Skip to main content

Protein Phosphatases in the Brain: Regulation, Function and Disease

  • Chapter
  • First Online:
Post-Translational Modifications in Health and Disease

Part of the book series: Protein Reviews ((PRON,volume 13))

Abstract

Protein phosphorylation is a critical cellular process regulated by the competing actions of protein kinases (PKs) and phosphatases (PPs). While several hundred PKs exist in mammalian cells, there are only a few dozen PPs. PPs typically target Ser/Thr or Tyr residues but each has different characteristics and specificities and fall into three separate classes. PPs on their own have poor substrate specificity, however, when bound to regulatory proteins their activity and specificity is tightly controlled. Mechanisms of PP regulation range from targeting to subcellular compartments by scaffolding proteins and/or protein complexes which restrict the action of PPs to specific substrates, to the inhibition of PPs by specific inhibitory molecules or inhibitor peptides. In the adult brain, PPs are essential for synaptic functions and are involved in the negative regulation of higher-order brain functions such as learning and memory. Dysregulation of their activity has been linked to several disorders including cognitive ageing and neurodegeneration, but also cancer, diabetes and obesity. Because they are critical for multiple biological functions and could constitute a new class of drug targets, they deserve to be studied in greater detail. The complexity of their modes of action and of the systems they function in, however, requires the analysis of whole systems rather than of individual proteins in isolation, as has been the case for decades using classical molecular biology. In this review, we discuss PPs in the context of the central nervous system, their role in neuronal functions, and their regulation and dysfunction in disease. Current techniques to investigate PP signalling and associated functional networks, future directions for the development of system-wide proteomic and genomic methods of analysis, and the potential for therapeutic applications are also covered.

Ry Y. Tweedie-Cullen and C.S. Park contributed equally for this chapter

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CaM:

Calmodulin

CaMKII:

Ca2+/calmodulin-dependent kinase II

CDK:

Cyclin-dependent kinase

ChIP:

Chromatin immunoprecipitation

ChIP-Seq:

Chromatin immunoprecipitation followed by sequencing

CNS:

Central nervous system

DSP/DUSP:

Dual-specificity phosphatases

HAD:

haloacid dehydrogenase

HDAC:

Histone deacetylase

I1:

Inhibitor 1

KIM:

kinase interaction motif

LMPTP/LMWPTP:

18 kDa low MW phosphatase

LTP:

Long-term potentiation

MKP:

MAPK phosphatase

MS:

Mass spectrometry

MTM:

Myotubularin

MTMR:

MTM1-related

NIPP1:

Nuclear inhibitor of protein phosphatase 1

NRPTP:

Non-receptor PTP

PKA:

Protein kinase A

PK:

Protein kinase

PP:

Protein phosphatase

PP1:

Protein phosphatase 1

PP2B:

Calcineurin

PPM:

Protein phosphatase Mg2+- or Mn2+-dependent

PPP:

Phosphoprotein phosphatase

PTEN:

Phosphatase and tensin homolog deleted in chromosome 10

PTK:

Protein tyrosine kinase

PTM:

Posttranslational modification

PTP:

Protein tyrosine phosphatases

PTP-SL:

Protein tyrosine phosphatase STEP-like

pSer/pThr/pTyr:

Phosphorylated-serine/-threonine/-tyrosine

RLPTP:

Receptor-like PTP

ROS:

Reactive oxygen species

RPTP:

Receptor PTP

Ser/Thr/Tyr:

Serine/threonine/tyrosine

SHP:

Src-homology domain containing phosphatase

STEP:

Striatal-enriched phosphatase

References

  • Allis, C.D., Berger, S.L., Cote, J., et al. (2007). New nomenclature for chromatin-modifying enzymes. Cell 131:633–636.

    PubMed  CAS  Google Scholar 

  • Alonso, A., Sasin, J., Bottini, N., et al. (2004). Protein tyrosine phosphatases in the human genome. Cell 117:699–711.

    PubMed  CAS  Google Scholar 

  • Andersen, J.N., Jansen, P.G., Echwald, S.M., et al. (2004). A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. FASEB J. 18:8–30.

    PubMed  CAS  Google Scholar 

  • Aricescu, A.R., McKinnell, I.W., Halfter, W., et al. (2002). Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase sigma. Mol. Cell. Biol. 22:1881–1892.

    PubMed  CAS  Google Scholar 

  • Aricescu, A.R., Siebold, C., Choudhuri, K., et al. (2007). Structure of a tyrosine phosphatase adhesive interaction reveals a spacer-clamp mechanism. Science 317:1217–1220.

    PubMed  CAS  Google Scholar 

  • Atkins, C.M., Davare, M.A., Oh, M.C., et al. (2005). Bidirectional regulation of cytoplasmic polyadenylation element-binding protein phosphorylation by Ca2+/calmodulin-dependent protein kinase II and protein phosphatase 1 during hippocampal long-term potentiation. J. Neurosci. 25:5604–5610.

    PubMed  CAS  Google Scholar 

  • Barford, D., Das, A.K., and Egloff, M.P. (1998). The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu. Rev. Biophys. Biomol. Struct. 27:133–164.

    PubMed  CAS  Google Scholar 

  • Bauman, A.L. and Scott, J.D. (2002). Kinase- and phosphatase-anchoring proteins: harnessing the dynamic duo. Nat. Cell Biol. 4:E203–206.

    PubMed  CAS  Google Scholar 

  • Baumgartel, K., Fernandez, C., Johansson, T., et al. (2007). Conditional transgenesis and recombination to study the molecular mechanisms of brain plasticity and memory. Handb. Exp. Pharmacol. 3:315–345.

