Skip to main content

Use of Fast-Responding Voltage-Sensitive Dyes for Large-Scale Recording of Neuronal Spiking Activity with Single-Cell Resolution

  • Chapter
  • First Online:
Membrane Potential Imaging in the Nervous System

Abstract

Optical recording with fast voltage sensitive dyes makes it possible, in suitable preparations, to simultaneously monitor the action potentials of large numbers of individual neurons. Here we describe methods for doing this, including considerations of different dyes and imaging systems, methods for correlating the optical signals with their source neurons, procedures for getting good signals, and the use of Independent Component Analysis for spike-sorting raw optical data into single neuron traces. These combined tools represent a powerful approach for large-scale recording of neural networks with high temporal and spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129–1159.

    Article  PubMed  CAS  Google Scholar 

  • Boyle MB, Cohen LB, Macagno ER, Orbach H (1983) The number and size of neurons in the CNS of gastropod molluscs and their suitability for optical recording of activity. Brain Res 266:305–317.

    Article  PubMed  CAS  Google Scholar 

  • Brown GD, Yamada S, Sejnowski TJ (2001) Independent component analysis at the neural cocktail party. Trends Neurosci 24:54–63.

    Article  PubMed  CAS  Google Scholar 

  • Brown GD, Yamada S, Nakashima M, Moore-Kochlacs C, Sejnowski TJ (2008) Independent component analysis of optical recordings from Tritonia swimming neurons. In: Technical Report INC-08-001, Institute for Neural Computation, University of California at San Diego.

    Google Scholar 

  • Carlson GC, Coulter DA (2008) In vitro functional imaging in brain slices using fast voltage-sensitive dye imaging combined with whole-cell patch recording. Nat Protoc 3:249–255.

    Article  PubMed  CAS  Google Scholar 

  • Chang PY, Jackson MB (2003) Interpretation and optimization of absorbance and fluorescence signals from voltage-sensitive dyes. J Membr Biol 196:105–116.

    Article  PubMed  CAS  Google Scholar 

  • Cohen L, Hopp HP, Wu JY, Xiao C, London J (1989) Optical measurement of action potential activity in invertebrate ganglia. Annu Rev Physiol 51:527–541.

    Article  PubMed  CAS  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21.

    Article  PubMed  Google Scholar 

  • Ebner TJ, Chen G (1995) Use of voltage-sensitive dyes and optical recordings in the central nervous system. Prog Neurobiol 46:463–506.

    Article  PubMed  CAS  Google Scholar 

  • Falk CX, Wu J, Cohen LB, Tang AC (1993) Nonuniform expression of habituation in the activity of distinct classes of neurons in the Aplysia abdominal ganglion. J Neurosci 13:4072–4081.

    PubMed  CAS  Google Scholar 

  • Frost WN, Wang J, Brandon CJ (2007) A stereo-compound hybrid microscope for combined intracellular and optical recording of invertebrate neural network activity. J Neurosci Methods 162:148–154.

    Article  PubMed  Google Scholar 

  • Greenberg DS, Houweling AR, Kerr JN (2008) Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nat Neurosci 11:749–751.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald A, Salzberg BM, Cohen LB (1977) Simultaneous recording from ­several neurones in an invertebrate central nervous system. Nature (Lond) 268:140–142.

    Article  CAS  Google Scholar 

  • Hickie C, Cohen LB, Balaban PM (1997) The synapse between LE sensory neurons and gill motoneurons makes only a small contribution to the Aplysia gill-withdrawal reflex. Eur J Neurosci 9:627–636.

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Zhang RJ, Wu JY (2002) Voltage-sensitive dye imaging of population neuronal activity in cortical tissue. J Neurosci Methods 115:13–27.

    Article  PubMed  Google Scholar 

  • Kerr JN, Greenberg D, Helmchen F (2005) Imaging input and output of neocortical networks in vivo. Proc Natl Acad Sci U S A 102:14063–14068.

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Hosono T, Fujito Y, Ito E (2001) Optical detection of neuromodulatory effects of conditioned taste aversion in the pond snail Lymnaea stagnalis. J Neurobiol 49:118–128.

    Article  PubMed  CAS  Google Scholar 

  • Kosmidis EK, Cohen LB, Falk CX, Wu JY, Baker BJ (2005) Imaging with voltage-sensitive dyes: spike signals, population signals, and retrograde transport. In: Yuste R, Konnerth A (eds) Imaging in neuroscience and development. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • London JA, Zecevic D, Cohen LB (1987) Simultaneous optical recording of activity from many neurons during feeding in Navanax. J Neurosci 7:649–661.

    PubMed  CAS  Google Scholar 

  • Momose-Sato Y, Sato K et al. (1999) Evaluation of voltage-sensitive dyes for long-term recording of neural activity in the hippocampus. J Membr Biol 172:145–157.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima M, Yamada S, Shiono S, Maeda M, Satoh F (1992) 448-Detector optical recording system: development and application to Aplysia gill-withdrawal reflex. IEEE Trans Biomed Eng 39:26–36.

    Article  PubMed  CAS  Google Scholar 

  • Neunlist M, Peters S, Schemann M (1999) Multisite optical recording of excitabi­lity in the enteric nervous system. Neurogastroenterol Motil 11:393–402.

    Article  PubMed  CAS  Google Scholar 

  • Nikitin ES, Balaban PM (2000) Optical recording of odor-evoked responses in the olfactory brain of the naive and aversively trained terrestrial snails. Learn Membr 7:422–432.

    Article  CAS  Google Scholar 

  • Obaid AL, Koyano T, Lindstrom J, Sakai T, Salzberg BM (1999) Spatiotemporal patterns of activity in an intact mammalian network with single-cell resolution: optical studies of nicotinic activity in an enteric plexus. J Neurosci 19:3073–3093.

