Skip to main content

Memory T-Cell Responses and Survival in Human Cancer: Remember to Stay Alive

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 684))

Abstract

Cancer is a major public health problem worldwide. Accumulating evidence suggests that tumor-host interactions may in part impact on tumor progression. However, the role of inflammation and adaptive immune reaction in cancer emergence, local and metastatic invasion and recurrence are still not clearly defined. Pro-inflammatory mediators are suspected to favor tumor growth and angiogenesis and naturally generated T cells with antigenic specificity to tumor associated antigens were usually in a state of anergy. Nevertheless, experiments in mouse and human showed a significant association between high density of tumor infiltrating T cells and improved cancer prognosis. Recently, the global analysis of colorectal cancer microenvironment demonstrated that a strong and coordinated Th1 adaptive immune response within primary tumors dramatically reduced the risks of relapse events. Interestingly the absence of early signs of metastatic invasion (lymphovascular emboli) correlated with a significant increase of the density of memory T cells in situ. This chapter presents the arguments supporting the existence of immunosurveillance mechanisms in human cancer. We will discuss the potent role of memory T cells in cancer immunity as well as the opportunities of therapeutic strategies uncovered by this new area of investigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  2. Steeg PS, Ouatas T, Halverson D et al. Metastasis suppressor genes: basic biology and potential clinical use. Clin Breast Cancer 2003; 4(1):51–62.

    Article  CAS  PubMed  Google Scholar 

  3. Sobin LH, Greene FL. Global TNM advisory group. Cancer 2004; 100(5):1106.

    Article  PubMed  Google Scholar 

  4. Dukes CE. The classification of cancer of the rectum. J Pathol 1932(35):323.

    Google Scholar 

  5. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol 2004; 22:329–360.

    Article  CAS  PubMed  Google Scholar 

  6. Dunn GP, Bruce AT, Ikeda H et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3(11):991–998.

    Article  CAS  PubMed  Google Scholar 

  7. Dunn GP, Bruce AT, Sheehan KC et al. A critical function for type I interferons in cancer immunoediting. Nat Immunol 2005; 6(7):722–729.

    Article  CAS  PubMed  Google Scholar 

  8. Rivoltini L, Carrabba M, Huber V et al. Immunity to cancer: attack and escape in T-lymphocyte-tumor cell interaction. Immunol Rev 2002; 188:97–113.

    Article  CAS  PubMed  Google Scholar 

  9. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004; 21(2):137–148.

    Article  CAS  PubMed  Google Scholar 

  10. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917):860–867.

    Article  CAS  PubMed  Google Scholar 

  11. Philip M, Rowley DA, Schreiber H. Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol 2004; 14(6):433–439.

    Article  CAS  PubMed  Google Scholar 

  12. Moore RJ, Owens DM, Stamp G et al. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat Med 1999; 5(7):828–831.

    Article  CAS  PubMed  Google Scholar 

  13. Torisu H, Ono M, Kiryu H et al. Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: possible involvement of TNFalpha and IL-1alpha. Int J Cancer 2000; 85(2):182–188.

    CAS  PubMed  Google Scholar 

  14. Voronov E, Shouval DS, Krelin Y et al. IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci USA 2003; 100(5):2645–2650.

    Article  CAS  PubMed  Google Scholar 

  15. Itoh Y, Joh T, Tanida S et al. IL-8 promotes cell proliferation and migration through metalloproteinase-cleavage proHB-EGF in human colon carcinoma cells. Cytokine 2005; 29(6):275–282.

    CAS  PubMed  Google Scholar 

  16. Mantovani A, Bottazzi B, Colotta F et al. The origin and function of tumor-associated macrophages. Immunol Today 1992; 13(7):265–270.

    Article  CAS  PubMed  Google Scholar 

  17. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004; 4(1):71–78.

    Article  CAS  PubMed  Google Scholar 

  18. Biswas SK, Gangi L, Paul S et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 2006; 107(5):2112–2122.

    Article  CAS  Google Scholar 

  19. Dighe AS, Richards E, Old LJ et al. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity 1994; 1(6):447–456.

    Article  CAS  PubMed  Google Scholar 

  20. Kaplan DH, Shankaran V, Dighe AS et al. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 1998; 95(13):7556–7561.

    Article  CAS  PubMed  Google Scholar 

  21. van den Broek ME, Kagi D, Ossendorp F et al. Decreased tumor surveillance in perforin-deficient mice. J Exp Med 1996; 184(5):1781–1790.

