CAS  PubMed  Google Scholar 

  • Beaudet L, Charron G, Houle D, Tretjakoff I, Peterson A, Julien J-P (1992) Intragenic regulatory elements contribute to transcriptional control of the neurofilament light gene. Gene 116:205–214

    CAS  PubMed  Google Scholar 

  • Beaudet L, Cote F, Houle D, Julien J-P (1993) Different post transcriptional controls for the human neurofilament light and heavy genes in transgenic mice. Mol Brain Res 18:23–31

    CAS  PubMed  Google Scholar 

  • Beaulieu J-M, Jacomy H, Julien J-P (2000) Formation of intermediate filament protein aggregates with disparate effects in two transgenic mouse models lacking the neurofilament light subunit. J Neurosci 20:5321–5328

    CAS  PubMed  Google Scholar 

  • Beaulieu J-M, Nguyen MD, Julien J-P (1999) Late onset death of motor neurons in mice overexpressing wild-type peripherin. J Cell Biol 147:531–544

    CAS  PubMed  Google Scholar 

  • Beazley LD, Sheard PW, Tennant M, Starac D, Dunlop SA (1997) Optic nerve regenerates but does not restore topographic projections in the lizard Ctenophorus ornatus. J Comp Neurol 377:105–120

    CAS  PubMed  Google Scholar 

  • Belecky-Adams T, Wight DC, Kopchick JJ, Parysek LM (1993) Intragenic sequences are required for cell type-specific and injury-induced expression of the rat peripherin gene. J Neurosci 13:5056–5065

    CAS  PubMed  Google Scholar 

  • Bennett GS, Hollander BA, Laskowska D (1988) Expression and phosphorylation of the mid-sized neurofilament protein NF-M during chick spinal cord neurogenesis. J Neurosci Res 21:376–390

    CAS  PubMed  Google Scholar 

  • Benson DL, Mandell JW, Shaw G, Banker G (1996) Compartmentation of alpha-internexin and neurofilament triplet proteins in cultured hippocampal neurons. J Neurocytol 25:181–196

    CAS  PubMed  Google Scholar 

  • Bergeron C, Beric-Maskarel K, Muntasser S, Weyer L, Somerville MJ, Percy ME (1994) Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J Neuropathol Exp Neurol 53:221–230

    CAS  PubMed  Google Scholar 

  • Bignami A, Raju T, Dahl D (1982) Localization of vimentin, the nonspecific intermediate filament protein, in embryonal glia and in early differentiating neurons. Dev Biol 91:286–295

    CAS  PubMed  Google Scholar 

  • Boissonneault V, Plante I, Rivest S, Provost P (2009) MicroRNA-298 and microRNA-328 regulate expression of mouse β-amyloid precursor protein converting enzyme 1. J Biol Chem 284:1971–1981

    CAS  PubMed  Google Scholar 

  • Bomsztyk K, Denisenko O, Ostrowski J (2004) hnRNP K: one protein multiple processes. Bioessays 26:629–638

    CAS  PubMed  Google Scholar 

  • Bomsztyk K, Van Seuningen I, Suzuki H, Denisenko O, Ostrowski J (1997) Diverse molecular interactions of the hnRNP K protein. FEBS Lett 403:113–115

    CAS  PubMed  Google Scholar 

  • Boyne LJ, Fischer I, Shea TB (1996) Role of vimentin in early stages of neuritogenesis in cultured hippocampal neurons. Int J Dev Neurosci 14:739–748

    CAS  PubMed  Google Scholar 

  • Budhram-Mahadeo V, Morris PJ, Lakin ND, Theil T, Ching GY et al. (1995) Activation of the alpha-internexin promoter by the Brn-3a transcription factor is dependent on the N-terminal region of the protein. J Biol Chem 270:2853–2858

    CAS  PubMed  Google Scholar 

  • Buratti E, Baralle RE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878

    CAS  PubMed  Google Scholar 

  • Burgoyne RD, Cambray-Deakin MA, Lewis SA, Sarkar S, Cowan NJ (1988) Differential distribution of β-tubulin isotypes in cerebellum. EMBO J 7:2311–2319

    CAS  PubMed  Google Scholar 

  • Caccamo D, Katsetos CD, Herman MM, Frankfurter A, Collins VP, Rubinstein LJ (1989) Immunohistochemistry of a spontaneous murine ovarian teratoma with neuroepithelial differentiation. Neuron-associated β-tubulin as a marker for primitive neuroepithelium. Lab Invest 60:390–398

    CAS  PubMed  Google Scholar 

  • Campbell DS, Holt CE (2001) Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32:1013–1026

    CAS  PubMed  Google Scholar 

  • Cañete-Soler R, Reddy KS, Tolan DR, Zhai J (2005) Aldolases A and C are ribonucleolytic components of a neuronal complex that regulates the stability of the light neurofilament mRNA. J Neurosci 25:4353–4364

    PubMed  Google Scholar 

  • Cañete-Soler R, Schlaepfer WW (2000) Similar poly(C)-sensitive RNA-binding complexes regulate the stability of the heavy and light neurofilament mRNAs. Brain Res 867:265–279

    PubMed  Google Scholar 

  • Cañete-Soler R, Schwartz ML, Hua Y, Schlaepfer WW (1998) Characterization of ribonucleoprotein complexes and their binding sites on the neurofilament light subunit mRNA. J Biol Chem 273:12655–12661

    PubMed  Google Scholar 

  • Cañete-Soler R, Wu J, Zhai J, Shamin M, Schlaepfer WW (2001) p190RhoGEF binds to a destabilizing element in the 3UTR of NF-L mRNA and alters the stability of the transcript. J Biol Chem 276:32046–32050

    PubMed  Google Scholar 

  • Canger AK, Passini MA, Asch WS, Leake D, Zafonte BT et al. (1998) Restricted expression of the neuronal intermediate filament protein plasticin during zebrafish development. J Comp Neurol 399:561–572

    CAS  PubMed  Google Scholar 

  • Carden MJ, Trojanowski JQ, Schlaepfer WW, Lee VMY (1987) Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns. J Neurosci 7:3489–3504

    CAS  PubMed  Google Scholar 

  • Carvalho P, Tirnauer JS, Pellman D (2003) Surfing on microtubule ends. Trends Cell Biol 13:229–237

    CAS  PubMed  Google Scholar 

  • Chadan S, Moya KL, Portier M-M, Filliatreau G (1994) Identification of a peripherin dimer: changes during axonal development and regeneration of the rat sciatic nerve. J Neurochem 62:1894–1905

    CAS  PubMed  Google Scholar 

  • Chang L, Shav-Tal Y, Trcek T, Singer RH, Goldman RD (2006) Assembling an intermediate filament network by dynamic cotranslation. J Cell Biol 172:747–758

    CAS  PubMed  Google Scholar 

  • Chang L, Thompson MA (1996) Activity of the distal positive element of the peripherin gene is dependent on proteins binding to an Ets-like recognition site and a novel inverted repeat site. J Biol Chem 271:6467–6475

    CAS  PubMed  Google Scholar 

  • Charnas LR, Szaro BG, Gainer H (1992) Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein in Xenopus laevis. J Neurosci 12:3010–3024

    CAS  PubMed  Google Scholar 

  • Ching GY, Liem RKH (1991) Structure of the gene for the neuronal intermediate filament protein alpha internexin and functional analysis of its promoter. J Biol Chem 266:19459–19468

    CAS  PubMed  Google Scholar 

  • Cleveland DW, Monteiro MJ, Wong PC, Gill SR, Gearhart JD, Hoffman PN (1991) Involvement of neurofilaments in the radial growth of axons. J Cell Sci 15:85–95

    CAS  Google Scholar 

  • Cochard P, Paulin D (1984) Initial expression of neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryo in vivo. J Neurosci 4:2080–2094

    CAS  PubMed  Google Scholar 

  • Condeelis J, Singer RH (2005) How and why does β-actin mRNA target? Biol Cell 97:97–110

    CAS  PubMed  Google Scholar 

  • Couillard-Després S, Zhu Q, Wong PC, Price DL, Cleveland DW, Julien J-P (1998) Protective effect of neurofilament heavy gene overexpression in motor neuron disease induced by mutant superoxide dismutase. Proc Natl Acad Sci USA 95:9626–9630