    Google Scholar 

  • Baumgartel, K., Genoux, D., Welzl, H., et al. (2008). Control of the establishment of aversive memory by calcineurin and Zif268. Nat. Neurosci. 11:572–578.

    PubMed  Google Scholar 

  • Bellinzoni, M., Wehenkel, A., Shepard, W., et al. (2007). Insights into the catalytic mechanism of PPM Ser/Thr phosphatases from the atomic resolution structures of a mycobacterial enzyme. Structure 15:863–872.

    PubMed  CAS  Google Scholar 

  • Bialy, L. and Waldmann, H. (2005). Inhibitors of protein tyrosine phosphatases: next-generation drugs? Angew Chem. Int. Ed. Engl. 44:3814–3839.

    PubMed  CAS  Google Scholar 

  • Bilwes, A.M., den Hertog, J., Hunter, T., et al. (1996). Structural basis for inhibition of receptor protein-tyrosine phosphatase-alpha by dimerization. Nature 382:555–559.

    PubMed  CAS  Google Scholar 

  • Birle, D., Bottini, N., Williams, S., et al. (2002). Negative feedback regulation of the tumor suppressor PTEN by phosphoinositide-induced serine phosphorylation. J. Immunol. 169:286–291.

    PubMed  CAS  Google Scholar 

  • Bito, H., Deisseroth, K., and Tsien, R.W. (1996). CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87:1203–1214.

    PubMed  CAS  Google Scholar 

  • Blanchetot, C., Chagnon, M., Dube, et al. (2005). Substrate-trapping techniques in the identification of cellular PTP targets. Methods 35:44–53.

    PubMed  CAS  Google Scholar 

  • Boggon, T.J., Murray, J., Chappuis-Flament, S., et al. (2002). C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296:1308–1313.

    PubMed  CAS  Google Scholar 

  • Bolino, A., Muglia, M., Conforti, F.L., et al. (2000). Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat. Genet. 25:17–19.

    PubMed  CAS  Google Scholar 

  • Bolis, A., Coviello, S., Bussini, S., et al. (2005). Loss of Mtmr2 phosphatase in Schwann cells but not in motor neurons causes Charcot-Marie-Tooth type 4B1 neuropathy with myelin outfoldings. J. Neurosci. 25:8567–8577.

    PubMed  CAS  Google Scholar 

  • Bottini, N., Borgiani, P., Otsu, A., et al. (2002). IL-4 receptor alpha chain genetic polymorphism and total IgE levels in the English population: two-locus haplotypes are more informative than individual SNPs. Clin. Genet. 61:288–292.

    PubMed  CAS  Google Scholar 

  • Boulanger, L.M., Lombroso, P.J., Raghunathan, A., et al. (1995). Cellular and molecular characterization of a brain-enriched protein tyrosine phosphatase. J. Neurosci. 15:1532–1544.

    PubMed  CAS  Google Scholar 

  • Bradshaw, J.M., Kubota, Y., Meyer, T., et al. (2003). An ultrasensitive Ca2+/calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling. Proc. Natl. Acad. Sci. USA 100:10512–10517.

    PubMed  CAS  Google Scholar 

  • Brady-Kalnay, S.M., Flint, A.J., et al. (1993). Homophilic binding of PTP mu, a receptor-type protein tyrosine phosphatase, can mediate cell-cell aggregation. J. Cell Biol. 122, 961–972.

    PubMed  CAS  Google Scholar 

  • Bucciantini, M., Chiarugi, P., Cirri, P., et al. (1999). The low Mr phosphotyrosine protein phosphatase behaves differently when phosphorylated at Tyr131 or Tyr132 by Src kinase. FEBS Lett. 456, 73–78.

    PubMed  CAS  Google Scholar 

  • Buj-Bello, A., Furling, D., Tronchere, H., et al. (2002). Muscle-specific alternative splicing of myotubularin-related 1 gene is impaired in DM1 muscle cells. Hum. Mol. Genet. 11, 2297–2307.

    PubMed  CAS  Google Scholar 

  • Burnett, P.E., Blackshaw, S., Lai, M.M., et al. (1998). Neurabin is a synaptic protein linking p70 S6 kinase and the neuronal cytoskeleton. Proc. Natl. Acad. Sci. USA 95:8351–8356.

    PubMed  CAS  Google Scholar 

  • Canettieri, G., Morantte, I., Guzman, E., et al. (2003). Attenuation of a phosphorylation-dependent activator by an HDAC-PP1 complex. Nat. Struct. Biol. 10:175–181.

    PubMed  CAS  Google Scholar 

  • Ceulemans, H. and Bollen, M. (2004). Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol. Rev. 84:1–39.

    PubMed  CAS  Google Scholar 

  • Chen, G.I. and Gingras, A.C. (2007). Affinity-purification mass spectrometry (AP-MS) of serine/threonine phosphatases. Methods 42:298–305.

    PubMed  CAS  Google Scholar 

  • Chen, M., Hou, X., and Zhang, G. (2003). Tyrosine kinase and tyrosine phosphatase participate in regulation of interactions of NMDA receptor subunit 2A with Src and Fyn mediated by PSD-95 after transient brain ischemia. Neurosci. Lett. 339:29–32.

    PubMed  CAS  Google Scholar 

  • Chong, S. and Whitelaw, E. (2004). Epigenetic germline inheritance. Curr. Opin. Genet. Dev. 14:692–696.