    Article  PubMed  Google Scholar 

  22. Smyth MJ, Thia KY, Street SE et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 2000; 192(5):755–760.

    Article  CAS  PubMed  Google Scholar 

  23. Shankaran V, Ikeda H, Bruce AT et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001; 410(6832):1107–1111.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou G, Lu Z, McCadden JD et al. Reciprocal changes in tumor antigenicity and antigen-specific T-cell function during tumor progression. J Exp Med 2004; 200(12):1581–1592.

    Article  CAS  PubMed  Google Scholar 

  25. Street SE, Trapani JA, MacGregor D et al. Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med 2002; 196(1):129–134.

    Article  CAS  PubMed  Google Scholar 

  26. Bromberg JF, Horvath CM, Wen Z et al. Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon alpha and interferon gamma. Proc Natl Acad Sci USA 1996; 93(15):7673–7678.

    Article  CAS  PubMed  Google Scholar 

  27. Kumar A, Commane M, Flickinger TW et al. Defective TNF-alpha-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science 1997; 278(5343):1630–1632.

    Article  CAS  PubMed  Google Scholar 

  28. Coughlin CM, Salhany KE, Gee MS et al. Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 1998; 9(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  29. Qin Z, Blankenstein T. CD4+ T-cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity 2000; 12(6):677–686.

    Article  CAS  PubMed  Google Scholar 

  30. Mosmann TR, Li L, Hengartner H et al. Differentiation and functions of T-cell subsets. Ciba Found Symp 1997; 204:148–154; discussion 154-148.

    CAS  PubMed  Google Scholar 

  31. Szabo SJ, Sullivan BM, Peng SL et al. Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol 2003; 21:713–758.

    Article  CAS  PubMed  Google Scholar 

  32. Clemente CG, Mihm MC Jr, Bufalino R et al. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 1996; 77(7):1303–1310.

    Article  CAS  PubMed  Google Scholar 

  33. Sato E, Olson SH, Ahn J et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/ regulatory T-cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 2005; 102(51):18538–18543.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang L, Conejo-Garcia JR, Katsaros D et al. Intratumoral T-cells, recurrence and survival in epithelial ovarian cancer. N Engl J Med 2003; 348(3):203–213.

    Article  CAS  PubMed  Google Scholar 

  35. Baier PK, Wimmenauer S, Hirsch T et al. Analysis of the T-cell receptor variability of tumor-infiltrating lymphocytes in colorectal carcinomas. Tumour Biol 1998; 19(3):205–212.

    Article  CAS  PubMed  Google Scholar 

  36. Prall F, Duhrkop T, Weirich V et al. Prognostic role of CD8+ tumor-infiltrating lymphocytes in stage III colorectal cancer with and without microsatellite instability. Hum Pathol 2004; 35(7):808–816.

    Article  CAS  PubMed  Google Scholar 

  37. Diederichsen AC, Hjelmborg JB, Christensen PB et al. Prognostic value of the CD4+/CD8+ ratio of tumour infiltrating lymphocytes in colorectal cancer and HLA-DR expression on tumour cells. Cancer Immunol Immunother 2003; 52(7):423–428.

    Article  CAS  PubMed  Google Scholar 

  38. Dalerba P, Maccalli C, Casati C et al. Immunology and immunotherapy of colorectal cancer. Crit Rev Oncol Hematol 2003; 46(1):33–57.

    Article  PubMed  Google Scholar 

  39. Naito Y, Saito K, Shiiba K et al. CD8+ T-cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 1998; 58(16):3491–3494.

    CAS  PubMed  Google Scholar 

  40. van der Bruggen P, Traversari C, Chomez P et al. A gene encoding an antigen recognized by cytolytic T-lymphocytes on a human melanoma. Science 1991; 254(5038):1643–1647.

    Article  PubMed  Google Scholar 

  41. Parmiani G, De Filippo A, Novellino L et al. Unique human tumor antigens: immunobiology and use in clinical trials. J Immunol 2007; 178(4):1975–1979.