    PubMed  Google Scholar 

  • Crispino M, Capano CP, Kaplan BB, Giuditta A (1993) Neurofilament proteins are synthesized in nerve endings from squid brain. J Neurochem 61:1144–1146

    CAS  PubMed  Google Scholar 

  • de Waegh S, Brady ST (1990) Altered slow axonal transport and regeneration in a myelin-deficient mutant mouse: the trembler as an in vivo model for Schwann cell-axon interactions. J Neurosci 10:1855–1865

    PubMed  Google Scholar 

  • de Waegh SM, Brady ST (1991) Local control of axonal properties by Schwann cells: neurofilaments and axonal transport in homologous and heterologous nerve grafts. J Neurosci Res 30:201–212

    PubMed  Google Scholar 

  • de Waegh S, Lee VMY, Brady ST (1992) Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68:451–463

    PubMed  Google Scholar 

  • Dejgaard K, Leffers H, Rasmussen HH, Madsen P, Kruse TA et al. (1994) Identification, molecular cloning, expression and chromosome mapping of a family of transformation upregulated hnRNP-K proteins derived by alternative splicing. J Mol Biol 236:33–48

    CAS  PubMed  Google Scholar 

  • Deshler JO, Highett MI, Abramson T, Schnapp BJ (1998) A highly conserved RNA-binding protein for cytoplasmic mRNA localization in vertebrates. Curr Biol 8:489–496

    CAS  PubMed  Google Scholar 

  • Dodemont H, Riemer D, Ledger N, Weber K (1994) Eight genes and alternative RNA processing pathways generate an unexpectedly large diversity of cytoplasmic intermediate filament proteins in the nematode Caenorhabditis elegans. EMBO J 13:2625–2638

    CAS  PubMed  Google Scholar 

  • Doolittle RF, York AL (2002) Bacterial actins? An evolutionary perspective. Bioessays 24:293–296

    CAS  PubMed  Google Scholar 

  • Duret L, Dorkeld F, Gautier C (1993) Strong conservation of non-coding sequences during vertebrate evolution: potential involvement in post-transcriptional regulation of gene expression. Nucleic Acids Res 21:2315–2322

    CAS  PubMed  Google Scholar 

  • Dworkin-Rastl E, Kelley DB, Dworkin MB (1986) Localization of specific mRNA sequences in Xenopus laevis embryos by in situ hybridization. J Embryol Exp Morphol 91:153–168

    CAS  PubMed  Google Scholar 

  • Easter SS Jr, Ross LS, Frankfurter A (1993) Initial tract formation in the mouse brain. J Neurosci 13:285–299

    PubMed  Google Scholar 

  • Elder GA, Friedrich VL Jr, Bosco P, Kang C, Giourov A et al. (1998a) Absence of the mid-sized neurofilament subunit decreases axonal calibers, levels of light neurofilament (NF-L) and neurofilament content. J Cell Biol 141:727–739

    CAS  PubMed  Google Scholar 

  • Elder GA, Friedrich VL Jr, Kang C, Bosco P, Gourov A et al. (1998b) Requirement of heavy neurofilament subunit in the development of axons with large calibers. J Cell Biol 143:195–205

    CAS  PubMed  Google Scholar 

  • Elder GA, Friedrich VL Jr, Zuozong L, Li X, Lazzarini RA (1994) Enhancer trapping by a human mid-sized neurofilament transgene reveals unexpected patterns of neuronal enhancer activity. Mol Brain Res 26:177–188

    CAS  PubMed  Google Scholar 

  • Elder G, Liang Z, Lee N, Fiedrich VL Jr, Lazzarini RA (1992a) Novel DNA binding proteins participate in the regulation of human neurofilament H gene expression. Mol Brain Res 15:85–98

    CAS  PubMed  Google Scholar 

  • Elder GA, Liang Z, Li C, Lazzarini RA (1992c) Targeting of Sp1 to a non-Sp1 site in the human neurofilament (H) promoter via an intermediary DNA-binding protein. Nucleic Acids Res 20:6281–6285

    CAS  PubMed  Google Scholar 

  • Elder G, Liang Z, Snyder SE, Lazzarini RA (1992b) Multiple nuclear factors interact with the promoter of the human neurofilament M gene. Mol Brain Res 15:99–107

    CAS  PubMed  Google Scholar 

  • Elder GA, Liang Z, Snyder SE, Lazzarini RA (1992d) Multiple nuclear factors interact with the promoter of the human neurofilament M gene. Mol Brain Res 15:99–107

    CAS  PubMed  Google Scholar 

  • Erber A, Riemer D, Bovenschulte M, Weber K (1998) Molecular phylogeny of metazoan intermediate filament proteins. J Mol Evol 47:751–762

    CAS  PubMed  Google Scholar 

  • Escurat M, Djabali K, Gumpel M, Gros F, Portier M-M (1990) Differential expression of two neuronal intermediate-filament proteins, peripherin and the low-molecular-mass neurofilament protein (NF-L), during the development of the rat. J Neurosci 10:764–784

    CAS  PubMed  Google Scholar 

  • Eyer J, Peterson A (1994) Neurofilament-deficient axons and perikaryal aggregates in viable transgenic mice expressing a neurofilament-beta-galacotsidase fusion protein. Neuron 12:389–405

    CAS  PubMed  Google Scholar 

  • Fausett BV, Gumerson JD, Goldman D (2008) The proneural basic helix-loop-helix gene Ascl1a is required for retina regeneration. J Neurosci 28:1109–1117

    CAS  PubMed  Google Scholar 

  • Fliegner KH, Kaplan MP, Wood TL, Pintar JE, Liem RKH (1994) Expression of the gene for the neuronal intermediate filament protein alpha-internexin coincides with the onset of neuronal differentiation in the developing rat nervous system. J Comp Neurol 342:161–173

    CAS  PubMed  Google Scholar 

  • Fremeau RT Jr, Lundblad JR, Pritchett DB, Wilcox JN, Roberts JL (1986) Regulation of pro-opiomelanocortin gene transcription in individual cell nuclei. Science 234:1265–1269

    CAS  PubMed  Google Scholar 

  • Friede RL, Samorajski T (1970) Axon caliber related to neurofilaments and microtubules in sciatic nerves of rats and mice. Anat Rec 167:379–388

    CAS  PubMed  Google Scholar 

  • Fuchs C, Glasgow E, Hitchcock PF, Schechter N (1994) Plasticin, a newly identified neurofilament protein, is preferentially expressed in young retinal ganglion cells of adult goldfish. J Comp Neurol 350:452–462

    CAS  PubMed  Google Scholar 

  • Gallo G, Letourneau PC (1999) Different contributions of microtubule dynamics and transport to the growth of axons and collateral sprouts. J Neurosci 19:3860–3873

    CAS  PubMed  Google Scholar 

  • Gao F-B (2008) Posttranscriptional control of neuronal development by microRNA networks. Trends Neurosci 31:20–26

    PubMed  Google Scholar 

  • Garcia ML, Lobsiger CS, Shah SB, Deerinck TJ, Crum J et al. (2003) NF-M is an essential target for the myelin-directed “outside-in” signaling cascade that mediates radial axonal growth. J Cell Biol 163:1011–1020

    CAS  PubMed  Google Scholar 

  • Ge WW, Leystra-Lantz C, Wen W, Strong MJ (2003) Selective loss of trans-acting instability determinants of neurofilament mRNA in amyotrophic lateral sclerosis spinal cord. J Biol Chem 278:26558–26563

    CAS  PubMed  Google Scholar 

  • Ge WW, Volkening K, Leystra-Lantz C, Jaffe H, Strong MJ (2007) 14-3-3 protein binds to the low molecular weight neurofilament (NFL) mRNA 3UTR. Mol Cell Neurosci 34:80–87

    CAS  PubMed  Google Scholar 

  • Ge WW, Wen W, Strong WL, Leystra-Lantz C, Strong MJ (2005) Mutant copper/zinc superoxide dismutase binds to and destabilizes human low molecular weight neurofilament mRNA. J Biol Chem 280:118–124

    CAS  PubMed  Google Scholar 

  • Ge W, Wu J, Zhai J, Nie Z, Lin H et al. (2002) Binding of p190RhoGEF to a destabilizing element on the light neurofilament mRNA is competed by BC1 mRNA. J Biol Chem 277:42701–42705