    PubMed  CAS  Google Scholar 

  • Chwang, W.B., O’Riordan, K.J., Levenson, J.M., et al. (2006). ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn. Mem. 13:322–328.

    PubMed  CAS  Google Scholar 

  • Coghlan, V.M., Perrino, B.A., Howard, M., et al. (1995). Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267:108–111.

    PubMed  CAS  Google Scholar 

  • Cohen, P. (2002). Protein kinases – the major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 1:309–315.

    PubMed  CAS  Google Scholar 

  • Colbran, R.J. (2004). Protein phosphatases and calcium/calmodulin-dependent protein kinase II-dependent synaptic plasticity. J. Neurosci. 24:8404–8409.

    PubMed  CAS  Google Scholar 

  • Collins, M.O., Yu, L., Coba, M.P., et al. (2005). Proteomic analysis of in vivo phosphorylated synaptic proteins. J. Biol. Chem. 280:5972–5982.

    PubMed  CAS  Google Scholar 

  • den Hertog, J., Groen, A., and van der Wijk, T. (2005). Redox regulation of protein-tyrosine phosphatases. Arch. Biochem. Biophys. 434:11–15.

    Google Scholar 

  • Ehrchen, J., Sunderkotter, C., Luger, T., et al. (2008). Calcineurin inhibitors for the treatment of atopic dermatitis. Expert Opin. Pharmacother. 9:3009–3023.

    PubMed  CAS  Google Scholar 

  • Faul, C., Donnelly, M., Merscher-Gomez, S., et al. (2008). The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 14:931–938.

    PubMed  CAS  Google Scholar 

  • Faux, M.C. and Scott, J.D. (1996). More on target with protein phosphorylation: conferring specificity by location. Trends Biochem. Sci. 21:312–315.

    PubMed  CAS  Google Scholar 

  • Flavell, S.W., Cowan, C.W., Kim, T.K., et al. (2006). Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311:1008–1012.

    PubMed  CAS  Google Scholar 

  • Forrest, A.R., Taylor, D.F., Fink, J.L., et al. (2006). PhosphoregDB: the tissue and sub-cellular distribution of mammalian protein kinases and phosphatases. BMC Bioinform 7:82.

    Google Scholar 

  • Foster, T.C. (2007). Calcium homeostasis and modulation of synaptic plasticity in the aged brain. Aging Cell 6:319–325.

    PubMed  CAS  Google Scholar 

  • Foster, T.C., Sharrow, K.M., Masse, J.R., et al. (2001). Calcineurin links Ca2+ dysregulation with brain aging. J. Neurosci. 21:4066–4073.

    PubMed  CAS  Google Scholar 

  • Ganesh, S., Delgado-Escueta, A.V., Sakamoto, T., et al. (2002). Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Hum. Mol. Genet. 11:1251–1262.

    PubMed  CAS  Google Scholar 

  • Ganesh, S., Puri, R., Singh, S., et al. (2006). Recent advances in the molecular basis of Lafora’s progressive myoclonus epilepsy. J. Hum. Genet. 51:1–8.

    PubMed  CAS  Google Scholar 

  • Garton, A.J., Burnham, M.R., Bouton, A.H., et al. (1997). Association of PTP-PEST with the SH3 domain of p130cas; a novel mechanism of protein tyrosine phosphatase substrate recognition. Oncogene 15:877–885.

    PubMed  CAS  Google Scholar 

  • Gebbink, M.F., Zondag, G.C., Wubbolts, R.W., et al. (1993). Cell-cell adhesion mediated by a receptor-like protein tyrosine phosphatase. J. Biol. Chem. 268:16101–16104.

    PubMed  CAS  Google Scholar 

  • Gee, C.E. and Mansuy, I.M. (2005). Protein phosphatases and their potential implications in neuroprotective processes. Cell. Mol. Life Sci. 62:1120–1130.

    PubMed  CAS  Google Scholar 

  • Genoux, D., Haditsch, U., Knobloch, M., Michalon, A., Storm, D., and Mansuy, I.M. (2002). Protein phosphatase 1 is a molecular constraint on learning and memory. Nature 418:970–975.

    PubMed  CAS  Google Scholar 

  • Gingras, A.C., Caballero, M., Zarske, M., et al. (2005). A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity. Mol. Cell. Proteom 4:1725–1740.

    PubMed  CAS  Google Scholar 

  • Giovannini, M.G., Blitzer, R.D., Wong, T., et al. (2001). Mitogen-activated protein kinase regulates early phosphorylation and delayed expression of Ca2+/calmodulin-dependent protein kinase II in long-term potentiation. J. Neurosci. 21:7053–7062.

    PubMed  CAS  Google Scholar 

  • Goudreault, M., D’Ambrosio, L.M., Kean, M.J., et al. (2009). A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol. Cell. Proteom 8:157–171.

    PubMed  CAS  Google Scholar 

  • Greengard, P., Valtorta, F., Czernik, A.J., et al. (1993). Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259:780–785.

    PubMed  CAS  Google Scholar 

  • Griffin, T.J., Gygi, S.P., Ideker, T., et al. (2002). Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteom 1:323–333.

    PubMed  CAS  Google Scholar 

  • Hedou, G.F., Koshibu, K., Farinelli, M., et al. (2008). Protein phosphatase 1-dependent bidirectional synaptic plasticity controls ischemic recovery in the adult brain. J. Neurosci. 28:154–162.