    CAS  PubMed  Google Scholar 

  42. Van Der Bruggen P, Zhang Y, Chaux P et al. Tumor-specific shared antigenic peptides recognized by human T-cells. Immunol Rev 2002; 188:51–64.

    Article  Google Scholar 

  43. Chaux P, Luiten R, Demotte N et al. Identification of five MAGE-A1 epitopes recognized by cytolytic T-lymphocytes obtained by in vitro stimulation with dendritic cells transduced with MAGE-A1. J Immunol 1999; 163(5):2928–2936.

    CAS  PubMed  Google Scholar 

  44. Wolfel T, Van Pel A, Brichard V et al. Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T-lymphocytes. Eur J Immunol 1994; 24(3):759–764.

    Article  CAS  PubMed  Google Scholar 

  45. Fisk B, Blevins TL, Wharton JT et al. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T-lymphocyte lines. J Exp Med 1995; 181(6):2109–2117.

    Article  CAS  PubMed  Google Scholar 

  46. Pagano JS, Blaser M, Buendia MA et al. Infectious agents and cancer: criteria for a causal relation. Semin Cancer Biol 2004; 14(6):453–471.

    Article  CAS  PubMed  Google Scholar 

  47. Dietrich PY, Walker PR, Quiquerez AL et al. Melanoma patients respond to a cytotoxic T-lymphocytedefined self-peptide with diverse and nonoverlapping T-cell receptor repertoires. Cancer Res 2001; 61(5):2047–2054.

    CAS  PubMed  Google Scholar 

  48. Dietrich PY, Le Gal FA, Dutoit V et al. Prevalent role of TCR alpha-chain in the selection of the preimmune repertoire specific for a human tumor-associated self-antigen. J Immunol 2003; 170(10):5103–5109.

    CAS  PubMed  Google Scholar 

  49. Zippelius A, Pittet MJ, Batard P et al. Thymic selection generates a large T-cell pool recognizing a self-peptide in humans. J Exp Med 2002; 195(4):485–494.

    Article  CAS  PubMed  Google Scholar 

  50. Lonchay C, van der Bruggen P, Connerotte T et al. Correlation between tumor regression and T-cell responses in melanoma patients vaccinated with a MAGE antigen. Proc Natl Acad Sci USA 2004; 101 (Suppl 2):14631–14638.

    Article  CAS  PubMed  Google Scholar 

  51. Chaux P, Vantomme V, Coulie P et al. Estimation of the frequencies of anti-MAGE-3 cytolytic T-lymphocyte precursors in blood from individuals without cancer. Int J Cancer 1998; 77(4):538–542.

    Article  CAS  PubMed  Google Scholar 

  52. Blattman JN, Antia R, Sourdive DJ et al. Estimating the precursor frequency of naive antigen-specific CD8 T-cells. J Exp Med 2002; 195(5):657–664.

    Article  CAS  PubMed  Google Scholar 

  53. Coulie PG, Somville M, Lehmann F et al. Precursor frequency analysis of human cytolytic T-lymphocytes directed against autologos melanoma cells. Int J Cancer 1992; 50(2):289–297.

    Article  CAS  PubMed  Google Scholar 

  54. Herr W, Wolfel T, Heike M et al. Frequency analysis of tumor-reactive cytotoxic T-lymphocytes in peripheral blood of a melanoma patient vaccinated with autologous tumor cells. Cancer Immunol Immunother 1994; 39(2):93–99.

    Article  CAS  PubMed  Google Scholar 

  55. Mazzocchi A, Belli F, Mascheroni L et al. Frequency of cytotoxic T-lymphocyte precursors (CTLp) interacting with autologous tumor via the T-cell receptor: limiting dilution analysis of specific CTLp in peripheral blood and tumor-invaded lymph nodes of melanoma patients. Int J Cancer 1994; 58(3):330–339.

    Article  CAS  PubMed  Google Scholar 

  56. Germeau C, Ma W, Schiavetti F et al. High frequency of antitumor T-cells in the blood of melanoma patients before and after vaccination with tumor antigens. J Exp Med 2005; 201(2):241–248.

    Article  CAS  PubMed  Google Scholar 

  57. Lurquin C, Lethe B, De Plaen E et al. Contrasting frequencies of antitumor and anti-vaccine T-cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen. J Exp Med 2005; 201(2):249–257.