    CAS  PubMed  Google Scholar 

  • Geisert EE Jr, Frankfurter A (1989) The neuronal response to injury as visualized by immunostaining of class III β-tubulin in the rat. Neurosci Lett 102:137–141

    PubMed  Google Scholar 

  • Gervasi C, Stewart C-B, Szaro BG (2000) Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons. J Comp Neurol 423:512–531

    CAS  PubMed  Google Scholar 

  • Gervasi C, Thyagarajan A, Szaro BG (2003) Increased expression of multiple neurofilament mRNAs during regeneration of vertebrate central nervous system axons. J Comp Neurol 461:262–275

    CAS  PubMed  Google Scholar 

  • Glasgow E, Druger RK, Fuchs C, Lane WS, Schechter N (1994a) Molecular cloning of gefiltin (ON1): serial expression of two new neurofilament mRNAs during optic nerve regeneration. EMBO J 13:297–305

    CAS  PubMed  Google Scholar 

  • Glasgow E, Druger RK, Fuchs C, Levine EM, Giordano S, Schechter N (1994b) Cloning of multiple forms of goldfish vimentin: differential expression in CNS. J Neurochem 63:470–481

    CAS  PubMed  Google Scholar 

  • Glasgow E, Druger RK, Levine EM, Fuchs C, Schechter N (1992) Plasticin, a novel type III neurofilament protein from goldfish retina: increased expression during optic nerve regeneration. Neuron 9:373–381

    CAS  PubMed  Google Scholar 

  • Glasgow E, Hall CM, Schechter N (1994c) Organization, sequence, and expression of a gene encoding goldfish neurofilament medium protein. J Neurochem 63:52–61

    CAS  PubMed  Google Scholar 

  • Gloster A, El-Bizri H, Bamji SX, Rogers D, Miller FD (1999) Early induction of Tα1 α-tubulin transcription in neurons of the developing nervous system. J Comp Neurol 405:45–60

    CAS  PubMed  Google Scholar 

  • Gloster A, Wu W, Speelman A, Weiss S, Causing C et al. (1994) The T alpha 1 alpha-tubulin promoter specifies gene expression as a function of neuronal growth and regeneration in transgenic mice. J Neurosci 14:7319–7330

    CAS  PubMed  Google Scholar 

  • Goldman D, Hankin M, Li Z, Dai X, Ding J (2001) Transgenic zebrafish for studying nervous system development and regeneration. Transgenic Res 10:21–33

    CAS  PubMed  Google Scholar 

  • Goldstein ME, Weiss SR, Lazzarini RA, Shneidman PS, Lees JF, Schlaepfer WW (1988) mRNA levels of all three neurofilament proteins decline following nerve transection. Brain Res 427:287–291

    CAS  PubMed  Google Scholar 

  • Goldstone K, Sharpe CR (1998) The expression of Xif3 in undifferentiated anterior neuroectoderm, but not in primary neurons, is induced by the neuralizing agent noggin. Int J Dev Biol 42:757–762

    CAS  PubMed  Google Scholar 

  • Good PJ, Richter K, Dawid IB (1989) The sequence of a nervous system-specific, class II β-tubulin gene from Xenopus laevis. Nucleic Acids Res 17:8000

    CAS  PubMed  Google Scholar 

  • Gorham JD, Baker H, Kegler D, Ziff EB (1990) The expression of the neuronal intermediate filament protein peripherin in the rat embryo. Dev Brain Res 57:235–248

    CAS  Google Scholar 

  • Gu W, Pan F, Zhang H, Bassell GJ, Singer RH (2002) A predominantly nuclear protein affecting cytoplasmic localization of β-actin mRNA in fibroblasts and neurons. J Cell Biol 156:41–51

    CAS  PubMed  Google Scholar 

  • Gulati-Leekha A, Goldman D (2006) A reporter-assisted mutagenesis screen using α1-tubulin-GFP transgenic zebrafish uncovers missteps during neuronal development and axonogenesis. Dev Biol 296:29–47

    CAS  PubMed  Google Scholar 

  • Hall CM, Schechter N (1991) Expression of neuronal intermediate filament proteins ON1 and ON2 during goldfish optic nerve regeneration: effect of tectal ablation. Neuroscience 41:695–701

    CAS  PubMed  Google Scholar 

  • Hannan AJ, Gunning P, Jeffrey PL, Weinberger RP (1998) Structural compartments within neurons: developmentally regulated organization of microfilament isoform mRNA and protein. Mol Cell Neurosci 11:289–304

    CAS  PubMed  Google Scholar 

  • Hayakawa K, Ono S, Nagaoka R, Saitoh O, Obinata T (1996) Differential assembly of cytoskeletal and sarcomeric actins in developing skeletal muscle cells in vitro. Zoolog Sci 13:509–517

    CAS  PubMed  Google Scholar 

  • Heacock AM, Agranoff BW (1976) Enhanced labeling of a retinal protein during regeneration of optic nerve in goldfish. Proc Natl Acad Sci USA 73:828–832

    CAS  PubMed  Google Scholar 

  • Hemmati-Brivanlou A, Mann RW, Harland RM (1992) A protein expressed in the growth cones of embryonic vertebrate neurons defines a new class of intermediate filament protein. Neuron 9:417–428

    CAS  PubMed  Google Scholar 

  • Herrmann H, Fouquet B, Franke WW (1989) Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin. Development 195:279–298

    Google Scholar 

  • Hieber V, Dai X, Foreman M, Goldman D (1998) Induction of α1-tubulin gene expression during development and regeneration of the fish central nervous system. J Neurobiol 37:429–440

    CAS  PubMed  Google Scholar 

  • Hill MA, Gunning P (1993) Beta and gamma actin mRNAs are differentially located within myoblasts. J Cell Biol 122:825–832

    CAS  PubMed  Google Scholar 

  • Hisanaga S-I, Uchida A, Tashiro T, Komiya Y, Yorifuji H et al. (2004) Morphological and biochemical changes of neurofilaments in aged rat sciatic nerve axons. J Neurochem 88:735–745

    PubMed  Google Scholar 

  • Hoffman P, Cleveland DW (1988) Neurofilament and tubulin expression recapitulates the developmental program during axonal regeneration: induction of a specific β-tubulin isotype. Proc Natl Acad Sci USA 85:4530–4533

    CAS  PubMed  Google Scholar 

  • Hoffman PN, Cleveland DW, Griffin JW, Landes PW, Cowan NJ, Price DL (1987) Neurofilament gene expression: a major determinant of axonal caliber. Proc Natl Acad Sci USA 84:3472–3476

    CAS  PubMed  Google Scholar 

  • Hoffman PN, Griffin JW, Price DL (1984) Control of axonal caliber by neurofilament transport. J Cell Biol 99:705–714

    CAS  PubMed  Google Scholar 

  • Howard J, Hyman AA (2003) Dynamics and mechanics of the microtubule plus end. Nature 422:753–758

    CAS  PubMed  Google Scholar 

  • Huang JK, Dorey K, Ishibashi S, Amaya E (2007) BDNF promotes target innervation of Xenopus mandibular trigeminal axons in vivo. BMC Dev Biol 7:59

    PubMed  Google Scholar 

  • Irwin N, Baekelandt V, Goritchenko L, Benowitz LI (1997) Identification of two proteins that bind to a pyrimidine-rich sequence in the 3-untranslated region of GAP-43 mRNA. Nucleic Acids Res 25:1281–1288

    CAS  PubMed  Google Scholar 

  • Jabri E (2005) P-bodies take a RISC. Nat Struct Mol Biol 12:564

    CAS  PubMed  Google Scholar 

  • Jacobs AJ, Kamholz J, Selzer ME (1995) The single lamprey neurofilament subunit (NF-180) lacks multiphosphorylation repeats and is expressed selectively in projection neurons. Mol Brain Res 29:43–52

    CAS  PubMed  Google Scholar 

  • Jacobs AJ, Swain GP, Snediker JA, Pijak DS, Gladstone LJ, Selzer ME (1997) Recovery of neurofilament expression selectively in regenerating reticulospinal neurons. J Neurosci 17:5206–5220