    PubMed  CAS  Google Scholar 

  • Obaid AL, Loew LM, Wuskell JP, Salzberg BM (2004) Novel naphthylstyryl-pyridium potentiometric dyes offer advantages for neural network analysis. J Neurosci Methods 134:179–190.

    Article  PubMed  CAS  Google Scholar 

  • Parsons TD, Salzberg BM, Obaid AL, Raccuia-Behling F, Kleinfeld D (1991) Long-term optical recording of patterns of electrical activity in ensembles of cultured Aplysia neurons. J Neurophysiol 66:316–333.

    PubMed  CAS  Google Scholar 

  • Salzberg BM, Grinvald A, Cohen LB, Davila HV, Ross WN (1977) Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. J Neurophysiol 40:1281–1291.

    PubMed  CAS  Google Scholar 

  • Sato TR, Gray NW, Mainen ZF, Svoboda K (2007) The functional microarchitecture of the mouse barrel cortex. PLoS Biol 5:e189.

    Article  PubMed  Google Scholar 

  • Schemann M, Michel K, Peters S, Bischoff SC, Neunlist M (2002) Cutting-edge technology. III. Imaging and the gastrointestinal tract: mapping the human enteric nervous system. Am J Physiol Gastrointest Liver Physiol 282:G919–G925.

    PubMed  CAS  Google Scholar 

  • Senseman DM (1996) High-speed optical imaging of afferent flow through rat olfactory bulb slices: voltage-sensitive dye signals reveal periglomerular cell activity. J Neurosci 16:313–324.

    PubMed  CAS  Google Scholar 

  • Sinha SR, Saggau P (1999) Optical recording from populations of neurons in brain slices. In: Johanson H, Windhorst U (eds) Modern techniques in neuroscience research. Springer Verlag, Berlin.

    Google Scholar 

  • Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100:7319–7324.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Sasaki T, Usami A, Matsuki N, Ikegaya Y (2007) Watching neuronal circuit dynamics through functional multineuron calcium imaging (fMCI). Neurosci Res 58:219–225.

    Article  PubMed  CAS  Google Scholar 

  • Tsau Y, Wu J, Hopp H, Cohen LB, Schiminovich D, Falk CX. (1994) Distributed aspects of the response to siphon touch in Aplysia: spread of stimulus information and cross-correlation analysis. J Neurosci 14:4167–4184.

    PubMed  CAS  Google Scholar 

  • Vanden Berghe P, Bisschops R, Tack J (2001) Imaging of neuronal activity in the gut. Curr Opin Pharmacol 1:563–567.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Jing G, Perry S, Bartoli F, Tatic-Lucic S (2009) Spectral characterization of the voltage-sensitive dye di-4-ANEPPDHQ applied to probing live primary and immortalized neurons. Opt Express 17:984–990.

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Cohen LB, Falk CX (1994a) Neuronal activity during different behaviors in Aplysia: a distributed organization? Science 263:820–823.

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Tsau Y, Hopp H, Cohen LB, Tang AC, Falk CX (1994b) Consistency in nervous systems: trial-to-trial and animal-to-animal variations in the responses to repeated applications of a sensory stimulus in Aplysia. J Neurosci 14:1366–1384.

    PubMed  CAS  Google Scholar 

  • Yagodin S, Collin C, Alkon DL, Sheppard NF Jr, Sattelle DB (1999) Mapping membrane potential transients in crayfish (Procambarus clarkii) optic lobe neuropils with voltage-sensitive dyes. J Neurophysiol 81:334–344.

    PubMed  CAS  Google Scholar 

  • Yang S, Doi T, Asako M, Matsumoto-Ono A, Kaneko T, Yamashita T (2000) Multiple-site optical recording of mouse brainstem evoked by vestibulocochlear nerve stimulation. Brain Res 877:95–100.

    Article  PubMed  CAS  Google Scholar 

  • Yuste R (2008) Circuit neuroscience: the road ahead. Front Neurosci 2:6–9.

    Article  PubMed  Google Scholar 

  • Zecevic D, Wu J, Cohen LB, London JA, Hopp H, Falk CX (1989) Hundreds of neurons in the Aplysia abdominal gang­lion are active during the gill-withdrawal reflex. J Neurosci 9:3681–3689.

    PubMed  CAS  Google Scholar 

  • Zochowski M, Cohen LB, Fuhrmann G, Kleinfeld D (2000a) Distributed and partially separate pools of neurons are correlated with two different components of the gill-withdrawal reflex in Aplysia. J Neurosci 20:8485–8492.

    PubMed  CAS  Google Scholar 

  • Zochowski M, Wachowiak M, Falk CX, Cohen LB, Lam YW, Antic S, Zecevic D (2000b) Imaging membrane potential with voltage-sensitive dyes. Biol Bull 198:1–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NS060921, Dart Foundation and Grass Foundation Marine Biological Laboratory summer fellowships, the Fred B. Snite Foundation, Rosalind Franklin University of Medicine and Science (WF), and the Howard Hughes Medical Institute (TS). We thank JY Wu, LB Cohen and L Eliot for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Frost, W.N., Wang, J., Brandon, C.J., Moore-Kochlacs, C., Sejnowski, T.J., Hill, E.S. (2010). Use of Fast-Responding Voltage-Sensitive Dyes for Large-Scale Recording of Neuronal Spiking Activity with Single-Cell Resolution. In: Canepari, M., Zecevic, D. (eds) Membrane Potential Imaging in the Nervous System. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6558-5_5

Download citation

Publish with us

Policies and ethics