    PubMed  CAS  Google Scholar 

  • Hinsby, A.M., Olsen, J.V., and Mann, M. (2004). Tyrosine phosphoproteomics of fibroblast growth factor signaling: a role for insulin receptor substrate-4. J. Biol. Chem. 279:46438–46447.

    PubMed  CAS  Google Scholar 

  • Honda, R., Ohba, Y., Nagata, A., et al. (1993). Dephosphorylation of human p34cdc2 kinase on both Thr-14 and Tyr-15 by human cdc25B phosphatase. FEBS Lett. 318:331–334.

    PubMed  CAS  Google Scholar 

  • Honkanen, R.E. and Golden, T. (2002). Regulators of serine/threonine protein phosphatases at the dawn of a clinical era? Curr. Med. Chem. 9:2055–2075.

    PubMed  CAS  Google Scholar 

  • Hooft van Huijsduijnen, R., Sauer, W.H., Bombrun, A., et al. (2004). Prospects for inhibitors of protein tyrosine phosphatase 1B as antidiabetic drugs. J. Med. Chem. 47:4142–4146.

    PubMed  CAS  Google Scholar 

  • Horne, E.A. and Dell’Acqua, M.L. (2007). Phospholipase C is required for changes in postsynaptic structure and function associated with NMDA receptor-dependent long-term depression. J. Neurosci. 27:3523–3534.

    PubMed  CAS  Google Scholar 

  • Hsieh, J. and Gage, F.H. (2005). Chromatin remodeling in neural development and plasticity. Curr. Opin. Cell Biol. 17:664–671.

    PubMed  CAS  Google Scholar 

  • Hsu, J.Y., Sun, Z.W., Li, X., Reuben, M., Tatchell, K., Bishop, D.K., Grushcow, J.M., Brame, C.J., Caldwell, J.A., Hunt, D.F., et al. (2000). Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102:279–291.

    PubMed  CAS  Google Scholar 

  • Huang, P.H. and White, F.M. (2008). Phosphoproteomics: unraveling the signaling web. Mol. Cell 31:777–781.

    PubMed  CAS  Google Scholar 

  • Hunter, T. (1998). The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353:583–605.

    PubMed  CAS  Google Scholar 

  • Husi, H., Ward, M.A., Choudhary, J.S., et al. (2000). Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3:661–669.

    PubMed  CAS  Google Scholar 

  • Jagiello, I., Beullens, M., Vulsteke, V., et al. (1997). NIPP-1, a nuclear inhibitory subunit of protein phosphatase-1, has RNA-binding properties. J. Biol. Chem. 272:22067–22071.

    PubMed  CAS  Google Scholar 

  • Jemc, J. and Rebay, I. (2007a). Identification of transcriptional targets of the dual-function transcription factor/phosphatase eyes absent. Dev. Biol. 310:416–429.

    PubMed  CAS  Google Scholar 

  • Jemc, J. and Rebay, I. (2007b). The eyes absent family of phosphotyrosine phosphatases: properties and roles in developmental regulation of transcription. Annu. Rev. Biochem. 76:513–538.

    PubMed  CAS  Google Scholar 

  • Jenuwein, T. and Allis, C.D. (2001). Translating the histone code. Science 293:1074–1080.

    PubMed  CAS  Google Scholar 

  • Jiang, Z.X. and Zhang, Z.Y. (2008). Targeting PTPs with small molecule inhibitors in cancer treatment. Cancer Metastasis Rev. 27:263–272.

    PubMed  CAS  Google Scholar 

  • Johnson, K.G., Tenney, A.P., Ghose, A., et al. (2006). The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron 49:517–531.

    PubMed  CAS  Google Scholar 

  • Jouvenceau, A. and Dutar, P. (2006). A role for the protein phosphatase 2B in altered hippocampal synaptic plasticity in the aged rat. J. Physiol. Paris 99:154–161.

    PubMed  CAS  Google Scholar 

  • Jouvenceau, A., Hedou, G., Potier, B., et al. (2006). Partial inhibition of PP1 alters bidirectional synaptic plasticity in the hippocampus. Eur. J. Neurosci. 24:564–572.

    PubMed  Google Scholar 

  • Katayose, Y., Li, M., Al-Murrani, S.W., et al. (2000). Protein phosphatase 2A inhibitors, I(1)(PP2A) and I(2)(PP2A), associate with and modify the substrate specificity of protein phosphatase 1. J. Biol. Chem. 275:9209–9214.

    PubMed  CAS  Google Scholar 

  • Kim, Y.M., Watanabe, T., Allen, P.B., et al. (2003). PNUTS, a protein phosphatase 1 (PP1) nuclear targeting subunit. Characterization of its PP1- and RNA-binding domains and regulation by phosphorylation. J. Biol. Chem. 278:13819–13828.

    PubMed  CAS  Google Scholar 

  • Kim, M.J., Dunah, A.W., Wang, Y.T., et al. (2005). Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 46:745–760.

    PubMed  CAS  Google Scholar 

  • Klauck, T.M., Faux, M.C., Labudda, K., et al. (1996). Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science 271:1589–1592.

    PubMed  CAS  Google Scholar 

  • Knobloch, M. and Mansuy, I.M. (2008). Dendritic spine loss and synaptic alterations in Alzheimer’s disease. Mol. Neurobiol. 37:73–82.

    PubMed  CAS  Google Scholar 

  • Koshibu, K., Graff, J., et al. (2009). Protein phosphatase 1 regulates the histone code for long-term memory. J. Neurosci. 29(41):13079–13089.