    CAS  PubMed  Google Scholar 

  • Jiang XM, Zhao JX, Ohnishi A, Itakura C, Mizutani M et al. (1996) Regeneration of myelinated fiber after crush injury is retarded in sciatic nerves of mutant Japanese quails deficient in neurofilaments. Acta Neuropathol (Berl) 92:467–472

    CAS  Google Scholar 

  • Jin L-Q, Zhang G, Selzer ME (2005) Lamprey neurofilaments contain a previously unreported 50-kDa protein. J Comp Neurol 483:403–414

    CAS  PubMed  Google Scholar 

  • Johansson CB, Lothian C, Molin M, Okano H, Lendahl U (2002) Nestin enhancer requirements for expression in normal and injured adult CNS. J Neurosci Res 69:784–794

    CAS  PubMed  Google Scholar 

  • Johnston JA, Dalton MJ, Gurney ME, Kopito RR (2000) Formation of high molecular weight complexes of mutant, Cu,Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 97:12571–12576

    CAS  PubMed  Google Scholar 

  • Jones LJF, Carballido-Lopez R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922

    CAS  PubMed  Google Scholar 

  • Joshi HC, Cleveland DW (1989) Differential utilization of the available β-tubulin isotypes in differentiating neurites. J Cell Biol 109:663–673

    CAS  PubMed  Google Scholar 

  • Kaplan MP, Chin SSM, Fliegner KH, Liem RKH (1990) Alpha-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain. J Neurosci 10:2735–2748

    CAS  PubMed  Google Scholar 

  • Kawaguchi A, Miyata T, Sawamoto K, Takashita N, Murayama A et al. (2001) Nestin-EGFP transgenic mice: visualization of the self-renewal and multipotency of CNS stem cells. Mol Cell Neurosci 17:259–273

    CAS  PubMed  Google Scholar 

  • Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J et al. (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169:871–884

    CAS  PubMed  Google Scholar 

  • Keene JD, Tenenbaum SA (2002) Eukaryotic mRNPs may represent posttranscriptional operons. Mol Cell 9:1161–1167

    CAS  PubMed  Google Scholar 

  • Kim O-K, Ariano MA, Lazzarini RA, Levine MS, Sibley DR (2002) Neurofilament-M interacts with the D1 dopamine receptor to regulate cell surface expression and desensitization. J Neurosci 22:5920–5930

    CAS  PubMed  Google Scholar 

  • Kislauskis EH, Zhu X, Singer RH (1994) Sequences responsible for intracellular localization of β-actin messenger RNA also affect cell phenotype. J Cell Biol 127:441–451

    CAS  PubMed  Google Scholar 

  • Klimek-Tomczak K, Mikula M, Dzwonek A, Paziewska A, Karczmarski J et al. (2006) Editing of hnRNP K protein mRNA in colorectal adenocarcinoma and surrounding mucosa. Br J Cancer 94:586–592

    CAS  PubMed  Google Scholar 

  • Koenig E (1991) Evaluation of local synthesis of axonal proteins in the goldfish Mauthner cell axon and axons of dorsal and ventral roots of the rat in vitro. Mol Cell Neurosci 2:384–394

    CAS  PubMed  Google Scholar 

  • Koenig E, Giuditta A (1999) Protein-synthesizing machinery in the axon compartment. Neurosci 89:5–15

    CAS  Google Scholar 

  • Kong JM, Tung VWY, Aghajanian J, Xu ZS (1998) Antagonistic roles of neurofilament subunits NF-H and NF-M against NF-L in shaping dendritic arborization in spinal motor neurons. J Cell Biol 140:1167–1176

    CAS  PubMed  Google Scholar 

  • Kost SA, Chacko K, Oblinger MM (1992) Developmental patterns of intermediate filament gene expression in the normal hamster brain. Brain Res 595:270–280

    CAS  PubMed  Google Scholar 

  • Krapp A, Knofler M, Frutiger S, Hughes GJ, Hagenbuchle O, Wellauer PK (1996) The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein. EMBO J 15:4317–4329

    CAS  PubMed  Google Scholar 

  • Landon F, Lemonnier M, Benarous R, Huc C, Fiszman M et al. (1989) Multiple mRNAs encode peripherin, a neuronal intermediate filament protein. EMBO J 8:1719–1726

    CAS  PubMed  Google Scholar 

  • Landon F, Wolff A, de Nechaud B (2000) Mouse peripherin isoforms. Biol Cell 92:397–407

    CAS  PubMed  Google Scholar 

  • Lariviére RC, Julien J-P (2004) Functions of intermediate filaments in neuronal development and disease. J Neurobiol 58:131–148

    PubMed  Google Scholar 

  • Lasek RJ, Phillips L, Katz MJ, Autilo-Gambetti L (1985) Function and evolution of neurofilament proteins. Ann NY Acad Sci 455:462–478

    CAS  PubMed  Google Scholar 

  • Lee MK, Xu Z, Wong PC, Cleveland DW (1993) Neurofilaments are obligate heteropolymers in vivo. J Cell Biol 122:1337–1350

    CAS  PubMed  Google Scholar 

  • Leigh PN, Dodson A, Swash M, Brion JP, Anderton BH (1989) Cytoskeletal abnormalities in motor neuron disease. An immunocytochemical study. Brain 112:521–535

    PubMed  Google Scholar 

  • Lendahl U, Zimmerman LB, McKay RDG (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595

    CAS  PubMed  Google Scholar 

  • Leonard DGB, Gorham JD, Cole P, Greene LA, Ziff EB (1988) A nerve growth factor-regulated messenger RNA encodes a new intermediate filament protein. J Cell Biol 106:181–193

    CAS  PubMed  Google Scholar 

  • Leung K-M, van Horck FPG, Lin AC, Allison R, Standart N, Holt CE (2006) Asymmetrical β-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat Neurosci 9:1247–1256

    CAS  PubMed  Google Scholar 

  • Lewis SA, Lee MG, Cowan NJ (1985) Five mouse tubulin isotypes and their regulated expression during development. J Cell Biol 101:852–861

    CAS  PubMed  Google Scholar 

  • Lin CH, Espreafico EM, Mooseker MS, Forscher P (1997) Myosin drives retrograde F-actin flow in neuronal growth cones. Biol Bull 192:183–185

    CAS  PubMed  Google Scholar 

  • Lin AC, Holt CE (2008) Function and regulation of local axonal translation. Curr Opin Neurobiol 18:60–68

    CAS  PubMed  Google Scholar 

  • Lin W, Szaro BG (1995) Neurofilaments help maintain normal morphologies and support elongation of neurites in Xenopus laevis cultured embryonic spinal cord neurons. J Neurosci 15:8331–8344

    CAS  PubMed  Google Scholar 

  • Lin H, Zhai J, Schlaepfer WW (2005) RNA-binding protein is involved in aggregation of light neurofilament protein and is implicated in the pathogenesis of motor neuron degeneration. Hum Mol Genet 14:3463–3659

    Google Scholar 

  • Lindenbaum MH, Carbonetto S, Grosveld F, Flavell D, Mushynski WE (1998) Transcriptional and post-transcriptional effects of nerve growth factor on expression of the three neurofilament subunits in PC-12 cells. J Biol Chem 263:5662–5667

    Google Scholar 

  • Liu X, Fortin K, Mourleatos Z (2008a) MicroRNAs: biogenesis and molecular functions. Brain Pathol 18:113–121

    CAS  PubMed  Google Scholar 

  • Liu L, Geisert EE, Frankfurter A, Spano AJ, Jiang CX et al. (2007) A transgenic mouse class-III β-tubulin reporter using yellow fluorescent protein. Genesis 45:560–569

    CAS  PubMed  Google Scholar 

  • Liu Y, Gervasi C, Szaro BG (2008b) A crucial role for hnRNP K in axon development in Xenopus laevis. Development 135:3125–3135

    CAS  PubMed  Google Scholar 

  • Liuzzi FJ, Tedeschi B (1992) Axo-glial interactions at the dorsal root transitional zone regulate neurofilament protein synthesis in axotomized sensory neurons. J Neurosci 12:4783–4792

    CAS  PubMed  Google Scholar 

  • Lopata MA, Cleveland DW (1987) In vivo microtubules are copolymers of available beta-tubulin isotypes: localization of each of six vertebrate beta-tubulin isotypes using polyclonal antibodies elicited by synthetic peptide antigens. J Cell Biol 105:11707–11720