    Article  CAS  PubMed  Google Scholar 

  58. Lee PP, Yee C, Savage PA et al. Characterization of circulating T-cells specific for tumor-associated antigens in melanoma patients. Nat Med 1999; 5(6):677–685.

    Article  CAS  PubMed  Google Scholar 

  59. Pittet MJ, Valmori D, Dunbar PR et al. High frequencies of naive Melan-A/MART-1-specific CD8(+) T-cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J Exp Med 1999; 190(5):705–715.

    Article  CAS  PubMed  Google Scholar 

  60. Dunbar PR, Smith CL, Chao D et al. A shift in the phenotype of melan-A-specific CTL identifies melanoma patients with an active tumor-specific immune response. J Immunol 2000; 165(11):6644–6652.

    CAS  PubMed  Google Scholar 

  61. Romero P, Dunbar PR, Valmori D et al. Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T-lymphocytes. J Exp Med 1998; 188(9):1641–1650.

    Article  CAS  PubMed  Google Scholar 

  62. Speiser DE, Lienard D, Pittet MJ et al. In vivo activation of melanoma-specific CD8(+) T-cells by endogenous tumor antigen and peptide vaccines. A comparison to virus-specific T-cells. Eur J Immunol 2002; 32(3):731–741.

    Article  CAS  PubMed  Google Scholar 

  63. Meidenbauer N, Zippelius A, Pittet MJ et al. High frequency of functionally active Melan-a-specific T-cells in a patient with progressive immunoproteasome-deficient melanoma. Cancer Res 2004; 64(17):6319–6326.

    Article  CAS  PubMed  Google Scholar 

  64. Romero P, Cerottini JC, Speiser DE. Monitoring tumor antigen specific T-cell responses in cancer patients and phase I clinical trials of peptide-based vaccination. Cancer Immunol Immunother 2004; 53(3):249–255.

    Article  PubMed  Google Scholar 

  65. Valmori D, Scheibenbogen C, Dutoit V et al. Circulating Tumor-reactive CD8(+) T-cells in melanoma patients contain a CD45RA(+)CCR7(-) effector subset exerting ex vivo tumor-specific cytolytic activity. Cancer Res 2002; 62(6):1743–1750.

    CAS  PubMed  Google Scholar 

  66. Zippelius A, Batard P, Rubio-Godoy V et al. Effector function of human tumor-specific CD8 T-cells in melanoma lesions: a state of local functional tolerance. Cancer Res 2004; 64(8):2865–2873.

    Article  CAS  PubMed  Google Scholar 

  67. Wang HY, Lee DA, Peng G et al. Tumor-specific human CD4+ regulatory T-cells and their ligands: implications for immunotherapy. Immunity 2004; 20(1):107–118.

    Article  CAS  PubMed  Google Scholar 

  68. Dudley ME, Wunderlich JR, Shelton TE et al. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 2003; 26(4):332–342.

    Article  PubMed  Google Scholar 

  69. Walhout M, Endoh H, Thierry-Mieg N et al. A model of elegance. Am J Hum Genet 1998; 63(4):955–961.

    Article  CAS  PubMed  Google Scholar 

  70. Vidal M. A biological atlas of functional maps. Cell 2001; 104(3):333–339.

    Article  CAS  PubMed  Google Scholar 

  71. Piano F, Schetter AJ, Morton DG et al. Gene clustering based on RNAi phenotypes of ovary-enriched genes in C. elegans. Curr Biol 2002; 12(22):1959–1964.

    Article  CAS  PubMed  Google Scholar 

  72. Boulton SJ, Gartner A, Reboul J et al. Combined functional genomic maps of the C. elegans DNA damage response. Science 2002; 295(5552):127–131.

    Article  CAS  PubMed  Google Scholar 

  73. Giaever G, Chu AM, Ni L et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002; 418(6896):387–391.

    Article  CAS  Google Scholar 

  74. Pages F, Berger A, Camus M et al. Effector memory T-cells, early metastasis and survival in colorectal cancer. N Engl J Med 2005; 353(25):2654–2666.

    Article  CAS  PubMed  Google Scholar 

  75. Galon J, Costes A, Sanchez-Cabo F et al. Type, density and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313(5795):1960–1964.