    PubMed  CAS  Google Scholar 

  • Kwon, C.H., Luikart, B.W., Powell, C.M., et al. (2006). Pten regulates neuronal arborization and social interaction in mice. Neuron 50:377–388.

    PubMed  CAS  Google Scholar 

  • Landsverk, H.B., Kirkhus, M., Bollen, M., et al. (2005). PNUTS enhances in vitro chromosome decondensation in a PP1-dependent manner. Biochem. J. 390:709–717.

    PubMed  CAS  Google Scholar 

  • Laporte, J., Hu, L.J., Kretz, C., et al. (1996). A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat. Genet. 13:175–182.

    PubMed  CAS  Google Scholar 

  • Lee, H.K. (2006). Synaptic plasticity and phosphorylation. Pharmacol. Ther. 112:810–832.

    PubMed  CAS  Google Scholar 

  • Lee, S.R., Kwon, K.S., Kim, S.R., et al. (1998). Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273:15366–15372.

    PubMed  CAS  Google Scholar 

  • Levenson, J.M. and Sweatt, J.D. (2005). Epigenetic mechanisms in memory formation. Nat. Rev. Neurosci. 6:108–118.

    PubMed  CAS  Google Scholar 

  • Levenson, J.M. and Sweatt, J.D. (2006). Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell. Mol. Life Sci. 63:1009–1016.

    PubMed  CAS  Google Scholar 

  • Levinthal, D.J. and Defranco, D.B. (2005). Reversible oxidation of ERK-directed protein phosphatases drives oxidative toxicity in neurons. J. Biol. Chem. 280:5875–5883.

    PubMed  CAS  Google Scholar 

  • Li, L. and Dixon, J.E. (2000). Form, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases. Semin. Immunol. 12:75–84.

    PubMed  CAS  Google Scholar 

  • Li, X., Oghi, K.A., Zhang, J., Krones, A., et al. (2003). Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426:247–254.

    PubMed  CAS  Google Scholar 

  • Lin, J.W., Wyszynski, M., Madhavan, R., et al. (1998). Yotiao, a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1. J. Neurosci. 18:2017–2027.

    PubMed  CAS  Google Scholar 

  • Lisman, J., Schulman, H., and Cline, H. (2002). The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3:175–190.

    PubMed  CAS  Google Scholar 

  • Luebke, J.I., Chang, Y.M., Moore, T.L., et al. (2004). Normal aging results in decreased synaptic excitation and increased synaptic inhibition of layer 2/3 pyramidal cells in the monkey prefrontal cortex. Neuroscience 125:277–288.

    PubMed  CAS  Google Scholar 

  • Majeti, R., Bilwes, A.M., Noel, J.P., et al. (1998). Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science 279:88–91.

    PubMed  CAS  Google Scholar 

  • Majeti, R., Xu, Z., Parslow, T.G., et al. (2000). An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell 103:1059–1070.

    PubMed  CAS  Google Scholar 

  • Malenka, R.C. and Nicoll, R.A. (1999). Long-term potentiation – a decade of progress? Science 285:1870–1874.

    PubMed  CAS  Google Scholar 

  • Malleret, G., Haditsch, U., Genoux, D., et al. (2001). Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell 104:675–686.

    PubMed  CAS  Google Scholar 

  • Manning, G., Whyte, D.B., Martinez, R., et al. (2002). The protein kinase complement of the human genome. Science 298:1912–1934.

    PubMed  CAS  Google Scholar 

  • Mansuy, I.M. (2003). Calcineurin in memory and bidirectional plasticity. Biochem. Biophys. Res. Commun. 311:1195–1208.

    PubMed  CAS  Google Scholar 

  • Mansuy, I.M. and Shenolikar, S. (2006). Protein serine/threonine phosphatases in neuronal plasticity and disorders of learning and memory. Trends Neurosci. 29:679–686.

    PubMed  CAS  Google Scholar 

  • McLean, J., Batt, J., Doering, L.C., et al. (2002). Enhanced rate of nerve regeneration and directional errors after sciatic nerve injury in receptor protein tyrosine phosphatase sigma knock-out mice. J. Neurosci. 22:5481–5491.

    PubMed  CAS  Google Scholar 

  • Miller, C.A. and Sweatt, J.D. (2007). Covalent modification of DNA regulates memory formation. Neuron 53:857–869.

    PubMed  CAS  Google Scholar 

  • Moorhead, G.B., Trinkle-Mulcahy, L., et al. (2007). Emerging roles of nuclear protein phosphatases. Nat. Rev. Mol. Cell. Biol. 8:234–244.

    PubMed  CAS  Google Scholar 

  • Moorhead, G.B., De Wever, V., Templeton, G., et al. (2009). Evolution of protein phosphatases in plants and animals. Biochem. J. 417:401–409.

    PubMed  CAS  Google Scholar 

  • Mulkey, R.M., Endo, S., Shenolikar, S., et al. (1994). Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369:486–488.

    PubMed  CAS  Google Scholar 

  • Mumby, M. (2007). PP2A: unveiling a reluctant tumor suppressor. Cell 130:21–24.

    PubMed  CAS  Google Scholar 

  • Munton, R.P., Vizi, S., and Mansuy, I.M. (2004). The role of protein phosphatase-1 in the modulation of synaptic and structural plasticity. FEBS Lett. 567:121–128.

    PubMed  CAS  Google Scholar 

  • Munton, R.P., Tweedie-Cullen, R., Livingstone-Zatchej, M., et al. (2007). Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations. Mol. Cell. Proteom 6:283–293.