    Google Scholar 

  • Lothian C, Lendahl U (1997) An evolutionarily conserved region in the second intron of the human nestin gene directs gene expression to CNS progenitor cells and to early neural crest cells. Eur J Neurosci 9:452–462

    CAS  PubMed  Google Scholar 

  • Lowery AJ, Miller N, McNeill RE, Kerin MJ (2008) MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast cancer management. Clin Cancer Res 14:360–365

    CAS  PubMed  Google Scholar 

  • Ludueña RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275

    PubMed  Google Scholar 

  • Mahler J, Driever W (2007) Expression of the zebrafish intermediate neurofilament nestin in the developing nervous system and in neural proliferation zones at postembryonic stages. BMC Dev Biol 7:89

    PubMed  Google Scholar 

  • Makeyev AV, Liebhaber SA (2002) The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms. RNA 8:265–278

    CAS  PubMed  Google Scholar 

  • Manetto V, Sternberger NH, Perry G, Sternberger LA, Gambetti P (1988) Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 47:642–653

    CAS  PubMed  Google Scholar 

  • Marsh-Armstrong N, Huang H, Berry DL, Brown DS (1999) Germ-line transmission of transgenes in Xenopus laevis. Proc Natl Acad Sci USA 96:14389–14393

    CAS  PubMed  Google Scholar 

  • Marszalek JR, Williamson TL, Lee MK, Xu ZS, Hoffman PN et al. (1996) Neurofilament subunit NF-H modulates axonal diameter by selectively slowing neurofilament transport. J Cell Biol 135:711–724

    CAS  PubMed  Google Scholar 

  • McGraw TS, Mickle JP, Shaw G, Streit WJ (2002) Axonally transported peripheral signals regulate alpha-internexin expression in regenerating motoneurons. J Neurosci 22:4955–4963

    CAS  PubMed  Google Scholar 

  • McKerracher L, Essagian C, Aguayo AJ (1993) Marked increase in beta-tubulin mRNA expression during regeneration of axotomized retinal ganglion cells in adult mammals. J Neurosci 13:5294–5300

    CAS  PubMed  Google Scholar 

  • McLean JR, Leystra-Lantz C, He BP, Strong MJ (2005) Temporal profiles of neuronal degeneration, glial proliferation, and cell death in hNFL+/+ and NFL–/– mice. Glia 52:59–69

    PubMed  Google Scholar 

  • McLean J, Xiao S, Miyazaki K, Robertson J (2008) A novel peripherin isoform generated by alternative translation is required for normal filament network formation. J Neurochem 104:1663–1673

    CAS  PubMed  Google Scholar 

  • Meier J, Couillard-Després S, Jacomy H, Gravel C, Julien J-P (1999) Extra neurofilament NF-L subunits rescue motor neuron disease caused by overexpression of the human NF-H gene in mice. J Neuropathol Exp Neurol 58:1099–1110

    CAS  PubMed  Google Scholar 

  • Menard C, Hein P, Paquin A, Savelson A, Yang XM et al. (2002) An essential role for a MEK-C/EBP pathway during growth factor-regulated cortical neurogenesis. Neuron 36:597–610

    CAS  PubMed  Google Scholar 

  • Menezes JRL, Luskin MB (1994) Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. J Neurosci 14:5399–5416

    CAS  PubMed  Google Scholar 

  • Menzies FM, Grierson AJ, Cookson MR, Heath PR, Tomkins J et al. (2002) Selective loss of neurofilament expresion in Cu/Zn superoxide dismutase (SOD1) linked amyotrophic lateral sclerosis. J Neurochem 82:1118–1128

    CAS  PubMed  Google Scholar 

  • Mikucki SA, Oblinger MM (1991) Corticospinal neurons exhibit a novel pattern of cytoskeletal gene expression after injury. J Neurosci Res 30:213–225

    CAS  PubMed  Google Scholar 

  • Mikula M, Dzwonek A, Karczmarksi J, Rubel T, Dadlez M et al. (2006a) Landscape of the hnRNP K protein-protein interactome. Proteomics 6:2395–2406

    CAS  PubMed  Google Scholar 

  • Mikula M, Karczmarski J, Dzwonek A, Rubel T, Hennig W et al. (2006b) Casein kinases phosphorylate multiple residues spanning the entire hnRNP K length. Biochim Biophys Acta 1764:299–306

    CAS  PubMed  Google Scholar 

  • Miller FD, Naus CCG, Durand M, Bloom FE, Milner RJ (1987) Isotypes of α-tubulin are differentially regulated during neuronal maturation. J Cell Biol 105:3065–3073

    CAS  PubMed  Google Scholar 

  • Miller FD, Tetzlaff W, Bisby MA, Fawcett JW, Milner RJ (1989) Rapid induction of the major embryonic α-tubulin, Tα1, during nerve regeneration in adult rats. J Neurosci 9:1452–1463

    CAS  PubMed  Google Scholar 

  • Mitchison T, Kirschner M (1988) Cytoskeletal dynamics and nerve growth. Neuron 1:761–772

    CAS  PubMed  Google Scholar 

  • Moody SA, Miller V, Spanos A, Frankfurter A (1996) Developmental expression of a neuron-specific beta-tubulin in frog (Xenopus laevis): a marker for growing axons during the embryonic period. J Comp Neurol 364:219–230

    CAS  PubMed  Google Scholar 

  • Moody SA, Quigg MS, Frankfurter A (1989) Development of peripheral trigeminal system in the chick revealed by an isotype-specific anti-β-tubulin monoclonal antibody. J Comp Neurol 279:567–580

    CAS  PubMed  Google Scholar 

  • Moore MJ (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science 309:1514–1518

    CAS  PubMed  Google Scholar 

  • Moskowitz PF, Oblinger MM (1995) Transcriptional and post-transcriptional mechanisms regulating neurofilament and tubulin gene expression during normal development of the rat brain. Mol Brain Res 30:211–222

    CAS  PubMed  Google Scholar 

  • Muma NA, Hoffman PN, Slunt HH, Applegate MD, Lieberburg I, Price DL (1990) Alterations in levels of mRNAs coding for neurofilament protein subunits during regeneration. Exp Neurol 107:230–235

    CAS  PubMed  Google Scholar 

  • Muma NA, Slunt HH, Hoffman PN (1991) Postnatal increases in neurofilament gene expression correlate with the radial growth of axons. J Neurocytol 20:844–854

    CAS  PubMed  Google Scholar 

  • Murayama S, Bouldin TW, Suzuki K (1992) Immunocytochemical and ultrastructural studies of upper motor neurons in amyotrophic lateral sclerosis. Acta Neuropathol 83:518–524

    CAS  PubMed  Google Scholar 

  • Nadeau S, Hein P, Fernandes KJL, Peterson AC, Miller FD (2005) A transcriptional role for C/EBP β in the neuronal response to axonal injury. Mol Cell Neurosci 29:525–535

    CAS  PubMed  Google Scholar 

  • Napier A, Yuan A, Cole GJ (1999) Characterization of the chicken transitin gene reveals a strong relationship to the nestin intermediate filament class. J Mol Neurosci 12:11–22

    CAS  PubMed  Google Scholar 

  • Nelson PT, Keller JN (2007) RNA in brain disease: no longer just “the messenger in the middle”. Neuropathol Exp Neurol 66:461–468

    CAS  Google Scholar 

  • Nelson PT, Wang W-X, Rajeev BW (2008) MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol 18:130–138

    CAS  PubMed  Google Scholar 

  • Nerlov C (2008) C/EBPs: recipients of extracellular signals through proteome modulation. Curr Opin Cell Biol 20:180–185

    CAS  PubMed  Google Scholar 

  • Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    CAS  PubMed  Google Scholar 

  • Nie Z, Wu J, Shai J, Lin H, Ge W et al. (2002) Untranslated element in neurofilament mRNA has neuropathic effect on motor neurons of transgenic mice. J Neurosci 22:7662–7770

    CAS  PubMed  Google Scholar 

  • Niloff MS, Dunn RJ, Levine RL (1998) The levels of retinal mRNA for gefiltin, a neuronal intermediate filament protein, are regulated by the tectum during optic nerve regeneration in the goldfish. Mol Brain Res 61:78–89