    Article  CAS  PubMed  Google Scholar 

  76. Galon J, Fridman WH, Pages F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res 2007; 67(5):1883–1886.

    Article  CAS  PubMed  Google Scholar 

  77. Sjoblom T, Jones S, Wood LD et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006; 314(5797):268–274.

    Article  PubMed  CAS  Google Scholar 

  78. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T-cell subsets: function, generation and maintenance. Annu Rev Immunol 2004; 22:745–763.

    Article  CAS  PubMed  Google Scholar 

  79. Xiang R, Lode HN, Gillies SD et al. T-cell memory against colon carcinoma is long-lived in the absence of antigen. J Immunol 1999; 163(7):3676–3683.

    CAS  PubMed  Google Scholar 

  80. Croker AK, Allan AL. Cancer stem cells: implications for the progression and treatment of metastatic disease. J Cell Mol Med 2008; 12(2):374–390.

    Article  CAS  PubMed  Google Scholar 

  81. Vessella RL, Pantel K, Mohla S. Tumor cell dormancy: an NCI workshop report. Cancer Biol Ther 2007; 6(9):1496–1504.

    Article  PubMed  Google Scholar 

  82. Uhr JW, Marches R. Dormancy in a model of murine B cell lymphoma. Semin Cancer Biol 2001; 11(4):277–283.

    Article  CAS  PubMed  Google Scholar 

  83. Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 2007; 7(11):834–846.

    Article  CAS  PubMed  Google Scholar 

  84. Koebel CM, Vermi W, Swann JB et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 2007; 450(7171):903–907.

    Article  CAS  PubMed  Google Scholar 

  85. MacKie RM, Reid R, Junor B. Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N Engl J Med 2003; 348(6):567–568.

    Article  PubMed  Google Scholar 

  86. DeNardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 2007; 9(4):212.

    Article  PubMed  CAS  Google Scholar 

  87. Blattman JN, Greenberg PD. Cancer immunotherapy: a treatment for the masses. Science 2004; 305(5681):200–205.

    Article  CAS  PubMed  Google Scholar 

  88. Nestle FO, Farkas A, Conrad C. Dendritic-cell-based therapeutic vaccination against cancer. Curr Opin Immunol 2005; 17(2):163–169.

    Article  CAS  PubMed  Google Scholar 

  89. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10(9):909–915.

    Article  CAS  PubMed  Google Scholar 

  90. Reinhard G, Marten A, Kiske SM et al. Generation of dendritic cell-based vaccines for cancer therapy. Br J Cancer 2002; 86(10):1529–1533.

    Article  Google Scholar 

  91. Wu Y, Wang L, Zhang Y. Dendritic cells as vectors for immunotherapy of tumor and its application for gastric cancer therapy. Cell Mol Immunol 2004; 1(5):351–356.

    Google Scholar 

  92. Buske C, Weigert O, Dreyling M et al. Current status and perspective of antibody therapy in follicular lymphoma. Haematologica 2006; 91(1):104–112.

    CAS  PubMed  Google Scholar 

  93. Willett CG, Boucher Y, di Tomaso E et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 2004; 10(2):145–147.

    Article  CAS  PubMed  Google Scholar 

  94. Hurwitz H, Fehrenbacher L, Novotny W et al. Bevacizumab plus irinotecan, fluorouracil and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350(23):2335–2342.

    Article  CAS  PubMed  Google Scholar 

  95. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003; 3(6):401–410.

    Article  CAS  PubMed  Google Scholar 

  96. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002; 29(6 Suppl 16):15–18.

    CAS  PubMed  Google Scholar 

  97. Naumov GN, Akslen LA, Folkman J. Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 2006; 5(16):1779–1787.

    Article  CAS  PubMed  Google Scholar 

  98. Staton CA, Chetwood AS, Cameron IC et al. The angiogenic switch occurs at the adenoma stage of the adenoma carcinoma sequence in colorectal cancer. Gut 2007; 56(10):1426–1432.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Galon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Camus, M., Galon, J. (2010). Memory T-Cell Responses and Survival in Human Cancer: Remember to Stay Alive. In: Zanetti, M., Schoenberger, S.P. (eds) Memory T Cells. Advances in Experimental Medicine and Biology, vol 684. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6451-9_13

Download citation

Publish with us

Policies and ethics