    PubMed  CAS  Google Scholar 

  • Nam, H.J., Poy, F., Krueger, N.X., Saito, H., et al. (1999). Crystal structure of the tandem phosphatase domains of RPTP LAR. Cell 97:449–457.

    PubMed  CAS  Google Scholar 

  • Neel, B.G., Gu, H., and Pao, L. (2003). The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 28:284–293.

    PubMed  CAS  Google Scholar 

  • Niisato, K., Fujikawa, A., Komai, S., et al. (2005). Age-dependent enhancement of hippocampal long-term potentiation and impairment of spatial learning through the Rho-associated kinase pathway in protein tyrosine phosphatase receptor type Z-deficient mice. J. Neurosci. 25:1081–1088.

    PubMed  CAS  Google Scholar 

  • Norman, E.D., Thiels, E., Barrionuevo, G., et al. (2000). Long-term depression in the hippocampus in vivo is associated with protein phosphatase-dependent alterations in extracellular signal-regulated kinase. J. Neurochem. 74:192–198.

    PubMed  CAS  Google Scholar 

  • Norris, C.M., Halpain, S., and Foster, T.C. (1998). Alterations in the balance of protein kinase/phosphatase activities parallel reduced synaptic strength during aging. J. Neurophysiol. 80:1567–1570.

    PubMed  CAS  Google Scholar 

  • Nowak, S.J., Pai, C.Y., and Corces, V.G. (2003). Protein phosphatase 2A activity affects histone H3 phosphorylation and transcription in Drosophila melanogaster. Mol. Cell. Biol. 23:6129–6138.

    PubMed  CAS  Google Scholar 

  • Oficjalska-Pham, D., Harismendy, O., Smagowicz, W.J., et al. (2006). General repression of RNA polymerase III transcription is triggered by protein phosphatase type 2A-mediated dephosphorylation of Maf1. Mol. Cell 22:623–632.

    PubMed  CAS  Google Scholar 

  • Oliver, C.J., Terry-Lorenzo, R.T., Elliott, E., et al. (2002). Targeting protein phosphatase 1 (PP1) to the actin cytoskeleton: the neurabin I/PP1 complex regulates cell morphology. Mol. Cell. Biol. 22:4690–4701.

    PubMed  CAS  Google Scholar 

  • Oliveria, S.F., Gomez, L.L., and Dell’Acqua, M.L. (2003). Imaging kinase – AKAP79 – phosphatase scaffold complexes at the plasma membrane in living cells using FRET microscopy. J. Cell Biol. 160:101–112.

    PubMed  CAS  Google Scholar 

  • Olsen, J.V., Blagoev, B., Gnad, F., et al. (2006). Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648.

    PubMed  CAS  Google Scholar 

  • Ostman, A., Hellberg, C., and Bohmer, F.D. (2006). Protein-tyrosine phosphatases and cancer. Nat. Rev. Cancer 6:307–320.

    PubMed  Google Scholar 

  • Pariser, H., Herradon, G., Ezquerra, L., et al. (2005a). Pleiotrophin regulates serine phosphorylation and the cellular distribution of beta-adducin through activation of protein kinase C. Proc. Natl. Acad. Sci. USA 102:12407–12412.

    PubMed  CAS  Google Scholar 

  • Pariser, H., Perez-Pinera, P., Ezquerra, L., et al. (2005b). Pleiotrophin stimulates tyrosine phosphorylation of beta-adducin through inactivation of the transmembrane receptor protein tyrosine phosphatase beta/zeta. Biochem. Biophys. Res. Commun. 335:232–239.

    PubMed  CAS  Google Scholar 

  • Paul, S. and Lombroso, P.J. (2003). Receptor and nonreceptor protein tyrosine phosphatases in the nervous system. Cell. Mol. Life Sci. 60:2465–2482.

    PubMed  CAS  Google Scholar 

  • Perez-Pinera, P., Alcantara, S., Dimitrov, T., Vega, J.A., and Deuel, T.F. (2006). Pleiotrophin disrupts calcium-dependent homophilic cell-cell adhesion and initiates an epithelial-mesenchymal transition. Proc. Natl. Acad. Sci. USA 103:17795–17800.

    PubMed  CAS  Google Scholar 

  • Pulido, R., Zuniga, A., and Ullrich, A. (1998). PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. EMBO J. 17:7337–7350.

    PubMed  CAS  Google Scholar 

  • Qiu, Z. and Ghosh, A. (2008). A calcium-dependent switch in a CREST-BRG1 complex regulates activity-dependent gene expression. Neuron 60:775–787.

    PubMed  CAS  Google Scholar 

  • Quinlan, E.M. and Halpain, S. (1996). Postsynaptic mechanisms for bidirectional control of MAP2 phosphorylation by glutamate receptors. Neuron 16:357–368.

    PubMed  CAS  Google Scholar 

  • Ranish, J.A., Yi, E.C., Leslie, et al. (2003). The study of macromolecular complexes by quantitative proteomics. Nat. Genet. 33:349–355.

    PubMed  CAS  Google Scholar 

  • Richards, E.J. (2006). Inherited epigenetic variation – revisiting soft inheritance. Nat. Rev. Genet. 7:395–401.

    PubMed  CAS  Google Scholar 

  • Roy, N., Van Eynde, A., Beke, L., et al. (2007). The transcriptional repression by NIPP1 is mediated by Polycomb group proteins. Biochim. Biophys. Acta 1769:541–545.

    PubMed  CAS  Google Scholar 

  • Salmeen, A. and Barford, D. (2005). Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid. Redox Signal. 7:560–577.