    CAS  PubMed  Google Scholar 

  • Oblinger MM, Wong J, Parysek LM (1989) Axotomy-induced changes in the expression of a type III neuronal intermediate filament. J Neurosci 9:3766–3775

    CAS  PubMed  Google Scholar 

  • Oleynikov Y, Singer RH (2003) Real-time visualization of ZBP1 association with β-actin mRNA during transcription and localization. Curr Biol 13:199–207

    CAS  PubMed  Google Scholar 

  • Omary MB, Coulombe PA, McLean WH (2004) Intermediate filament proteins and their associated diseases. N Engl J Med 351:2087–2100

    CAS  PubMed  Google Scholar 

  • Oschwald R, Richter K, Grunz H (1991) Localization of a nervous system-specific class II β-tubulin gene in Xenopus laevis embryos by whole-mount in situ hybridization. Int J Dev Biol 35:399–405

    CAS  PubMed  Google Scholar 

  • Ostareck-Lederer A, Ostareck DH, Hentze MW (1998) Cytoplasmic regulatory functions of the KH domain proteins hnRNPs K and E1/E2. Trends Biochem Sci 23:409–411

    CAS  PubMed  Google Scholar 

  • Ostrowski J, Kawata Y, Schullery DS, Denisenko ON, Higaki Y et al. (2001) Insulin alters heterogenous nuclear ribonucleoprotein K protein binding to DNA and RNA. Proc Natl Acad Sci USA 98:9044–9049

    CAS  PubMed  Google Scholar 

  • Pachter JS, Liem RKH (1984) The differential appearance of neurofilament triplet polypeptides in the developing rat optic nerve. Dev Biol 103:200–210

    CAS  PubMed  Google Scholar 

  • Parhad IM, Clark AW, Griffin JW (1987) Effect of changes in neurofilament content on caliber of small axons: the beta-beta’ iminodipropionitrile model. J Neurosci 7:2256–2263

    CAS  PubMed  Google Scholar 

  • Perrone-Bizzozero NI, Neve RL, Irwin N, Lewis S, Fischer I, Benowitz LI (1991) Post-transcriptional regulation of GAP-43 mRNA levels during neuronal differentiation and nerve regeneration. Mol Cell Neurosci 2:402–409

    CAS  PubMed  Google Scholar 

  • Petersohn D, Schoch S, Brinkman DR, Thiel G (1995) The human synapsin II gene promoter. Possible role for the transcription factor zif268/egr-1, polyoma enhancer activator 3, and AP2. J Biol Chem 270:24361–24369

    CAS  PubMed  Google Scholar 

  • Phillips L, Autilo-Gambetti L, Lasek RJ (1983) Bodian’s silver method reveals molecular variation in the evolution of neurofilament proteins. Brain Res 278:219–223

    CAS  PubMed  Google Scholar 

  • Pillai RS (2005) MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11:1753–1761

    CAS  PubMed  Google Scholar 

  • Piper M, Anderson R, Dwivedy A, Weihl C, van Horck F et al. (2006) Signaling mechanisms underlying Slit2-induced collapse of Xenopus retinal growth cones. Neuron 49:215–228

    CAS  PubMed  Google Scholar 

  • Pleasure SJ, Selzer ME, Lee VMY (1989) Lamprey neurofilaments combine in one subunit the features of each mammalian NF triplet protein but are highly phosphorylated only in large axons. J Neurosci 9:698–709

    CAS  PubMed  Google Scholar 

  • Pospelov VA, Pospelova TV, Julien J-P (1994) AP-1 and Krox-24 transcription factors activate the neurofilament light gene promoter in P19 embryonal carcinoma cells. Cell Growth Differ 5:187–196

    CAS  PubMed  Google Scholar 

  • Quitschke W, Schechter N (1986) Homology and diversity between intermediate filament proteins of neuronal and nonneuronal origin in the goldfish optic nerve. J Neurochem 46:545–555

    CAS  PubMed  Google Scholar 

  • Rao MV, Garcia ML, Miyazaki Y, Gotow T, Yuan A et al. (2002) Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport. J Cell Biol 158:681–693

    CAS  PubMed  Google Scholar 

  • Richter K, Grunz H, Dawid IB (1988) Gene expression in the embryonic nervous system of Xenopus laevis. Proc Natl Acad Sci USA 85:8086–8090

    CAS  PubMed  Google Scholar 

  • Robertson J, Doroudchi MM, Nguyen MD, Durham HD, Strong MJ et al. (2003) A neurotoxic peripherin splice variant in a mouse model of ALS. J Cell Biol 160:939–949

    CAS  PubMed  Google Scholar 

  • Rodger J, Bartlett CA, Harman AM, Thomas C, Beazley LD, Dunlop SA (2001) Evidence that regenerating optic axons maintain long-term growth in the lizard Ctenophorus ornatus: growth-associated protein-43 and gefiltin expression. Neurosci 102:647–654

    CAS  Google Scholar 

  • Rommelaere H, Waterschoot D, Neirynck K, Vanderkerckhove J, Ampe C (2004) A method for rapidly screening functionality of actin mutants and tagged actins. Biol Proced Online 6:235–249

    CAS  PubMed  Google Scholar 

  • Roosa JR, Gervasi C, Szaro BG (2000) Structure, biological activity of the upstream regulatory sequence, and conserved domains of a middle molecular mass neurofilament gene of Xenopus laevis. Mol Brain Res 82:35–51

    CAS  PubMed  Google Scholar 

  • Ross AF, Oleynikov Y, Kislauskis EH, Taneja KL, Singer RH (1997) Characterization of a β-actin mRNA zipcode-binding protein. Mol Cell Biol 17:2158–2165

    CAS  PubMed  Google Scholar 

  • Rossi JJ (2005) RNAi and the P-body connection. Nat Cell Biol 7:643–644

    CAS  PubMed  Google Scholar 

  • Saba R, Goodman CD, Huzarewich RLCH, Robertson C, Booth SA (2008) miRNA signature of prion induced neurodegeneration. PLoS One 3:e3652

    PubMed  Google Scholar 

  • Sakaguchi T, Okada M, Kitamura T, Kawasaki K (1993) Reduced diameter and conduction velocity of myelinated fibers in the sciatic nerve of a neurofilament-deficient mutant quail. Neurosci Lett 153:65–68

    CAS  PubMed  Google Scholar 

  • Sanelli T, Ge W, Leystra-Lantz C, Strong MJ (2007) Calcium mediated excitotoxicity in neurofilament aggregate bearing neurons in vitro is NMDA receptor dependent. J Neurol Sci 256:39–51

    CAS  PubMed  Google Scholar 

  • Sanelli T, Sopper MM, Strong MJ (2004) Sequestration of nNOS in neurofilamentous aggregate bearing neurons leads to enhanced glutamate-mediated calcium influx. Brain Res 1004:8–17

    CAS  PubMed  Google Scholar 

  • Sanelli T, Strong MJ (2007) Loss of nitric oxide-mediated down-regulation of NMDA receptors in neurofilament aggregate-bearing motor neurons in vitro: implications for motor neuron disease. Free Radic Biol Med 42:143–151

    CAS  PubMed  Google Scholar 

  • Schlaepfer WW, Bruce J (1990) Simultaneous up-regulation of neurofilament proteins during the postnatal development of the rat nervous system. J Neurosci Res 25:39–49

    CAS  PubMed  Google Scholar 

  • Schmid E, Tapscott S, Bennett GS, Croop J, Fellini SA et al. (1979) Differential location of different types of intermediate-sized filaments in various tissues of the chicken embryo. Differentiation 15:27–40

    CAS  PubMed  Google Scholar 

  • Schoenherr CJ, Paquette AJ, Anderson DJ (1996) Identification of potential target genes for the neuron-restrictive silencer factor. Proc Natl Acad Sci USA 93:9881–9886

    CAS  PubMed  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME et al. (2006) A brain-specific microRNA regualtes dendritic spine development. Nature 439:283–289

    CAS  PubMed  Google Scholar 

  • Schwartz ML, Shneidman PS, Bruce J, Schlaepfer WW (1990) Axonal dependency of the postnatal upregulation in neurofilament expression. J Neurosci Res 27:193–201

    CAS  PubMed  Google Scholar 

  • Schwartz ML, Shneidman PS, Bruce J, Schlaepfer WW (1992) Actinomycin prevents the destabilization of neurofilament mRNA in primary sensory neurons. J Biol Chem 267:24596–24600

    CAS  PubMed  Google Scholar 

  • Schwarz PM, Liggins JR, Ludueña RF (1998) Beta-tubulin isotypes purified from bovine brain have different relative stabilities. Biochemistry 37:4687–4692

    CAS  PubMed  Google Scholar 

  • Scott D, Smith KE, O’Brien BJ, Angelides KJ (1985) Characterization of mammalian neurofilament triplet proteins: subunit stoichiometry and morphology of native and reconstituted filaments. J Biol Chem 260:10736–10747

    CAS  PubMed  Google Scholar 

  • Senut M-C, Gulati-Leekha A, Goldman D (2004) An element in the α1-tubulin promoter is necessary for retinal expression during optic nerve regeneration but not after eye injury in the adult zebrafish. J Neurosci 24:7663–7673

    CAS  PubMed  Google Scholar 

  • Sharpe CR (1988) Developmental expression of a neurofilament-M and two vimentin- like genes in Xenopus laevis. Development 103:269–277

    CAS  PubMed  Google Scholar 

  • Sharpe CR, Pluck A, Gurdon JB (1989) XIF3, a Xenopus peripherin gene, requires an inductive signal for enhanced expression in anterior neural tissue. Development 107:701–714

    CAS  PubMed  Google Scholar 

  • Shaw G (1992) A neurofilament-specific sequence motif. Trends Biochem Sci 17:3405

    Google Scholar 

  • Shaw G, Weber K (1982) Differential expression of neurofilament triplet proteins in brain development. Nature 298:277–279

    CAS  PubMed  Google Scholar 

  • Shea TB, Beermann ML (1999) Neuronal intermediate filament protein alpha-internexin facilitates axonal neurite elongation in neuroblastoma cells. Cell Motil Cytoskeleton 43:322–333

    CAS  PubMed  Google Scholar 

  • Shneidman PS, Bruce J, Schwartz ML, Schlaepfer WW (1992) Negative regulatory regions are present upstream in the three mouse neurofilament genes. Mol Brain Res 13:127–138

    CAS  PubMed  Google Scholar 

  • Smith CL (1994) The initiation of neurite outgrowth by sympathetic neurons grown in vitro does not depend on assembly of microtubules. J Cell Biol 127:1407–1418

    CAS  PubMed  Google Scholar 

  • Sotelo-Silveira JR, Calliari A, Kun A, Benech JC, Sanguinetti C et al. (2000) Neurofilament mRNAs are present and translated in the normal and severed sciatic nerve. J Neurosci Res 62:65–74

    CAS  PubMed  Google Scholar 

  • Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C et al. (2008) TDP-43 mutations in familial and amyotrophic lateral sclerosis. Science 319:1668–1672

    CAS  PubMed  Google Scholar 

  • Steinert PM, Roop DR (1988) Molecular and cellular biology of intermediate filaments. Annu Rev Biochem 57:593–625

    CAS  PubMed  Google Scholar 

  • Strong MJ (1999) Neurofilament metabolism in sporadic amyotrophic lateral sclerosis. J Neurol Sci 169:170–177

    CAS  PubMed  Google Scholar 

  • Strong MJ (2010) The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS). J Neurol Sci 288:1–12

    CAS  PubMed  Google Scholar 

  • Strong MJ, Leystra-Lantz C, Ge WW (2004) Intermediate filament steady-state mRNA levels in amyotrophic lateral sclerosis. Biochem Biophys Res Commun 316:317–322

    CAS  PubMed  Google Scholar 

  • Strong MJ, Sopper MM, He BP (2003) In vitro reactive nitrating species toxicity in dissociated spinal motor neurons from NFL (–/–) and hNFL (+/+) transgenic mice. Amyotroph Lateral Scler Other Motor Neuron Disord 4:81–89

    CAS  PubMed  Google Scholar 

  • Strong MJ, Volkening K, Hammond R, Yang W, Strong W et al. (2007) TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol Cell Neurosci 35:320–327

    CAS  PubMed  Google Scholar 

  • Sun BK, Tsao H (2008) Small RNAs in development and disease. J Am Acad Dermatol 59:725–737

    PubMed  Google Scholar 

  • Sundell CL, Singer RH (1991) Requirements of microfilaments in sorting of actin messenger RNA. Science 253:1275–1277

    CAS  PubMed  Google Scholar 

  • Szaro BG, Gainer H (1988a) Identities, antigenic determinants, and topographic distributions of neurofilament proteins in the nervous systems of adult frogs and tadpoles of Xenopus laevis. J Comp Neurol 273:344–358

    CAS  PubMed  Google Scholar 

  • Szaro BG, Gainer H (1988b) Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system. Dev Brain Res 43:207–224

    CAS  Google Scholar 

  • Szaro BG, Lee VMY, Gainer H (1989) Spatial and temporal expression of phosphorylated and non-phosphorylated forms of neurofilament proteins in the developing nervous system of Xenopus laevis. Dev Brain Res 48:87–103

    CAS  Google Scholar 

  • Szaro BG, Pant HC, Way J, Battey J (1991) Squid low molecular weight neurofilament proteins are a novel class of neurofilament protein. J Biol Chem 266:15035–15041

    CAS  PubMed  Google Scholar 

  • Tanaka E, Ho T, Kirschner MW (1995) The role of microtubule dynamics in growth cone motility and axonal growth. J Cell Biol 128:139–155

    CAS  PubMed  Google Scholar 

  • Tanaka EM, Kirschner MW (1991) Microtubule behavior in the growth cones of living neurons during axon elongation. J Cell Biol 115:345–363

    CAS  PubMed  Google Scholar 

  • Tang DM, Lee KY, Qi Z, Matsuura I, Wang JH (1996) Neuronal Cdc2-like kinase: from cell cycle to neuronal function. Biochem Cell Biol 74:419–429

    CAS  PubMed  Google Scholar 

  • Tapscott SJ, Bennett GS, Toyama Y, Kleinbart F, Holtzer H (1981) Intermediate filament proteins in the developing chick spinal cord. Dev Biol 86:40–54

    CAS  PubMed  Google Scholar 

  • Thompson MA, Ziff EB (1989) Structure of the gene encoding peripherin, an NGF-regulated neuronal-specific type III intermediate filament protein. Neuron 2:1043–1053

    CAS  PubMed  Google Scholar 

  • Thyagarajan A, Szaro BG (2004) Phylogenetically conserved binding of specific KH domain proteins to the 3 untranslated region of the vertebrate middle neurofilament mRNA. J Biol Chem 279:49680–49688

    CAS  PubMed  Google Scholar 

  • Thyagarajan A, Szaro BG (2008) Dynamic endogenous association of neurofilament mRNAs with K-homology domain ribonucleoproteins in developing cerebral cortex. Brain Res 1189:33–42

    CAS  PubMed  Google Scholar 

  • Troy CM, Brown K, Greene LA, Shelanski ML (1990a) Ontogeny of the neuronal intermediate filament protein, peripherin, in the mouse embryo. Neuroscience 36:217–237

    CAS  PubMed  Google Scholar 

  • Troy CM, Muma NA, Greene LA, Price DL, Shelanski ML (1990b) Regulation of peripherin and neurofilament expression in regenerating rat motor neurons. Brain Res 529:232–238

    CAS  PubMed  Google Scholar 

  • Undamatla J, Szaro BG (2001) Differential expression and localization of neuronal intermediate filament proteins within newly developing neurites in dissociated cultures of Xenopus laevis embryonic spinal cord. Cell Motil Cytoskeleton 49:16–32

    CAS  PubMed  Google Scholar 

  • Uveges TE, Shan Y, Kramer BE, Wight DC, Parysek LM (2002) Intron 1 is required for cell type-specific, but not injury responsive, peripherin gene expression. J Neurosci 22:7959–7967

    CAS  PubMed  Google Scholar 

  • van den Ent F, Amos LA, Lowe J (2001) Prokaryotic origin of the actin cytoskeleton. Nature 416:39–44

    Google Scholar 

  • van Kesteren RE, Carter C, Dissel HM, van Minnen J, Gouwenberg Y et al. (2006) Local synthesis of actin-binding protein β-thymosin regulates neurite outgrowth. J Neurosci 26:152–157