    PubMed  CAS  Google Scholar 

  • Schmidinger, H., Hermetter, A., and Birner-Gruenberger, R. (2006). Activity-based proteomics: enzymatic activity profiling in complex proteomes. Amino Acids 30:333–350.

    PubMed  CAS  Google Scholar 

  • Schones, D.E. and Zhao, K. (2008). Genome-wide approaches to studying chromatin modifications. Nat. Rev. Genet. 9:179–191.

    PubMed  CAS  Google Scholar 

  • Serratosa, J.M., Gomez-Garre, P., Gallardo, M.E., et al. (1999). A novel protein tyrosine phosphatase gene is mutated in progressive myoclonus epilepsy of the Lafora type (EPM2). Hum. Mol. Genet. 8:345–352.

    PubMed  CAS  Google Scholar 

  • Shalizi, A., Gaudilliere, B., Yuan, Z., et al. (2006). A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311:1012–1017.

    PubMed  CAS  Google Scholar 

  • Shenolikar, S. (2007). Analysis of protein phosphatases: toolbox for unraveling cell signaling networks. Methods Mol. Biol. 365:1–8.

    Google Scholar 

  • Sim, A.T. and Scott, J.D. (1999). Targeting of PKA, PKC and protein phosphatases to cellular microdomains. Cell Calcium 26:209–217.

    PubMed  CAS  Google Scholar 

  • Sim, A.T., Baldwin, M.L., Rostas, et al. (2003). The role of serine/threonine protein phosphatases in exocytosis. Biochem J. 373:641–659.

    PubMed  CAS  Google Scholar 

  • Siniossoglou, S., Santos-Rosa, H., Rappsilber, J., et al. (1998). A novel complex of membrane proteins required for formation of a spherical nucleus. EMBO J. 17:6449–6464.

    PubMed  CAS  Google Scholar 

  • Smolen, P., Baxter, D.A., and Byrne, J.H. (2006). A model of the roles of essential kinases in the induction and expression of late long-term potentiation. Biophys. J. 90:2760–2775.

    PubMed  CAS  Google Scholar 

  • Snyder, E.M., Nong, Y., Almeida, C.G., et al. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nat. Neurosci. 8:1051–1058.

    PubMed  CAS  Google Scholar 

  • Stone, S.R., Hofsteenge, J., and Hemmings, B.A. (1987). Molecular cloning of cDNAs encoding two isoforms of the catalytic subunit of protein phosphatase 2A. Biochemistry 26:7215–7220.

    PubMed  CAS  Google Scholar 

  • Strack, S., Kini, S., Ebner, F.F., et al. (1999). Differential cellular and subcellular localization of protein phosphatase 1 isoforms in brain. J. Comp. Neurol. 413:373–384.

    PubMed  CAS  Google Scholar 

  • Strack, S., McNeill, R.B., and Colbran, R.J. (2000). Mechanism and regulation of calcium/calmodulin-dependent protein kinase II targeting to the NR2B subunit of the N-methyl-D-aspartate receptor. J. Biol. Chem. 275:23798–23806.

    PubMed  CAS  Google Scholar 

  • Tabernero, L., Aricescu, A.R., Jones, E.Y., et al. (2008). Protein tyrosine phosphatases: structure-function relationships. FEBS J. 275:867–882.

    PubMed  CAS  Google Scholar 

  • Tailor, P., Gilman, J., Williams, S., et al. (1997). Regulation of the low molecular weight phosphotyrosine phosphatase by phosphorylation at tyrosines 131 and 132. J. Biol. Chem. 272:5371–5374.

    PubMed  CAS  Google Scholar 

  • Tamura, H., Fukada, M., Fujikawa, A., et al. (2006). Protein tyrosine phosphatase receptor type Z is involved in hippocampus-dependent memory formation through dephosphorylation at Y1105 on p190 RhoGAP. Neurosci. Lett. 399:33–38.

    PubMed  CAS  Google Scholar 

  • Tautz, L., Pellecchia, M., and Mustelin, T. (2006). Targeting the PTPome in human disease. Expert Opin. Ther. Targets 10:157–177.

    PubMed  CAS  Google Scholar 

  • Tezuka, T., Umemori, H., Akiyama, T., et al. (1999). PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit NR2A. Proc. Natl. Acad. Sci. USA 96:435–440.

    PubMed  CAS  Google Scholar 

  • Thiels, E., Kanterewicz, B.I., Knapp, L.T., et al. (2000). Protein phosphatase-mediated regulation of protein kinase C during long-term depression in the adult hippocampus in vivo. J. Neurosci. 20:7199–7207.

    PubMed  CAS  Google Scholar 

  • Tonks, N.K. (2005). Redox redux: revisiting PTPs and the control of cell signaling. Cell 121:667–670.

    PubMed  CAS  Google Scholar 

  • Tonks, N.K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell. Biol. 7:833–846.

    PubMed  CAS  Google Scholar 

  • Tootle, T.L., Silver, S.J., Davies, E.L., et al. (2003). The transcription factor Eyes absent is a protein tyrosine phosphatase. Nature 426:299–302.

    PubMed  CAS  Google Scholar 

  • Trelle, M.B. and Jensen, O.N. (2007). Functional proteomics in histone research and epigenetics. Expert Rev. Proteom 4:491–503.

    PubMed  CAS  Google Scholar 

  • Trinidad, J.C., Thalhammer, A., Specht, C.G., et al. (2005). Phosphorylation state of postsynaptic density proteins. J. Neurochem. 92:1306–1316.