    PubMed  Google Scholar 

  • Vize PD, Hemmati-Brivanlou A, Harland RM, Melton DA (1991) Assays for gene function in developing Xenopus embryos. In: Kay BK, Peng HB (ed) Xenopus laevis: practical uses in cell and molecular biology. Academic Press, San Diego, CA, pp 368–388

    Google Scholar 

  • Volkening K, Leystra Lantz C, Yang WC, Jaffe H, Strong MJ (2009b) Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res 1305:168–182

    CAS  PubMed  Google Scholar 

  • Volkening K, Leystra-Lantz C, Strong MJ (2009a) Human low molecular weight neurofilament (NFL) mRNA interacts with a predicted p190RhoGEF homologue (RGNEF). Amyotroph lateral Scler 1:1–7 [Epub ahead of print]

    Google Scholar 

  • Walker KL, Yoo H-K, Undamatla J, Szaro BG (2001) Loss of neurofilaments alters axonal growth dynamics. J Neurosci 21:9655–9666

    CAS  PubMed  Google Scholar 

  • Wang H, Peiris H, Mowery A, Le Lay J, Gao Y, Greenbaum LE (2008) CCAAT/Enhancer binding protein-β is a transcriptional regulator of peroxisome-proliferator-activated receptor-γ coactivator-1α in the regenerating liver. Mol Endocrinol 22:1596–1605

    CAS  PubMed  Google Scholar 

  • Way J, Hellmich MR, Jaffe H, Szaro BG, Pant HC et al. (1992) A high-molecular-weight squid neurofilament protein contains a lamin-like rod domain and a tail domain of Lys-Ser-Pro repeats. Proc Natl Acad Sci USA 89:6963–6967

    CAS  PubMed  Google Scholar 

  • Weinberger R, Schevzov G, Jeffrey P, Gordon K, Hill M, Gunning P (1996) The molecular composition of neuronal microfilaments is spatially and temporally regulated. J Neurosci 16:238–252

    CAS  PubMed  Google Scholar 

  • Weiner OD, Zorn AM, Krieg PA, Bittner GD (1996) Medium weight neurofilament mRNA in goldfish Mauthner axoplasm. Neurosci Lett 213:83–86

    CAS  PubMed  Google Scholar 

  • Willis DE, van Niekerk EA, Sasaki Y, Mesngon M, Merianda TT et al. (2007) Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J Cell Biol 178:965–980

    CAS  PubMed  Google Scholar 

  • Wong N, He BP, Strong MJ (2000) Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J Neuropathol Exp Neurol 59:972–982

    CAS  PubMed  Google Scholar 

  • Wong J, Oblinger MM (1990) Differential regulation of peripherin and neurofilament gene expression in regenerating rat DRG neurons. J Neurosci Res 27:332–341

    CAS  PubMed  Google Scholar 

  • Wu W, Gloster A, Miller FD (1997) Transcriptional repression of the growth-associated T alpha1 tubulin gene by target contact. J Neurosci Res 48:477–487

    CAS  PubMed  Google Scholar 

  • Wu KY, Hengst U, Cox LJ, Macosko EZ, Jeromin A et al. (2005) Local translation of RhoA regulates growth cone collapse. Nature 436:1020–1024

    CAS  PubMed  Google Scholar 

  • Xiao S, McLean J, Robertson J (2006) Neuronal intermediate filaments and ALS: a new look at an old question. Biochim Biophys Acta 1762:1001–1012

    CAS  PubMed  Google Scholar 

  • Yamasaki H, Bennett GS, Itakura C, Mizutani M (1992) Defective expression of neurofilament protein subunits in hereditary hypotrophic axonopathy of quail. Lab Invest 66:734–743

    CAS  PubMed  Google Scholar 

  • Yamasaki H, Itakura C, Mizutani M (1991) Hereditary hypotrophic axonopathy with neurofilament deficiency in a mutant strain of the Japanese quail. Acta Neuropathol 82:427–434

    CAS  PubMed  Google Scholar 

  • Yano M, Okano HJ, Okano H (2005) Involvement of Hu and heterogeneous nuclear ribonucleoprotein K in neuronal differentiation through p21 mRNA post-transcriptional regulation. J Biol Chem 280:12690–12699

    CAS  PubMed  Google Scholar 

  • Yao J, Sasaki Y, Wen Z, Bassell GJ, Zheng JQ (2006) An essential role for beta-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nat Neurosci 9:1265–1273

    CAS  PubMed  Google Scholar 

  • Yazdanbakhsh K, Fraser P, Kioussis D, Vidal M, Grosveld F, Lindenbaum M (1994) Functional analysis of the human neurofilament light chain gene promoter. Nucl Acids Res 21:455–461

    Google Scholar 

  • Yuan Y, Lee JA, Napier A, Cole GJ (1997) Molecular cloning of a new intermediate filament protein expressed by radial glia and demonstration of alternative splicing in a novel heptad repeat region located in the carboxy-terminal tail domain. Mol Cell Neurosci 10:71–86

    CAS  PubMed  Google Scholar 

  • Yuan A, Rao MV, Sasaki T, Chen Y, Kumar A et al. (2006) Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J Neurosci 26:10006–10019

    CAS  PubMed  Google Scholar 

  • Yue C, Mutsuga N, Scorkalakes EM, Gainer H (2006) Studies of oxytocin and vasopressin gene expression in the rat hypothalamus using exon- and intron-specific probes. Am J Physiol Regul Integr Comp Physiol 290:R1233–R1241

    CAS  PubMed  Google Scholar 

  • Zhai J, Lin H, Shamin M, Schlaepfer WW, Cañete-Soler R (2001) Identification of a novel interaction of 14-3-3 with p190RhoGef. J Biol Chem 276:41318–41324

    CAS  PubMed  Google Scholar 

  • Zhao Y, Szaro BG (1994) The return of phosphorylated and nonphosphorylated epitopes of neurofilament proteins to the regenerating optic nerve of Xenopus laevis. J Comp Neurol 343:158–172

    CAS  PubMed  Google Scholar 

  • Zhao Y, Szaro BG (1995) The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis. J Neurosci 15:4629–4640

    CAS  PubMed  Google Scholar 

  • Zhao Y, Szaro BG (1997a) Xefiltin, a new low molecular weight neuronal intermediate filament protein of Xenopus laevis, shares sequence features with goldfish gefiltin and mammalian alpha-internexin and differs in expression from XNIF and NF-L. J Comp Neurol 377:351–364

    CAS  PubMed  Google Scholar 

  • Zhao Y, Szaro BG (1997b) Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration. J Neurobiol 33:811–824

    CAS  PubMed  Google Scholar 

  • Zhu Q, Couillard-Despres S, Julien J-P (1997) Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol 148:299–316

    CAS  PubMed  Google Scholar 

  • Zimmerman L, Parr B, Lendahl U, Cunningham M, McKay R et al. (1994) Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 12:11–24

    CAS  PubMed  Google Scholar 

  • Zopf D, Dineva B, Betz H, Gundelfinger ED (1990) Isolation of the chicken middle molecular weight neurofilament (NF-M) gene and characterization of its promoter. Nucleic Acids Res 18:521–529

    CAS  PubMed  Google Scholar 

  • Zopf D, Hermans-Borgmeyer I, Gundelfinger ED, Betz H (1987) Identification of gene products expressed in the developing chick visual system: characterization of a middle-molecular weight neurofilament cDNA. Genes and Dev 1:699–708

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work from the authors’ laboratories is supported by grants from the National Science Foundation (BGS), the ALS Association (MJS), the Muscular Dystrophy Association – Tucson (MJS), the Canadian Institutes of Health Research (MJS), and the ALS Society of Canada (MJS). The authors thank John Schmidt, Kurt Gibbs, and Yuanyuan Liu for editorial comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben G. Szaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Szaro, B.G., Strong, M.J. (2011). Regulation of Cytoskeletal Composition in Neurons: Transcriptional and Post-transcriptional Control in Development, Regeneration, and Disease. In: Nixon, R., Yuan, A. (eds) Cytoskeleton of the Nervous System. Advances in Neurobiology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6787-9_24

Download citation

Publish with us

Policies and ethics