    PubMed  CAS  Google Scholar 

  • Trinidad, J.C., Specht, C.G., Thalhammer, A., et al. (2006). Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol. Cell. Proteom 5:914–922.

    PubMed  CAS  Google Scholar 

  • Trinidad, J.C., Thalhammer, A., Specht, C.G., et al. (2008). Quantitative analysis of synaptic phosphorylation and protein expression. Mol. Cell. Proteom 7:684–696.

    PubMed  CAS  Google Scholar 

  • Trinkle-Mulcahy, L., Andersen, J., Lam, Y.W., et al. (2006). Repo-Man recruits PP1 gamma to chromatin and is essential for cell viability. J. Cell Biol. 172:679–692.

    PubMed  CAS  Google Scholar 

  • Tsankova, N., Renthal, W., Kumar, A., et al. (2007). Epigenetic regulation in psychiatric disorders. Nat. Rev. Neurosci. 8:355–367.

    PubMed  CAS  Google Scholar 

  • Tweedie-Cullen, R.Y., Wollscheid, B., Livingstone-Zatchej, M., et al. (2007). Neuroproteomics and the detection of regulatory phosphosites. Curr. Proteom 4:209–222.

    CAS  Google Scholar 

  • Ubersax, J.A. and Ferrell, J.E., Jr. (2007). Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell. Biol. 8:530–541.

    PubMed  CAS  Google Scholar 

  • Ulke-Lemee, A., Trinkle-Mulcahy, L., Chaulk, S., et al. (2007). The nuclear PP1 interacting protein ZAP3 (ZAP) is a putative nucleoside kinase that complexes with SAM68, CIA, NF110/45, and HNRNP-G. Biochim. Biophys. Acta 1774:1339–1350.

    PubMed  CAS  Google Scholar 

  • Vagnarelli, P., Hudson, D.F., Ribeiro, S.A., et al. (2006). Condensin and Repo-Man-PP1 co-operate in the regulation of chromosome architecture during mitosis. Nat.Cell Biol. 8:1133–1142.

    PubMed  CAS  Google Scholar 

  • van der Wijk, T., Overvoorde, J., and den Hertog, J. (2004). H2O2-induced intermolecular disulfide bond formation between receptor protein-tyrosine phosphatases. J. Biol. Chem. 279:44355–44361.

    PubMed  Google Scholar 

  • Vulsteke, V., Beullens, M., Waelkens, E., et al. (1997). Properties and phosphorylation sites of baculovirus-expressed nuclear inhibitor of protein phosphatase-1 (NIPP-1). J. Biol. Chem. 272:32972–32978.

    PubMed  CAS  Google Scholar 

  • Wang, J.H. and Kelly, P.T. (1996). The balance between postsynaptic Ca(2+)-dependent protein kinase and phosphatase activities controlling synaptic strength. Learn. Mem. 3:170–181.

    PubMed  CAS  Google Scholar 

  • Wang, Y.T. and Salter, M.W. (1994). Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369:233–235.

    PubMed  CAS  Google Scholar 

  • Wang, X., Culotta, V.C., and Klee, C.B. (1996). Superoxide dismutase protects calcineurin from inactivation. Nature 383:434–437.

    PubMed  CAS  Google Scholar 

  • Watson, J.B., Khorasani, H., Persson, A., et al. (2002). Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. J. Neurosci. Res. 70:298–308.

    PubMed  CAS  Google Scholar 

  • Westphal, R.S., Tavalin, S.J., Lin, J.W., et al. (1999). Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science 285:93–96.

    PubMed  CAS  Google Scholar 

  • Winder, D.G. and Sweatt, J.D. (2001). Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nat. Rev. Neurosci. 2:461–474.

    PubMed  CAS  Google Scholar 

  • Wishart, M.J. and Dixon, J.E. (2002). PTEN and myotubularin phosphatases: from 3-phosphoinositide dephosphorylation to disease. Trends Cell Biol. 12:579–585.

    PubMed  CAS  Google Scholar 

  • Xu, Z. and Weiss, A. (2002). Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat. Immunol. 3:764–771.

    PubMed  CAS  Google Scholar 

  • Yakel, J.L. (1997). Calcineurin regulation of synaptic function: from ion channels to transmitter release and gene transcription. Trends Pharmacol. Sci. 18:124–134.

    PubMed  CAS  Google Scholar 

  • Yin, Y. and Shen, W.H. (2008). PTEN: a new guardian of the genome. Oncogene 27:5443–5453.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., Kim, Y., Genoud, N., et al. (2006). Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by Scp1. Mol. Cell 24:759–770.

    PubMed  CAS  Google Scholar 

  • Zhang, S., Edelmann, L., Liu, J., et al. (2008). Cdk5 regulates the phosphorylation of tyrosine 1472 NR2B and the surface expression of NMDA receptors. J. Neurosci. 28:415–424.

    PubMed  Google Scholar 

  • Zhou, F., Galan, J., Geahlen, R.L., et al. (2007). A novel quantitative proteomics strategy to study phosphorylation-dependent peptide-protein interactions. J. Proteom Res. 6:133–140.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle M. Mansuy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tweedie-Cullen, R.Y., Park, C.S., Mansuy, I.M. (2011). Protein Phosphatases in the Brain: Regulation, Function and Disease. In: Vidal, C. (eds) Post-Translational Modifications in Health and Disease. Protein Reviews, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6382-6_10

Download citation

Publish with us

Policies and ethics